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Abstract
We show that a restricted variant of constructive predicate logic with positive (covariant) quanti-
fication is of super-elementary complexity. The restriction is to limit the number of eigenvariables
used in quantifier introductions rules to a reasonably usable level. This construction suggests that
the known non-elementary decision algorithms for positive logic may actually be best possible.
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1 Introduction

Constructive logics are basis for many proof assistants [3, 4, 14, 5] as well as theorem
provers [1, 15]. Since these tools are actively used for development of verified software
[10, 12] and for formalization of mathematics [8, 9] it is instructive to study computational
complexity of decidable fragments of the logics. Especially because first-order intuitionistic
logic becomes undecidable at a fairly low level [19].

One such fragment consists of positive formulas (understood here as formulas with positive
quantification), shown decidable by Mints [13]. As defined there, a formula is positive when it
is classically equivalent to one with a quantifier prefix of the form ∀∗. If we restrict attention
to formulas built with (∀,→) only, we can equivalently say that a formula ϕ is positive if
and only if all occurrences of ∀ in ϕ are positive, where:

The position of ∀x in ∀xϕ is positive;
Positive/negative positions in ϕ are respectively positive/negative in ∀xϕ and in ψ → ϕ.
Positive/negative positions in ψ are respectively negative/positive in ψ → ϕ.

It is not immediate to see that deciding provability for positive formulas is possible. The
same positive quantifier may be introduced several times in a proof, and this requires a fresh
eigenvariable each time. The number of eigenvariables occurring in a proof is in general
unbounded, so the search space for proofs is potentially infinite. However some of the
eigenvariables may be regarded as equivalent – variables that “satisfy the same assumptions”
can be exchanged with each other. Thus the identity of an eigenvariable x is determined by
the set of assumptions made about it. With n assumptions there is 2n such sets, so we need
2n eigenvariables. The number of variables to consider grows exponentially at each level of
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nested quantification (see the discussion following Example 6), but altogether it remains
finite.

Decision algorithms for formulas of minimal positive logic that rigorously develop the idea
sketched above were given by Dowek and Jiang [6, 7], Rummelhoff [16], and Xue and Xuan [22].
It should come as no surprise that these algorithms are of non-elementary complexity (while
the analogous problem of satisfiability for ∃∗-sentences in classical first-order logic is only
NP-complete [2, Thm. 6.4.3]).

As for the lower bound, the best result known up to date is only doubly exponential
hardness [18], and our own attempt to prove non-elementary complexity failed; the proof
in [17] turned out incorrect.

While the question of an exact lower bound remains open, the contribution of the present
paper makes the non-elementary conjecture quite plausible. As noted above, raising the
quantifier nesting by one yields at most exponential increase of the number of eigenvariables.
This is a crucial argument in the known decidability proofs. We show that if this restriction
becomes a part of the problem, i.e., if we require that the number of eigenvariables occurring
in proofs is bounded by an appropriate multiply exponential function, then the problem is
non-elementary.

This does not necessarily mean that the original problem is non-elementary, as there may
be proofs that violate the multiply exponential bound on eigenvariable occurrences, but are
easy to find by some algorithm. However, this seems to be very difficult to imagine since
then the algorithm would effectively represent a method to compress multiply exponential
complicated structures.

Our hardness proof is inspired by an automata-theoretic interpretation of proof-search.
The idea is simple and, we believe, quite universal. When attempting to construct a proof of
a formula ϕ, one encounters subproblems of the form Γ ` α. We think of α as if it was a
state of an automaton and of Γ as of some kind of memory storage. Applying a proof tactic
to Γ ` α, which yields a new proof obligation Γ′ ` α′, can be seen as changing the state
from α to α′ and updating the memory Γ to Γ′. This way, proof construction can simulate a
computation of an automaton.

Our Eden automata (or “expansible tree automata”) are alternating machines operating
on data that is structured into trees of knowledge. The computation trees of Eden automata
correspond directly to proofs (equivalently, λ-terms) and the trees of knowledge represent the
structure of binders in proofs. In fact, a slightly more general definition of Eden automata
in [18] yields an exact equivalence between proofs and computations. Here, we stick to the
weaker version, as we are only interested with a lower bound for the restricted case.

A specific feature of Eden automata is their monotone (non-erasing) access to data, very
much as in the works by Leivant or even earlier by Wang [11, 21]. This is so because in a
fully-structural logic assumptions are never deleted.

Structure of the paper. Section 2 introduces some notation and states the principal
definitions related to logic and lambda-terms used as proof notation. In Section 3 we give
some insight into the intricacy of the problem. Then we introduce Eden automata and
define the translation of automata into formulas. The main technical development to encode
elementary Turing Machines as Eden automata is done in Section 4.

2 Preliminary definitions

We define exp0(n) = n and expk+1(n) = 2expk(n). A tree is a finite partial order 〈T,≤〉 with
a least element εT ∈ T (the root) and such that every non-root element w ∈ T has exactly
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one immediate predecessor (parent) v, in which case we say that w is a child of v. A labelled
tree is a function T : T→ L, where T is a tree, and L is a set of labels. We often confuse T
with its domain T. If L is a set of m-tuples we may say that the dimension of T is m. A
proper ancestor of a node w in a tree T is either a parent v of w or a proper ancestor of v.
(The root of the tree has no proper ancestors.) A node w with exactly h proper ancestors in
T is said to be at depth h, and then we may write |w| = h. The depth of T is the maximal
depth of a node in T . A tree has uniform depth k when all its leaves (maximal elements) are
at depthk.

It is sometimes convenient to refer to the level of a node w which is the depth of the
subtree Tw = {v ∈ T | w ≤ v}, rooted at w. An immediate subtree of a node w in T is any
tree Tv, where v is a child of w.

If k ∈ N then k = {0, . . . , k}. If f is any function then f [x 7→ a] stands for the function f ′
such that f ′(x) = a, and f ′(y) = f(y), for y 6= x. In particular, T [w 7→ s] is a tree obtained
from T by replacing the label at w by s.

Formulas: We consider the monadic fragment (all predicates are unary) of first-order
intuitionistic logic without function symbols and without equality. Therefore the only object
terms are object variables, written x, y, z, . . . For simplicity we only consider two logical
connectives: the implication and the universal quantifier. We use standard parentheses-
avoiding conventions, in particular we take implication to be right-associative, e.g., ϕ →
ψ → ϑ stands for ϕ→ (ψ → ϑ).

We deal with positive formulas; those are defined in parallel with negative formulas:
An atom P (x), where P is a unary predicate symbol and x is an object variable, is both
a positive and a negative formula.
If ϕ is positive and ψ is negative then (ϕ→ ψ) is a negative formula.
If ϕ is negative and ψ is positive then (ϕ→ ψ) is a positive formula.
If ϕ is positive and x is an object variable then (∀xϕ) is a positive formula.
If ϕ is negative and x is an object variable then (∀xϕ) is a negative formula.

The following lemma gives a direct characterization of positive and negative formulas.

I Lemma 1.
1. Every positive formula is of the form ∀~x1(σ1 → ∀~x2(σ2 → · · · → ∀~xn(σn → ∀~x0 a) . . . )),

where σi are negative, and a is an atomic formula.
2. Every negative formula is of the form τ1 → τ2 → · · · → τn → a, where τi are positive,

and a is an atomic formula.

The rank of a formula ϕ, written rk(ϕ), measures the nesting of occurrences of ∀~x in ϕ. By
induction we define:

rk(a) = 0, when a is an atomic formula;
rk(ψ → ϑ) = max{rk(ψ), rk(ϑ)};
rk(∀xψ) = rk(ψ), when ψ begins with ∀;
rk(∀xψ) = 1 + rk(ψ), otherwise.

Lambda-terms: In addition to object variables, used in formulas, we also have proof
variables occurring in proofs. We use capital letters, like X, Y , Z, for proof variables and
lower case letters, like x, y, z, for object variables.

An environment is a set Γ of declarations (X : ϕ), where X is a proof variable and ϕ is
a formula. We often identify Γ with the set of formulas {ϕ | (X : ϕ) ∈ Γ, for some X}. A
proof term (or simply “term”) is one of the following:

TYPES’14
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a proof variable,
an abstraction λX :ϕ.M , where ϕ is a formula and M is a proof term,
an abstraction λxM , where M is a proof term,
an application MN , where M , N are proof terms,
an application Mx, where M is a proof term and x is an object variable.

The following type-assignment rules infer judgements of the form Γ `M : ϕ, where Γ is an
environment, M is a term, and ϕ is a formula. In rule (∀I) we require x 6∈ FV(Γ) and y in
rule (∀E) is an arbitrary object variable.

Γ, X : ϕ ` X : ϕ (Ax)

Γ, X : ϕ `M : ψ
(→I)

Γ ` λX :ϕ.M : ϕ→ ψ

Γ `M : ϕ→ ψ Γ ` N : ϕ
(→E)

Γ `MN : ψ

Γ `M : ϕ
(∀I)

Γ ` λxM : ∀xϕ

Γ `M : ∀xϕ
(∀E)

Γ `My : ϕ[x := y]

We may write λXϕM for λX :ϕ.M , and the upper index α in Mα means that term M

has type α in some (implicit) environment. Other notational conventions are as usual in
lambda-calculus, in particular application is left-associative, i.e., MNP stand for ((MN)P ).

2.1 Restricted proofs and long normal forms
A redex is a term of the form (λxM)y or of the form (λY :ϕ.M)N . A term which does not
contain any redex is said to be in normal form. It is not difficult to see that normal forms
are of the following shapes:

XN1 . . . Nk, where all Ni are normal forms or object variables;
λX :ϕ.N , where N is a normal form;
λxN , where N is a normal form.

Normal forms correspond to normal proofs in natural deduction (or to cut-free proofs in
sequent calculus). It is known, see e.g., [20, Ch.8], that every well-typed term reduces to one
in normal form of the same type. In particular we know that:

If Γ `M : ϕ then there exists a term N in normal form with Γ ` N : ϕ.

Occurrences of a free variable X in a term can be nested; this occurs when X is free in some
Ni in the context XN1 . . . Nk where k ≥ 0. The maximal nesting [(X,M) of a variable X in
a normal term M is defined formally as:

[(X,X) = 1, [(X,Y ) = 0, when X 6= Y ;
[(X,Y N1 . . . Nk) = [(X,Y ) + maxi [(X,Ni);
[(X,λY N) = [(X,N), when X 6= Y , and [(X,λX N) = 0;
[(X,λy N) = [(X,N).

I Definition 2 (n-restricted proofs). We say that a normal proof M is n-restricted when it
has the following property: in every subterm of the form λX :σ.N , where rk(σ) = k > 0,
the variable X has at most expk(n) nested occurrences in N , i.e., [(X,N) ≤ expk(n). A
judgement is n-provable when it has an n-restricted normal proof.

I Problem 3 (restricted decision problem for positive quantification). Given a positive formula
ϕ and a number n, decide if ϕ is n-provable.
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The process of proof search is easier to control if we restrict our attention to proofs in long
normal form.

I Definition 4. The notion of a term in long normal form (lnf) is defined according to its
type in a given environment.

If N is an lnf of type α then λxN is an lnf of type ∀xα.
If N is an lnf of type β then λX :α.N is an lnf of type α→ β.
If N1, . . . , Nn are lnf or object variables and XN1 . . . Nn is of an atom type then the term
XN1 . . . Nn is an lnf.

I Lemma 5. If Γ `M : σ and M is in normal form then there exists a long normal form
N such that Γ ` N : σ. In addition, if M is n-restricted then so is N .

Proof. First let us define a transformation T which will be used for applications in normal
form. In Tα(M) we assume that M is of type α in an appropriate environment; the definition
is by induction with respect to α:

T ∀x.α(M) = λxTα(Mx);
Tα→β(M) = λX :α. T β(MX);
Tα(M) = M if α is an atom type.

Suppose that M = XN1 . . . Nk, where each Ni is an lnf or an object variable. It is easy to
see that if M has type α then Tα(M) is an lnf of type α.

Transformation R takes an argument in normal form and returns its long normal form.
In Rα(M) we assume that M is of type α in some environment; the definition is by induction
with respect to M :

R∀x.α(λx.P ) = λxRα(P )
Rα→β(λX : α.P ) = λX : α.Rβ(P )
Rα(XP1 . . . Pk) = Tα(XP ′1 . . . P ′k),
where P ′i is the result of applying R to Pi if Pi is a term, and P ′i = Pi otherwise.

Observe that transformations T and R have the following property:
They do not change the number and relative position of existing occurrences of free or
bound proof variables in a term;
Whenever a new variable is added, it only occurs once in the result.

The desired term N equals Rσ(M). Details are left to the reader. The two properties above
ensure that N is n-restricted whenever so is M . J

The logic of long normal proofs. We say that a judgement Γ ` ϕ is positive when ϕ is
positive, and all formulas in Γ are negative. The type-assignment rules below preserve
positivity, and by Lemma 5 they make a complete proof system for positive judgments.

Γ, X : ϕ `M : ψ
(→I)

Γ ` λX :ϕ.M : ϕ→ ψ

Γ `Mi : τi, i = 1, . . . , n
(→E)

Γ, X : τ1 → · · · → τn → a ` XM1 . . .Mn : a

Γ `M : ϕ
(∀I)

Γ ` λxM : ∀xϕ

TYPES’14
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3 Computational content of positive logic

As already mentioned, the main complication of deciding provability of a positive formula is
that one quantifier can be introduced several times in a proof and may bring to the derivation
several different “eigenvariables”. As a result we obtain a potential for unbounded storage.
To see how this works let us go through the following example.

I Example 6. Let 1 and 0 be unary predicate symbols, and let G, L,U,Z, be nullary atoms.1
Consider the formulas:

ϕ = (ψ → L)→ (Z→ U→ L)→ L;
ψ = ∀x.Gen0(x)→ Gen1(x)→ Zero(x)→ One(x)→ G,

with the following components, whose intended meaning will soon become clear.

Gen0(x) = (0(x)→ L)→ G;
Gen1(x) = (1(x)→ L)→ G;
Zero(x) = 0(x)→ Z;
One(x) = 1(x)→ U.

We show how the process of finding a long normal proof of the formula ϕ represents a
computation of a simple “procedure” consisting of two phases:
1. Nondeterministically generate a number of bits in a loop;
2. Check that there is at least one 0 and at least one 1 among the generated bits.

The atoms correspond to states of the procedure:
L − the entry point to the main Loop;
G − Generate a bit;
Z − test for the presence of Zero;
U − test for the presence of 1 (a “Unit”).

A long normal proof of the formula ϕ (a lambda term of type ϕ) must take the shape
λXψ→LλY Z→U→L.M , where the term M of type L should begin either with X or with Y .
Let us consider the first possibility, i.e., let M = XM1. The long normal term M1 has
type ψ, so we must have M1 = λx1λZ1U1V1W1. N1, where Z1 : Gen0(x1), U1 : Gen1(x1),
V1 : Zero(x1), W1 : One(x1), and N1 : G. This way we have replaced the proof goal L by a
new proof goal G. We interpret it as passing from state L to state G in a computation.

The term N1 can now begin with any of the variables Z1, U1, V1, W1, so let us try Z1,
i.e., take N1 = Z1(λT 0(x1)

1 .M2), with M2 of type L. The variable T1, which can occur in M2,
is a new assumption of the form 0(x1) added to the proof environment. Our computational
interpretation of this phase is that the bit zero has been just written to the memory cell
represented by the eigenvariable x1 and the control went back to state L.

Asking about M2 we note that one possibility is M2 = X(λx2λZ2U2V2W2. N2), with
Z2 : Gen0(x2), U2 : Gen1(x2), V2 : Zero(x2), W2 : One(x2), and N2 : G. This step introduces
to the proof a new eigenvariable x2 (or allocates a new memory cell x2). We may now
construct N2 = Z2(λT 0(x2)

2 .M3), and repeat the loop once more in a slightly different
way, by taking M3 = X(λx3λZ3U3V3W3. U3(λT 1(x3)

3 .M4)). Now we have three memory
locations x1, x2, x3, containing respectively the values 0, 0, 1. We could continue in this

1 Nullary atoms, used for clarity, can be easily replaced by unary ones.
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fashion by introducing more locations and more bits, but now we can also complete the
proof construction by choosing, for example, M4 = Y (V1(T1))(W3(T3)). This step represents
entering states Z and U, to check the presence of memory locations holding zero and one.
Note that this two actions happen independently in parallel (it is a universal computation
step). As a result we obtain a complete proof of ϕ:

λXψ→LλY Z→U→L. X(λx1λZ1U1V1W1. Z1(λT 0(x1)
1 .

X(λx2λZ2U2V2W2. Z2(λT 0(x2)
2 .

X(λx3λZ3U3V3W3. Z3(λT 1(x3)
3 . Y (V1(T1))(W3(T3)))))))).

In the above proof, the subterm V1(T1) using the variable x1, can be replaced by V2(T2),
because assumptions made about x2 and x1 are exactly the same. We may say that variables
x1 and x2 are “equivalent”, and from this point of view, introducing x2 was not necessary.
Indeed, the middle line of the above term could simply be deleted without any harm.

As we mentioned before, a proof (for instance a proof of the formula in Example 6)
can involve an unbounded number of variables. In [6] it is shown rigorously how some
eigenvariables may be eliminated, because “equivalent” variables can replace each other. The
term “equivalent” is understood as “satisfying the same assumptions” and a basic instance
of such equivalence is presented in Example 6.

The number of necessary non-equivalent eigenvariables is therefore essential to determine
the complexity. A closer analysis of the algorithm in [6] reveals a super-elementary (tetration)
upper bound, in other words the problem belongs to Grzegorczyk’s class E4.

Indeed, a formula of length n has O(n) different subformulas, so if it only has one
quantifier ∀x (like the one in our example) then the number of non-equivalent eigenvariables
introduced for the quantifier is (in the worst case) exponential in n, as one has to account
for every selection from up to O(n) subformulas including free occurrences of x. And here
the quantifier depth comes into play. Consider a formula of the form ∀x (. . . ∀y ϕ(x, y) . . . ).
For every eigenvariable x′ for ∀x we now have O(n) subformulas of ϕ(x′, y) and therefore up
to exponentially many eigenvariables obtained from ∀y. Any set of such eigenvariables may
potentially be created for a given eigenvariable for ∀x, and this gives a doubly exponential
number of choices. Two eigenvariables coming from ∀x may be assumed equivalent only
when they induce the same choice, so we get a doubly exponential number of possible
non-equivalent eigenvariables for ∀x. Any additional nested quantifier increases the number
of non-equivalent variables exponentially, and this yields the super-elementary upper bound.

3.1 Eden automata
An Eden automaton (abbr. Ea) is an alternating computing device, organising its memory
into a tree of knowledge of bounded depth but potentially unbounded width. The tree initially
consists of a single root node and may grow during machine computation, not exceeding a
fixed maximum depth. The machine can access memory registers at the presently visited
node and its ancestor nodes. This access is limited to using the registers as guards: it can be
verified that a flag is up, but checking that a flag is down is simply impossible. Every flag is
initially down, but once raised, it so remains forever.

Formally, an Ea is a tuple A = 〈 k,m,R, Q, q0, I 〉, where:
k ∈ N is the depth of A (recall the notation k = {0, . . . , k});
R is the finite set of registers; the number m = |R| is the dimension of A.
Q is the finite set of states, partitioned as Q =

⋃
i∈k Qi. In addition, each Qi splits into

disjoint sets Q∀i and Q∃i and we also define Q∀ =
⋃
i∈k Q

∀
i and Q∃ =

⋃
i∈k Q

∃
i . States in

Q∀, Q∃ are respectively universal and existential.

TYPES’14
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q0 : k→ Q assigns the initial state q0
i ∈ Qi to every i ∈ k.

I is the set of instructions.

Instructions in I available in state q ∈ Qi, may be of the following kinds:
1. “q : jmp p”, where p ∈ Qj , and |i− j| ≤ 1;
2. “q : check R(h) jmp p”, where p ∈ Qi and h ≤ i;
3. “q : set R(h) jmp p”, where p ∈ Qi and h ≤ i;
4. “q : new”, for i < k.

Instructions available in q ∈ Q∀i , for any i, must be of kind (1), with j = i. If q ∈ Qh in (2)
or (3) then we write R instead of R(h). An ID (instantaneous description) of A is a triple
〈 q, T, w 〉, where q is a state and T is a tree of depth at most k, labelled with elements of
{0, 1}R (i.e., functions from R to {0, 1}), called snakes. That is, if v is a node of T then
T (v) is a snake, and T (v)(R) ∈ {0, 1} for any register R. When T is known from the context,
we write R(v) for T (v)(R). A snake can be identified with a binary string of length m, for
example ~0 stands for a snake constantly equal to 0. Finally, the component w is a node of T
called the current apple. We require that q ∈ Q|w|. That is, the internal state always “knows”
the depth of the current apple.

The IDs are classified as existential and universal, depending on their states. The initial
ID is 〈 q0

0 , T0, ε 〉, where T0 has only one node ε, the root, labelled with ~0 (all flags are down).
An ID C ′ = 〈 p, T ′, w′ 〉 is a successor of C = 〈 q, T, w 〉, when C ′ is a result of execution

of an instruction I ∈ I at C . We now define how this may happen. Assume that q ∈ Qi,
and first consider case (1) where I = “q : jmp p”.

If p ∈ Qi then C ′ = 〈 p, T, w 〉 is the unique result of execution of I at C . (The machine
simply changes its internal state from q to p.)
If p ∈ Qi−1 then the only possible result is C ′ = 〈 p, T, w′ 〉, where w′ is the parent node
of w. (The machine moves the apple upward and enters state p.)
If p ∈ Qi+1 then there may be many results of execution of I, namely all IDs of the form
C ′ = 〈 p, T, w′ 〉, where w′ is any successor of w in T . (The apple is passed downward to
a non-deterministically chosen child w′ of w.) In case w is a leaf, there is no result (the
instruction cannot be executed).

Let now I be of the form (2), i.e., I =“q : check R(h) jmp p”, and let v ∈ T be the (possibly
improper) ancestor of w such that |v| = h. If register R at v is 1 (i.e., T (v)(R) = 1) then the
only result of execution of I at C is 〈 p, T, w 〉. Otherwise there is no result.

If is of the form (3), i.e., I = “q : set R(h) jmp p” and v is the ancestor of w with |v| = h,
then the only result of execution of I at C is C ′ = 〈 p, T ′, w 〉, where T ′ is like T , except that
in T ′ the register R at node v is set to 1. That is, T ′ = T [v 7→ T (v)[R 7→ 1]]. Observe that
it does not matter whether T (v)(R) = 1 or T (v)(R) = 0.

The last case is (4), i.e., I = “q : new” with i 6= k. The result of execution of I at C is
unique and has the form C ′ = 〈 q0

i+1, T
′, w′ 〉, where T ′ is obtained from T by adding a new

successor node w′ of w, with T ′(w′) = ~0. (The apple goes to the new node and the machine
enters the appropriate initial state.)

The semantics of Eas is defined in terms of eventually accepting IDs. We say that an
existential ID is eventually accepting when at least one of its successors is eventually accepting.
Dually, a universal ID is eventually accepting when all its successors are eventually accepting.
Finally we say that an automaton is eventually accepting when its initial ID is eventually
accepting.
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Note that a universal ID with no successors is eventually accepting. By our definition
this may only happen when no instruction is available in the appropriate universal state;
such states may therefore be called accepting states.

A computation of an Ea, an alternating machine, should be imagined in the form of a
tree of IDs. Every existential node represents a non-deterministic choice and has at most
one child. Every universal node has as many children as there are successor IDs. (In other
words, a computation represents a strategy in a game.) Such a computation is accepting if
every branch ends in a universal leaf.

Restricted computation
The idea of a tree of knowledge is that each node in the tree corresponds directly to an
eigenvariable in a proof. Therefore our restriction on proofs gives rise to a restriction for
trees: if every child of a node w has at most n children, then the number of children of w
should not exceed 2n. This motivates the following definition. We say that an ID 〈 q, T, w 〉
of an Eden automaton is n-restricted when it satisfies the following condition:

Every node w of T which is at level i > 0 has at most expi(n) children.

We are interested in n-restricted computations, where all IDs are n-restricted. More formally,
we say that an ID is eventually n-accepting if it is n-restricted, and

either it is existential and it has an eventually n-accepting successor,
or it is universal and all its successors are eventually n-accepting.

3.2 The encoding
Throughout this section we assume that the parameter n is fixed. Our goal is to encode an
Ea with a positive first-order formula in such a way that the automaton has an accepting
n-restricted computation if and only if the formula has an n-restricted normal proof. Given
an automaton A = 〈 k,m,R, Q, q0, I 〉, our formula uses unary predicate symbols q, for all
q ∈ Q, and R, for all R ∈ R. Each individual variable is of the form xi or xwi , where i ∈ k
and w is a node in some tree of knowledge. For a root node ε, we identify xε0 with x0.

Notation: If S is a set of formulas {α1, . . . , αk} then S → β abbreviates the formula
α1 → · · · → αk → β. Similarly λXS .M and λ ~X : S.M abbreviate λXα1

1 . . . Xαk

k .M .

Convention: Without loss of generality we can assume that for every i < k there is exactly
one state q ∈ Qi such that the instruction “q : new” belongs to I. Indeed, otherwise we can
modify the automaton by adding designated “transfer states” q?i to Qi and replacing each
“q : new” by “q : jmp q?i ” and “q?i : new” when necessary.

Encoding instructions
For every i ∈ k, we define a set of formulas Si. With one exception (downward moves),
formulas in Si represent instructions available in states q ∈ Qi. The definition is by backward
induction with respect to i.

Universal states: Let q ∈ Q∀i , and let “q : jmp p1”, . . . , “q : jmp pr” be all the instructions
available in q. Then the following formula belongs to Si :

p1(xi)→ · · · → pr(xi)→ q(xi).

TYPES’14



260 Restricted Positive Quantification Is Not Elementary

Existential states (downward moves): For every instruction of the form “q : jmp p”, where
q ∈ Qi−1 and p ∈ Qi, the following formula belongs to Si:

p(xi)→ q(xi−1).

In this case the instruction is executed at depth i− 1, but the formula is in Si.

Existential states (other moves): Let now q ∈ Q∃i . For each of the following instructions
available in q, there is one formula in Si:

For “q : jmp p”, where p ∈ Qj and j ∈ {i, i− 1}, the formula is p(xj)→ q(xi).
For “q : check R(h) jmp p”, the formula is p(xi)→ R(xh)→ q(xi).
For “q : set R(h) jmp p”, the formula is (R(xh)→ p(xi))→ q(xi).
For “q : new”, the formula is ∀xi+1(Si+1 → q0

i+1(xi+1))→ q(xi).

The set of formulas Si contains only one copy of Si+1 (state q0
i+1 is fixed and by our convention

so is q), whence the size of S0 is polynomial in the size of A. It is also worth pointing out
that the rank of all the above formulas is zero, with the exception of the formula for “q : new”,
the rank of the latter is k − i when q ∈ Qi (note that i < k).

The number of nested occurrences of a variable Z : ∀xi+1(Si+1 → q0
i+1(xi+1))→ q(xi)

exactly corresponds to the number of different eigenvariables induced by the quantifier ∀xi+1.
Indeed, Z occurs in contexts of the form “Z(λxi+1 . . . Z(λx′i+1 . . . Z(λx′′i+1.M) . . . ) . . . )”,
and all the individual variables xi+1, x′i+1, x′′i+1, . . .may be free inside M .

Encoding IDs
Let now S be a set of formulas and let w be a node of depth i in a tree of knowledge. For
every j ≤ i, replace all occurrences of xj in S by xvj , where v is an ancestor of w of depth j.
The result is denoted by S[w], and is formally defined by induction with respect to |w|:

S[w] =
{

S, if w = ε;
S[v][x|w| := xw|w|], if w is a child of v.

For a given tree of knowledge T , we define sets of formulas:

ΓRT = {R(xwi ) | w ∈ T ∧ |w| = i ∧ T (w)(R) = 1};
ΓST =

⋃
{Si[w] | w ∈ T ∧ |w| = i};

ΓT = ΓRT ∪ ΓST
where Si is as defined above. Note that FV(ΓT ) = {xwi | w ∈ T ∧ |w| = i}.

The following lemma reduces the halting problem for n-restricted computations of Eas
to n-restricted provability of positive formulas. In order to state it in a form permitting
a proof by induction we need to refine the definition of n-restricted proof to take care of
free assumptions. This is done with the following notion of a proof that respects a tree of
knowledge.

An environment of the form ΓT contains, for every non-leaf node w ∈ T , a declaration

Zw : ∀xi+1(Si+1[w]→ q0
i+1(xi+1))→ q(xwi ),

where i is the depth of w. Now for every child v of w there is a variable xvi+1 in FV(ΓT ).
These eigenvariables should be thought of as reducing the limit of nested occurrences of Zw
in proofs defined in ΓT . Let chTw be the number of children of w in T . We say that a proof
ΓT ` M : q(xi) respects tree T if [(Zw,M) ≤ expk−i(n) − chTw, for every i ≤ k and every
node w at depth i.
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I Lemma 7. Let A be an Eden automaton. An ID of A of the form 〈 q, T, w 〉 is eventually
n-accepting if and only if the positive judgement ΓT ` q(xw|w|) has an n-restricted long normal
proof that respects T .

In particular, the initial ID is eventually n-accepting if and only if ` ΓST0
→ q0

0(x0), where
T0 is the initial tree of knowledge, has an n-restricted long normal proof.

Proof. (⇒) Let A be an Eden automaton and let 〈 q, T, w 〉 be an eventually n-accepting ID
of A. We will show that ΓT ` q(xwi ), where i = |w|, has an n-restricted proof that respects
T . We proceed by induction with respect to the definition of eventually n-accepting IDs.

If q is a universal state and 〈 q, T, w 〉 is eventually n-accepting then all successors of
〈 q, T, w 〉 are eventually n-accepting. Every successor ID corresponds to some instruction
“q : jmp pj” for j = 1, . . . , s. By the induction hypothesis we have ΓT ` pj(xwi ) for j = 1, . . . , s.

By the definition of ΓT , the formula p1(xi) → · · · → ps(xi) → q(xi) belongs to Si
and p1(xwi ) → · · · → ps(xwi ) → q(xwi ) belongs to Si[w]. Since Si[w] ⊆ ΓT , it follows that
ΓT ` q(xwi ).

If q is an existential state and 〈 q, T, w 〉 is eventually n-accepting then there exists a
successor of 〈 q, T, w 〉 which is eventually n-accepting. This successor 〈 p, T ′, w′ 〉 is a result
of execution of an instruction I of A, applicable in state q. We check the possible forms of I.

If I is “q : jmp p”, where q ∈ Qi, p ∈ Qj , one has T ′ = T and either w = w′ or w′
is an immediate predecessor or successor ofw in T . By the induction hypothesis we have
ΓT ` p(xw

′

j ). Since ΓT contains the formula p(xw′

j )→ q(xwi ), we conclude that ΓT ` q(xwi ).
For “q : check R(j) jmp p”, where p, q ∈ Qi, let v be the ancestor of w in T such that

|v| = j. One has T ′ = T , w′ = w and the register R at v is set to 1 (since otherwise this
instruction cannot be executed). By the induction hypothesis, ΓT ` p(xwi ). Since ΓT contains
the formula p(xwi )→ R(xvj )→ q(xwi ) and the atom R(xvj ), we conclude that ΓT ` q(xwi ).

For “q : set R(j) jmp p”, where p, q ∈ Qi, let v be the ancestor of w in T such that
|v| = j. One has w′ = w and T ′ = T [v 7→ T (v)[R 7→ 1]]. By the induction hypothesis we
have ΓT ′ ` p(xwi ). Note that ΓT ′ = ΓT ∪ R(xvj ), and consequently ΓT ` R(xvj ) → p(xwi ).
Since ΓT contains the formula (R(xvj )→ p(xwi ))→ q(xwi ), we conclude that ΓT ` q(xwi ).

In all the above cases, the assumptions used in the appropriate proof steps are formulas
of rank rk equal to zero. Therefore it follows immediately from the induction hypothesis
that the obtained proofs are n-restricted and respect T . These proofs are also long normal,
as all are of the form X ~N , where ~N are long normal by induction.

Only the last case involves quantification. For “q : new”, where q ∈ Qi, p = q0
i+1, the tree

T ′ is obtained from T by adding a brand new child w′ of w labelled ~0 (empty registers). From
the induction hypothesis we know that ΓT ′ `M : q0

i+1(xw′

i+1) where M respects T ′. Note that
ΓT ′ = ΓT ∪ Si+1[w′], so we may deduce that ΓT ` λ ~XSi+1[w′].M : Si+1[w′] → q0

i+1(xw′

i+1).
The variable xw′

i+1 does not appear in ΓT , hence we also have

ΓT ` λxi+1.λ ~X : Si+1[w′][xw
′

i+1 := xi+1].M : ∀xi+1(Si+1[w′][xw
′

i+1 := xi+1]→ q0
i+1(xi+1)).

Since Si+1[w′][xw′

i+1 := xi+1] = Si+1[w] and ΓT contains the declaration

Zw : ∀xi+1(Si+1[w]→ q0
i+1(xi+1))→ qi(xwi ),

we conclude that ΓT ` Zw(λxi+1.λ ~X
Si+1[w′].M) : qi(xwi ). This is a long normal proof

introducing a single application of the proof variable Zw. It respects T because M respects
T ′ and the number of children of w in T is smaller by one than the number in T ′. Also the
obtained proof is n-restricted, because so is M and because M respects T ′, in particular the
number of nested occurrences of Zw′ in M is at most expk−i−1(n) (node w′ has no children).
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(⇐) Suppose that 〈 q, T, w 〉 is an ID of an automaton A such that ΓT ` N : q(xwi ), where
i = |w| and where N is an n-restricted long normal form that respects T . We show, by
induction with respect to N , that 〈 q, T, w 〉 is eventually n-accepting. Since q(xwi ) is an
atom, we must have N = XN1 . . . Nr, for some X and some long normal forms N1, . . . , Nr.
In addition, there must be a declaration (X :ϕ) ∈ ΓT , where ϕ = τ1 → · · · → τr → q(xwi ),
and ΓT ` Nl : τl, for each l.

Let q ∈ Qi∀ and let “q : jmp pj”, for j = 1, . . . , s, be all instructions available in state q.
By the definition of ΓT , there is only one formula ϕ that ends with the atom q(xwi ), namely
ϕ = p1(xwi ) → · · · → ps(xwi ) → q(xwi ). Therefore, r = s and for every j = 1, . . . , r, we
have ΓT ` Nj : pj(xwi ). By the induction hypothesis we know that 〈 pj , T, w 〉 are eventually
n-accepting. Since a universal ID is eventually n-accepting when all its successors are
eventually n-accepting, we get the desired conclusion.

Let q ∈ Qi∃. Since the formula ϕ ends with q(xwi ), it must correspond to some instruction
I that is available in state q. We need to show that I can be executed and that a result of
execution of I is eventually n-accepting. This will imply that also 〈 q, T, w 〉 is eventually
n-accepting.

If ϕ has the form p(xw′

j )→ q(xwi ), for some variable xw′

j , then I is “q : jmp p”. Note that
such a ϕ may occur in ΓT only when w′ is a node of T , more precisely, node w′ is either w or
it is an immediate predecessor or successor of w in T . By the induction hypothesis applied
to ΓT ` N1 : p(xw′

j ), we conclude that 〈 p, T, w′ 〉 is eventually n-accepting.
If ϕ is p(xwi )→ R(xvj )→ q(xwi ) then I is “q : check R(j) jmp p”. We need to show that

I can be executed, i.e., that T (v)(R) = 1 where v is the ancestor of w in T with |v| = j.
We know that ΓT ` N1 : p(xwi ) and ΓT ` N2 : R(xvj ). The only formula in ΓT of the form
α1 → · · · → αk → R(xvj ) is R(xvj ). By the definition of ΓT , if R(xvj ) ∈ ΓT then T (v)(R) = 1.
Hence I can be executed. Since ΓT ` N1 : p(xwi ), by the induction hypothesis, 〈 p, T, w 〉 (the
result of execution of I at 〈 p, T, w 〉) is eventually accepting.

If ϕ is (R(xvj ) → p(xwi )) → q(xwi ) then I is “q : set R(j) jmp p” and j ≤ i. The
result of execution of I at 〈 q, T, w 〉 is 〈 p, T ′, w 〉, where T ′ = T [v 7→ T (v)[R 7→ 1]]. We
know that ΓT ` N1 : R(xvj ) → p(xwi ). Since N1 is an lnf, there exists N ′1 such that
ΓT , Y : R(xvj ) ` N ′1 : p(xwi ). By the induction hypothesis, 〈 p, T ′, w 〉 is eventually accepting.
The last case is when ϕ = ∀xi+1(Si+1[w] → q0

i+1(xi+1)) → q(xwi ) is the type of Zw and
the instruction I is “q : new”. We have ΓT ` ZwN1 : q(xwi ) and we also know that
ΓT ` N1 : ∀xi+1(Si+1[w]→ q0

i+1(xi+1)). Since N1 is an lnf, it must have the form N1 =
λxi+1λ~Y :Si+1[w].N ′1, for some lnf N ′1. Substituting xw

′

i+1 for xi+1 we obtain the type
assignment

ΓT , ~Y :Si+1[w][xi+1 := xw
′

i+1] ` N ′1[xi+1 := xw
′

i+1] : q0
i+1(xw′

i+1).

Note that Si+1[w][xi+1 := xw
′

i+1] equals Si+1[w′] and ΓT , ~Y : Si+1[w′] = ΓT ′ , where T ′ is
obtained from T by adding a new child w′ of w labelled ~0. The term N ′1[xi+1 := xw

′

i+1] is
n-restricted and respects T ′ because the top occurrence of Zw was eliminated, and because
w′ has no children in T ′. Hence, by the induction hypothesis, the result 〈 q0

i+1, T
′, w′ 〉 of

execution of I is eventually n-accepting. J

4 Eden programming

We begin with a few examples demonstrating how Eden automata can be used to solve
computational tasks. They present some techniques exploited in the hardness proof to follow
and introduce the reader to the “pseudo-code” we use.
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The access to knowledge in an Eden automaton is restricted in that it precludes the
possibility to verify that a given bit is 0. This can be partly overcome by a simple trick: use
two bits to encode one, 10 for 0 and 01 for 1. This works as long as one can ensure that the
two flags are never raised together.

I Example 8. To be more specific, if we fix 6 registers L1, R1, L2, R2, L3, R3 then any word
of length 3 can be represented by a snake where exactly one register in each pair Li, Ri is set
to 1. For example, 101 is encoded by R1 = L2 = R3 = 1 and L1 = R2 = L3 = 0.

Consider an automaton A of depth 1, with q0
0 = q0, q0

1 = q1, and with the instructions
(where q0 ∈ Q∃0 , and other states are in Q∃1):

q0 : new ;
q1 : set L1(1) jmp q2;
q1 : set R1(1) jmp q2;

q2 : set L2(1) jmp q3;
q2 : set R2(1) jmp q3;

q3 : set L3(1) jmp q4;
q3 : set R3(1) jmp q4.

The automaton A starts in the initial ID in state q0 with a root-only tree of knowledge. It
creates an additional node d, a successor of the root, and enters state q1 at node d. The
procedure from state q1 to state q4 constitutes a for loop, informally written as follows:

q1 : for i = 1 to 3 do [set Li OR set Ri]; goto q4.

The computation of our automaton has one branch, which ends in an ID where the only
child of the root represents a non-deterministically generated word of length 3. The apple is
at the child node and the machine is in state q4.

We can now compose the automaton with another one, A′, which runs after A, i.e., it
commences in state q4. Among its states, q′1, q′2, q′3, qacc are in Q∀1 and other states are in Q∃1 .
q4 : jmp q′1;
q′1 : jmp qchk

1 ;
q′1 : jmp q′2;
qchk

1 : check L1(1) jmp qacc;

q′2 : jmp qchk
2 ;

q′2 : jmp q′3;
qchk

2 : check L2(1) jmp qacc;

q′3 : jmp qchk
3 ;

q′3 : jmp q5;
qchk

3 : check L3(1) jmp qacc;

The automaton A′ is initiated in state q4 in node d, a successor of the root. At node d, one
register in each of the pairs L1, R1; L2, R2; L3, R3 is set to 1. The automaton then enters
state q′1 at node d. The procedure from state q′1 to state q5 constitutes a universal for loop,
informally written as follows:

q1 : for i = 1 to 3 do [check Li AND continue]; goto q5.

In successful circumstances, the computation has 4 branches. Three of them end in an
accepting ID in the state qacc and the fourth one ends in an ID where all L1, L2, L3 are set
to encode the sequence of bits 000. The apple is at the child node and the machine is in
state q5.

These two automata may be viewed as procedures in a single program. The first
procedure generates non-deterministically a string of three bits and the second works like a
finite automaton that checks if all the bits are equal to 0. (Note that any loop-free finite
automaton can be simulated this way.)

4.1 Procedures
Throughout this section we assume that the parameter n is fixed, and we only consider
n-restricted computations (a computation which is not n-restricted is illegal). We show how
to deal with numbers up to expk(n) using trees of knowledge of depth k.

The trees and automata we consider here have dimension 2n+ 7. We think of the snakes
as containing the following parts:
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a base segment consisting of 2n registers L0, R0, . . . , Ln−1, Rn−1;
data registers: A0, A1;
a global register Steady;
local registers: New, Old, Done, Gone.

The base segment is capable to encode a binary word of length n, using the “two for one”
trick, as demonstrated in Example 8. The data registers may contain a binary value of a
node in a similar way: for i = 0, 1, register Ai set to 1 represents the bit i.

We identify binary words of length expk(n) with numbers from 0 to expk+1(n) − 1,
and we use trees of uniform depth k to encode such words-numbers. Informally, the
idea is as follows: a word a0a1 . . . ar−1 of length r can be represented as the set of pairs
{(0, a0), (1, a1), . . . , (r − 1, ar−1)}. If a tree T encodes a number i and has value ai at the
root then T represents a pair (i, ai). A word a0a1 . . . ar−1 of length r can thus be encoded
by a tree consisting of a root node and a number of immediate subtrees representing the
pairs (i, ai). (Observe that i is then encoded by a string of length of order log r.) Once we
know how to encode binary words of length d we can interpret them as numbers from 0 to
2d − 1, and use the above method to give an encoding for words of length 2d.

More precisely, we define what it means that a tree T of uniform depth k encodes a word
w of length expk(n). To begin with k = 0, a tree T consisting of a single node d encodes
a binary word x0x1 . . . xn−1 of length n when, for each number i = 1, . . . , n − 1, we have
T (d)(Li) = 1 iff xi = 0, and T (d)(Ri) = 1 iff xi = 1. (Note that there are other registers as
well, so many trees encode the same number.) A tree T of uniform depth k encodes a word
w = x0x1 . . . xr−1 of length r = expk+1(n) when

T has exactly r immediate subtrees, each encoding a different number i ∈ {0, . . . , r − 1};
If d is the root of an immediate subtree encoding i then T (d)(Aj) = 1 iff xi = j. (We
say that i is the address of d and j is called the value of d.)

A node d in a tree is said to encode a word when the subtree rooted at d encodes that word.

I Remark 9. One can easily generalize the above definition to words over any l-element
finite alphabet Σ = {a0, a1, . . . , al−1} with trees of dimension l · n+ l + 5, and data registers
A0, . . . , Al−1 to represent symbols a0, a1, . . . , al−1.

We now show how Eden automata can manipulate binary words. The automata defined in
this section should more adequately be called “procedures” as they are used as subroutines
in our main construction. Each procedure is initiated at some specific start IDs which are
expected to satisfy certain conditions.

We say that a computation initiated in a start ID is called a successful computation of
a procedure if every branch either ends in an accepting ID, or in an end ID (an ID with a
specified end state), where the control should be passed to another subroutine. In general
there may be many occurrences of end IDs in a computation. However, the procedures we
consider in this paper have this particular property that every computation contains at most
one end ID.

For every k and every l > k, we define proceduresMk, E lk, Sk, C0
k , and C1

k , by simultaneous
induction with respect to k. For each of these procedures we first define start and end IDs
and formulate the appropriate induction hypothesis in the form of an input-output condition.

Induction hypotheses
Making a new word

For every k ≥ 0 we define a procedureMk to make new words.
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Start ID: The current apple is a leaf d of the tree of knowledge, the snake at d is empty.
Claim:
1. No computation ofMk ever uses (jumps, writes to or reads from registers at) any

proper ancestor of d.
2. A successful restricted computation ofMk has only one end ID. At the end ID the

apple is back at d, but d is now a root of a subtree of uniform depth k and d encodes
a non-deterministically chosen word w of length expk(n). All local registers are empty
in the subtree rooted at d.

Part 1 of the induction hypothesis is a separation condition which states that the procedure
Mk does not have side effects. This is necessary since the procedure has end states, and
computations continues after these are reached.

For the other subroutines we define no end IDs and no similar separation conditions; their
only purpose is to accept.

Constant

Procedures Cxk , where x ∈ {0, 1}, check that a given address is a constant.
Start ID: The apple is at node d of level k, and d encodes a binary word w of multiexpo-

nential length expk(n). Local registers below node d are empty.
Claim: Procedure C0

k (resp. C1
k) accepts iff the address of d is ~0 (resp. ~1 ).

Equality

Procedure E lk, where l > k, verifies equality of two binary words.
Start ID: A start IDs of E lk has the apple at node d, a root of a subtree of uniform

depth l. (Then d is at level l.) At level k there is exactly one descendant eO of d satisfying
T (eO)(Old) = 1 and exactly one descendant eN satisfying T (eN )(New) = 1. (There may be
other nodes at level k as well, and it may happen that eO = eN .) All local registers below
eO and eN are empty. Subtrees rooted at eO and eN encode binary words of length expk(n).

Claim: Procedure E lk, initiated in a start ID, accepts iff the addresses of eO and eN are
the same.

Successor

Binary words are identified with numbers so that the successor relation holds between strings
of the form w011 . . . 1 and w100 . . . 0. Procedure Sk verifies this relation.

Start ID: The same as start ID of Ek+1
k .

Claim: Procedure Sk, initiated in a start ID, accepts iff the address of eN is the successor
of the address of eO.

Procedures
To provide a gentle introduction we begin our presentation with the relatively simple procedure
C0
k; after that we proceed in the order of the previous subsection.

Procedure C0
k

We define our automata by mutual induction with respect to k. We begin with the relatively
simple definition of C0

k, written in informal pseudo-code. For k = 0, the definition of C0
k is a

straightforward generalization of the code of A′ in Example 8:

TYPES’14



266 Restricted Positive Quantification Is Not Elementary

for i = 1 to n do [check Li AND continue]; accept.

For k > 0, we assume that C0
k−1, C1

k−1, Sk−1 have already been defined, and we construct C0
k ,

so that it executes the following algorithm. The almost identical definition of C1
k is omitted.

1. Descend to a child; goto 2 AND goto 3;
2. Run C0

k−1 (accepting inside).
3. Check data register A0; set register Done;
4. goto 5 OR goto 12;
5. Go up to d;
6. Descend to a child;
7. goto 8 AND goto 3;
8. Set register New; go up to d;
9. Descend to a child;

10. Check register Done; set register Old; go up to d;
11. Run Sk−1 (accepting inside);
12. Run C1

k−1 (accepting inside).
First, let us make an informal account of the way the procedure operates. When C0

k is
initiated in a start ID at a node d at level k, it attempts to verify that data register A0 is set
to 1 at every address. It begins with a child with address ~0, guessing it non-deterministically.
At this point the computation splits into two branches. One branch verifies the correctness
of the guess by running C0

k−1 (and accepts if the verification is successful). Along the other
branch we first check that A0 is indeed set to 1, mark the present node as Done, and then
proceed to another child of d (step 6). The main loop in steps 3–7 should now be taken
for every address in the increasing order. Each time the body of the loop is executed, the
machine verifies that the address of the current apple is a successor of another address which
has already been processed. This is done with help of another universal split in step 7. A
separate branch of computation is activated. Within that branch, the present node e is
marked as New, then another child e′ of d is selected and marked as Old. But first we check
register Done at node e′ to make sure that e′ has been processed.2 It remains to run Sk−1
from node d to complete the verification branch (steps 8–11).

The main loop continues until we non-deterministically guess that we reached a node
with address ~1. This is verified by initiating C1

k−1, and then the procedure accepts.
Let us remark here that, although the above description of the algorithm is informal, it

is precise enough to be implemented as an actual automaton, using a number of internal
states proportional to n. Now we can show that C1

k satisfies the specification.
(⇐) Observe that in case the address of d encodes the word w = ~0 and C0

k is run from
a correct start ID then the procedure may choose to take the child of d with address ~0
in step 1 so that C0

k−1 accepts in step 2. Then all other children are chosen in step 6 in
order of increasing addresses, so that it is always possible in step 9 to choose an appropriate
predecessor address, guaranteeing termination in step 11. A more formal proof should go
by induction with respect to the number of children of d marked as Done. Note that local
registers at levels k−2 and below are empty and can be safely used by each procedure. Every
branch of computation uses its own private copy of these registers. This way alternation
helps to avoid the limitations of our non-erasable memory.

(⇒) Suppose now that C0
k accepts. Let l be the number of times the procedure enters

step 4 in the accepting computation. Let Di be the set of children of d marked as Done at

2 It may happen that e′ = e but in this case the successor test will fail.
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the i-th entry to step 4. Let ai be the maximal address encoded by an element of Di. By
induction with respect to l − i we show the following statement

For each accepting computation subtree of C0
k started at the i-th entry to step 4 and

for each address b such that ai < b < expk(n), the node d has a child that encodes the
number b and has A0 set to 1.

Indeed, for i = l, the set of addresses a such that ai < b < expk(n) is empty, so the conclusion
follows. If i < l then an accepting computation must enter the loop and mark one child of d
with Done and then come back to the step 4. We have two subcases here depending on the
relation between the elements ai and ai+1. In case ai = ai+1 we observe that no node of the
tree of knowledge could change in this turn of the loop (Done is only overwritten with the
same value) so the conclusion follows by the induction hypothesis. In case ai 6= ai+1, there
is bi ∈ Di+1 −Di. Let bi be the number encoded by bi . In steps 8–11 it is verified that
bi = a+ 1, for some a encoded by a ∈ Di, but actually b must be ai as otherwise ai = ai+1.
This also means that bi = ai+1. Node bi has A0 set to 1, as this is verified in step 3. Since
all other elements a such that ai < a < expk(n) must satisfy ai+1 < a < expk(n), we obtain
the conclusion by the induction hypothesis.

Now observe that at the first entry to step 4 only one child of d is marked as Done, and
it must encode the address ~0 (steps 1–2) with A0 set (step 3). As the further computation
accepts, we can apply the statement proven above for i = 1 and obtain that d has children
that encode addresses b such that 0 < b < expk(n) and all have A0 set to 1. This applies
also for the address 0. Since by assumption d encodes a a word of length expk(n), this must
be the number of children of d. Therefore d encodes ~0.

Let us remark here that in step 6 the apple may be passed to a child already marked as
Done, so that the main loop in steps 3–7 may be executed more times then needed and we
effectively care about this case in the inductive step of the argument above.
A diggression before we proceed to the next procedure: The above algorithm can easily be
adapted to verify if the binary string encoded by d belongs to any fixed regular language.

Procedure Mk

We can now turn to the more complicated procedure Mk. For the base case k = 0 we
generalize the automaton A of Example 8:

for i = 1 to n do [set Li OR set Ri].
In the induction step we assume that proceduresMk−1, E lk−1, Sk−1, C0

k−1, and C1
k−1, have

already been defined, and we describeMk as a pseudo-code “program” consisting of two
phases. Recall that the computation begins at the root d of the word to be constructed.

Phase 1: At first, procedureMk runsMk−1 in a loop. The number of iterations is chosen
non-deterministically, but it is bounded due to the n-restrictedness condition, as each iteration
creates a new child.

1. Create a new child and descend there;
2. RunMk−1;
3. Set register A0 OR set register A1;
4. go up; goto 1 (continue) OR goto 5 (enter Phase 2).

Note a subtlety: once a new child is created the computation must commence from a fixed
initial state (for the appropriate depth). Our construction respects this restriction: we
perform exactly the same actions for every new child.
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An immediate inductive argument (for the loop in steps 1–4) shows that
1. The computation does not use (jumps, writes to or reads from registers at) any proper

ancestor of d.
2. At the entry to step 4 the apple is back at d, and d has a non-empty set C of children

with |C| ≤ expk(n). Each element of C has either A0 or A1 set to 1 and starts a subtree
that encodes a number in {0, . . . , expk(n)− 1}.

The inequality |C| ≤ expk(n) is precisely the result of our n-restrictedness condition.

Phase 2: The second phase starts with the apple at node d and goes as follows:
5. Descend to a child; goto 6 (verify) AND goto 7 (continue);
6. Run C0

k−1 (accepting inside).
7. Set register Steady;
8. goto 9 OR goto 16;
9. Go up to d;

10. Descend to a child;
11. goto 12 (verify) AND goto 7 (continue);
12. Set register New; go up to d;
13. Descend to a child;
14. Check register Steady; set register Old; go up to d;
15. Run Sk−1 (accepting inside);
16. Run C1

k−1 (verify) AND goto 17 (continue);
17. Go up to d (end state).

The second phase works very much like the procedure C0
k. In step 5 the computation splits

into two branches. One proceeds (fingers crossed) along the main computation branch
beginning at step 7. The other branch verifies that the present address is ~0 and accepts. The
whole computation can therefore accept only if the verification in step 6 was successful. In
addition the auxiliary branch uses its own “private copy” of all resources, in particular it
can set registers which remain empty for the main computation. Similar universal splits
occur in steps 11 and 16. Note that registers Old and New remain intact outside of the
subroutine 12–15. At the completion of the above we are back at node d. Again an immediate
inductive argument (for the loop in steps 7–11) shows that:
1. The computation does not use (jumps to, writes to or reads from registers at) any proper

ancestor of d.
2. Each time the computation reaches step 8, the apple is in a child of d, and d has a

non-empty set C of children with |C| ≤ expk(n). The set of numbers encoded by nodes
in C is closed with respect to predecessor (in particular it contains zero).

Phase 2 reaches the end state only when it can verify that address ~1 of length expk(n) is
encoded by a child of d that is marked with Steady. With ~1 marked as Steady and the closure
with respect to predecessor we obtain that all addresses of length expk(n) must be encoded
by children of d. And each of them only once, because the computation is n-restricted. This
is exactly part 2 of the induction hypothesis forMk. Part 1 follows from (1) above.

I Remark 10. Observe that this procedure may be easily adapted to serve as a non-
deterministic generator of words of length expk(n) over arbitrary alphabet Σ. It is enough to
use more registers and to adjust step 3 of the automatonMk so that it chooses one of the
registers corresponding to elements of Σ instead of A0 or A1.
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Procedure Sk

Recall that we begin in a node d which has (among others) exactly one child marked as Old
(i.e., satisfying Old = 1) and exactly one marked as New.

Subtrees rooted at these nodes are assumed to encode binary words wold and wnew of
length expk(n). We want to verify that wold = w011 . . . 1 and wnew = w100 . . . 0, for some w.
For k = 0 this can be done with a simple for loop. For k > 0, we process children of Old
in order of increasing addresses. At each step we compare the data bit at the present node
with the data bit at a child of New with the same address. The compared bits should match
in phase 1 (we begin with more significant ones) until we non-deterministically discover the
point where they begin to differ (phase 2).

We now describe Sk with a little more detail, but on a higher level of abstraction than
the previous procedures. We believe that this account is still precise enough, and at the same
time easier to understand. To make it even more comprehensive, let us first explain some
of the phrases used below. For instance, “to descend to a child of Old” (step 1) means to
descend to a child e of d, check e(Old), and then go to a child of e. The phrase “Universally
verify that. . . ” is understood as “Verify that. . . AND continue”. (A similar construction was
already used in the definitions of C0

k andMk.) In step 2 this is equivalent to the statement
“Run C0

k−1 AND goto 3”. Similarly, in steps 7 and 13 the verification branch calls procedure
Sk−1, and steps 4, 9, 14 activate procedure Ek+1

k−1 .

1. Descend to a child of Old;
2. Universally verify that the present address consists of only zeros;
3. goto 4 (phase 1) OR goto 9 (end of phase 1);
4. Universally verify that the data bit at the present node is the same

as the data bit of a child of New of the same address;
5. Mark the present node as Done; go up (to the node marked as Old);
6. Descend to a child;
7. Using Sk−1, universally verify that the present address is the successor

of an address of a brother node already marked as Done;
8. goto 3;
9. Universally verify that the data bit at the present node is 0,

while the data bit of a child of New of the same address is 1;
10. Mark the present node as Gone;
11. goto 12 (phase 2) OR goto 16 (end);
12. Go back to d; descend to a child of Old;
13. Universally verify that the present address is the successor

of an address of a brother node already marked as Gone;
14. Universally verify that the data bit at the present node is 1,

while the data bit of a child of New of the same address is 0;
15. Mark the present node as Gone; goto 11;
16. Run C1

k−1 (accepting inside).

Assuming that the start ID of Sk is as expected, we can now refer to the induction hypothesis
about C0

k−1, Sk−1, and E lk−1. Indeed, all these procedures are run from their respective start
IDs. In particular, local registers below level k − 1 are available for use in the appropriate
branches of computation. It follows that a successful computation of Sk is only possible
when the successor relation indeed holds as required.
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Procedure El
k

This procedure works in a similar way as Sk except that only one phase is needed and the
distance from d to Old and New may be larger. We skip the details, but we want to remark
on one difference between E lk and Sk. It may happen that either of these procedures is run
from an ID where the same node of the tree is marked Old and New. This is not an obstacle:
procedure E lk will accept in this case while Sk will not.

4.2 Simulation of a Turing Machine
The techniques introduced in Section 4.1 can be used to simulate a Turing Machine. Consider
a deterministic Turing Machine T working in time expk(nO(1)) and fix an input word x of
length n. Without loss of generality3 we can assume that the machine works exactly in time√

expk(n)− 1. Let Σ = Σ0 ∪ (Σ0 ×∆) where Σ0 is the tape alphabet and ∆ is the set of
states of T . We already know (see Remark 9) how to encode words over Σ using trees of
knowledge.
We use a triple 〈 t, a, s 〉 to express that the contents of the tape cell a at time t is s. Here,
s ∈ Σ is either a tape symbol of T or a tape symbol plus an internal state (in case T at time
t is at position a). A computation of T is represented by a unique set of triples with only
one 〈 t, a, s 〉 for every t, a. Note that a, t ∈ {0, . . . ,

√
expk(n)− 1}. Consequently there are

exactly expk(n) pairs 〈 t, a 〉 and they can be identified with numbers less than expk(n). The
whole computation of machine T may therefore be seen as a word over Σ of length expk(n).
This word may now be encoded, as in Section 4.1, by a tree of knowledge of depth k and an
appropriate dimension (extra data registers are needed to account for all elements of Σ). In
this way we can represent a computation of T in the memory of an Eden automaton.

A slight adjustment of the automatonMk of Section 4.1 (in step 3) yields a procedure to
generate an arbitrary word over Σ of length expk(n).

Procedure Nk

The definition of Nk is similar to that of Mk, but now we have to only generate words
representing accepting computations of T . Therefore, Nk works in the following two phases:
1. It generates a sequence of triples.
2. It verifies that the set of triples represents a computation of T .

Phase 1 is similar to phase 1 ofMk (see Remark 10). Phase 2 is more complicated, but it
can similarly be related to phase 2 ofMk. Steps 12–15 should be replaced with a longer
verification routine. There are two subgoals of the routine:
1. To verify that the generated sequence of triples contains an encoding of the input word x.
2. To verify that the sequence obeys the transition relation of T .

For part (1) it has to be established that in every triple of the form 〈 0, a, s 〉, the value
s is the symbol at position a in the initial configuration. To this end we use n + 1 new
procedures Ca, defined for a ≤ n. Procedure Ca accepts from 〈 t, a′, s 〉 if t = 0, and s = xa,
where a = min{a′, n}, and xa is the appropriate symbol of the input (or blank for a = n).

3 Using a routine padding technique one shows that every language in Dtime(expk(nO(1)) reduces in
polynomial time to one of time complexity expk(n − 1), which is (for k ≥ 3) less than the square root of
expk(n).
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The definition of Ca is similar to that of Cxk . Observe that procedures Ca are initiated in
separated branches of computation so they can use the same registers.

We handle (2) by an iteration over triples 〈 t, a, s 〉 for t = 0, . . . ,
√

expk(n)− 1. The auto-
maton expects that subtrees encoding triples 〈 t−1, a−1, s1 〉, 〈 t−1, a, s2 〉, 〈 t−1, a+1, s3 〉,
are also present. Those can be nondeterministically guessed and their roots appropriately
marked (using four special registers for this purpose). Then we can run a subroutine Eq

(where q is a transition of T ) to confirm the guess. (The number of such subroutines is
proportional to the size of the machine T .) The definition of Eq combines the tricks used
in the construction of Sk−1 and Ekk−1. An additional complication is that it must compare
halves of words rather than the whole words (recall that we merge t and a in 〈 t, a, s 〉 into a
single word). This is not a real problem, as the end of the first half is identified by an address
of the form 011 . . . 1. The construction of Eq, again, can be accomplished by a number of
additional registers depending only on T .

Automaton AT ,x

The automaton AT ,x first runs the procedure Nk. Upon reaching the end state of Nk it
checks that there is a triple 〈 t, a, s 〉 where s = 〈a, f 〉 and f is an accepting state of T .

I Lemma 11. Let T be a deterministic Turing Machine that works in time
√

expk(n)− 1,
and let x be a word of length n. The automaton AT ,x has an n-restricted accepting compu-
tation iff the machine T accepts x.

Proof. Suppose T accepts. By construction, the automaton Nk has a computation that
reaches an end ID which properly encodes the computation of T . All that remains is to verify
that this computation contains an accepting ID. This amounts to a single non-deterministic
check.

Now suppose that AT ,x has an accepting computation tree. This computation contains
an end ID of Nk, where the computation of T is properly encoded. Now there is no other
way in which AT ,x can accept from such ID but to find an accepting state. So if AT ,x is
accepting, it must be the case that T accepts the word x. J

The above combined with Lemma 7 yields a polynomial-time reduction of any language in
Dtime(expk(nO(1)) to Problem 3. We can thus conclude with the following theorem:

I Theorem 12. The restricted decision problem for positive quantification is not elementary.

We note that the above applies to monadic formulas (those involving only unary predicates).
Indeed, the encoding in Section 3.2 did not require predicates of any higher arity.

5 Conclusion

We have demonstrated that the provability problem for intuitionistic logic with positive
quantification becomes non-elementary under an apparently small restriction on proofs
(computations). Technically, the only use of this restriction is in the definition of procedures
Mk that generate representation for long strings of bits. Therefore, if an unrestricted
implementation of Mk is possible then the original (unrestricted) problem is also not
elementary.

The restriction we propose is a bound on a particular kind of a certain non-reusable
resource. Under this restriction, the decidability of our formulas becomes immediate, as it
reduces the search space to a finite size. In fact, the argument in e.g., the work by Dowek
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and Jiang [6] or in the work by Mints [13] shows that the actual use of this resource in a
proof of a formula ϕ is essentially equivalent to that in an O(n)-restricted proof, where n is
the size of ϕ. Still, the proof itself does not have to be n-restricted. Shall we prove it has,
the general result will follow from our consideration. Although the opposite seems unlikely,
the conjecture remains an open question.
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