
A Theory of Tagged Objects (Artifact)
Joseph Lee1, Jonathan Aldrich1, Troy Shaw2, Alex Potanin∗2, and
Benjamin Chung†1

1 Carnegie Mellon University
Pittsburgh, PA, USA
josephle@andrew.cmu.edu, aldrich@cs.cmu.edu, bwchung@andrew.cmu.edu

2 Victoria University of Wellington
New Zealand
troyshw@gmail.com, alex@ecs.vuw.ac.nz

Abstract
A compiler and interpreter for Wyvern pro-
gramming language written in Java and hosted
on http://github.com/wyvernlang/wyvern and
some sample programs (.wyv) including the main
example from the paper in borderedwindow.wyv.

We also include an extract of all the unit tests of
which a large number may be designed to fail –
therefore they are best run using JUnit which can
be done by checking out the source tree from the
GitHub project link above.

1998 ACM Subject Classification D.3.3 Language Constructs and Features
Keywords and phrases objects, classes, tags, nominal and structural types
Digital Object Identifier 10.4230/DARTS.1.1.3
Related Article Joseph Lee, Jonathan Aldrich, Troy Shaw, Alex Potanin and Benjamin Chung, “A
Theory of Tagged Objects”, in Proceedings of the 29th European Conference on Object-Oriented
Programming (ECOOP 2015), LIPIcs, Vol. 37, pp. 174–197, 2015.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.174
Related Conference 29th European Conference on Object-Oriented Programming (ECOOP 2015), July
5–10, 2015, Prague, Czech Republic

1 Scope

The artifact is a prototype of the Wyvern language compiler that supports the tags as described
in the paper.

2 Content

The artifact package includes:
wyvern.jar which contains the compiler,
three examples (.wyv),
readme.txt and a selection of JUnit tests.

What is included is a Wyvern compiler. It takes a program written in Wyvern Programming
Language (e.g. borderedwindow.wyv) and then compiles and executes (interprets) the result
printing the final value of the evaluation to the standard output.

We included 3 sample programs written in Wyvern with the implementation inside wyvern.jar.
Here is an example of running it on Linux:

∗ Core artifact developer.
† Core artifact developer.

© Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 1, Issue 1, Artifact No. 3, pp. 03:1–03:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://github.com/wyvernlang/wyvern
http://dx.doi.org/10.4230/DARTS.1.1.3
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.174
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de


03:2 A Theory of Tagged Objects (Artifact)

cuba: [WyvernECOOP2015Artifact] % java -version
java version ‘‘1.8.0_25’’
Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)
cuba: [WyvernECOOP2015Artifact] % java -jar wyvern.jar borderedwindow.wyv
‘‘big’’
cuba: [WyvernECOOP2015Artifact] % java -jar wyvern.jar json.wyv
15
cuba: [WyvernECOOP2015Artifact] % java -jar wyvern.jar testmethods.wyv
64

The reader can try to modify the programs or write their own following either the description
in the paper or using the samples included in the “tests” folder or by looking at the Wyvern
language web site with some specifications and papers or GitHub repository. The main example in
the paper is borderedwindow.wyv file that shows the core of the paper’s contribution (dynamic
tags) working – compiling and executing.

If a reader wishes to rebuild the program, say in Eclipse, here is what one needs to do. There
are two parts to the compiler implementation: (1) is the parser generator Copper that converts the
grammar in Wyvern.x into Wyvern.java that is then used inside the Wyvern implementation (2).
The ant script in the tools folder is to run Copper to generate the Wyvern.java from Wyvern.x.

The instructions are as follows:
1. Clone GitHub repository.
2. Run ant inside wyvern/tools that will generate Wyvern.java from Wyvern.x.
3. Open Eclipse (or IntelliJ or NetBeans or similar) and use “import existing project into the

workspace” and point it to “wyvern/tools” folder.
4. We do not include .classpath as it is platform specific but we include all libraries in

wyvern/tools/lib/ folder: CopperCompiler.jar, asm-debug-all-5.0.1.jar,
hamcrest-core-1.3.jar, javatuples-1.2.jar.

5. After setting the Java Build Path in Eclipse to use Java 8, one needs to (1) add library which is
JUnit 4 and (2) add external jars which would be: CopperCompiler.jar, asm-debug-all-5.0.1.jar,
hamcrest-core-1.3.jar, javatuples-1.2.jar from wyvern/tools/lib.

6. The above will allow Eclipse to build the project with no errors. At that point one can execute
the tests (which are work in progress) by right clicjing on the entire source tree and selecting
“Run As. . . ” → “JUnit tests” or more specifically by selecting the tests in wyvern/tools/tests
if one prefers . . .

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). The latest version of our code is available
on GitHub at the following URL: http://github.com/wyvernlang/wyvern in particular under
the TaggedTypes branch but also in the master branch of the Wyvern compiler.

4 Tested platforms

The artifact is known to work on Windows, Linux, and Mac OS X running Oracle Java 8.

http://github.com/wyvernlang/wyvern


J. Lee, J. Aldrich, T. Shaw, and A. Potanin 03:3

5 License

GPL v2

6 MD5 sum of the artifact

d8ab0c1d7e5e0e679459cb705a0e10e0

7 Size of the artifact

2.1 MB

Acknowledgements. The authors wish to thank Benjamin Chung – the primary maintainer of
the Wyvern Compiler, as well as Troy Shaw – the implementor of the initial version of the tags as
described in this paper.

DARTS


	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

