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Abstract
Abstract argumentation frameworks with finitely many arguments can be presented in matrix
form. For this reason, the strengths and weaknesses of matrix operations are migrated from
a mathematical representation to a computer science interpretation. We present matrix opera-
tion algorithms that can answer whether a given set of arguments is part of an argumentation
extension.
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1 Introduction and Motivation

Argumentation theory tries to mimic the process of human reasoning. It is often used by
agents to reason under specific knowledge, often incomplete, with the alternative to choose.
Agents can construct arguments for and against a specific goal, in order to reach a conclusion.
The construction of these arguments often follows a semantics, that is given in an abstract
argumentation framework either by extensions [5] or by labellings [2, 14]. For what follows
we use the former. Many semantics have been established, such as grounded (yields exactly
one unique extension), complete, preferred, stable and all of them come with interesting
properties [5, 1, 6]. Nowadays, agents perform tasks under incomplete information and
dynamic environments, thus decisions must be precise and easily computable. Agents need a
tool that is able to produce extensions under the working environment to help them decide
what their next move should be.

Finding extensions can be a complex procedure when done without any computational
help, when the argumentation framework contains several arguments and attacks. We have
developed an algorithm that answers whether a given set of arguments is an extension. Part
of this algorithm has been implemented in a system and presented at the ICCMA’15 1

competition. Our solver, called ASSA 2 finds the stable extension(s) of an argumentation
framework.

In Section 2 we give some basic notions and in Section 3 we present the algorithm tests
we perform. A comparison to related work is done in Section 4, and Section 5 concludes with
future work.

1 http://argumentationcompetition.org/index.html
2 The name was inspired from left and right matrix multiplication: AS and SA
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2 Matrices & Argumentation Frameworks

In this section, we present the basic information on matrices and argumentation extensions.
We assume that the reader is familiar with basic matrix tools and the fundamentals on
argumentation frameworks (see e.g. [11, 5, 1, 6] for more details). A link between the fields
of graph theory and logic programs has been presented in [4, 13], where it is shown that
stable extensions corresponds to the kernels of the adjacency matrix.

2.1 Matrices
A matrix is a structure in rows and columns, where each one of its elements contains
information. When the number of rows and columns are equal, the matrix is called square
matrix. Square matrices have diagonals. A row vector is a 1× n matrix ( x1 x2 ... xn ) and a

column vector is a n× 1 matrix
(

x1
...

xn

)
, often written as the transpose matrix ( x1 x2 ... xn )T .

Computers can perform matrix operations in a relatively fast way. The computational
complexity for multiplying two matrices with n digit numbers is O(n3) [12]. There are
methods that can optimize this result [12, 10]. Our algorithm for computing argumentation
extensions and verifying if something is an extension is based on matrix multiplication, thus
it is of logarithmic space complexity [8]. In this initial paper, we will not be concerned with
complexity issues. It is based on matrices because (a) matrices can be easily represented
and handled by a computer, (b) illustrated information is compact, (c) through different
operation tools matrices can be easily manipulated and (d) matrices can capture all the
information of an abstract argumentation framework.

2.2 Argumentation Frameworks
We review some of the notions introduced by Dung [5] such as acceptable, conflict-free,
complete extensions.

I Definition 1 (argumentation framework). An argumentation framework is a pair 〈A,R〉,
where A is a set of arguments and R ⊆ A×A is a binary relation on A called attack relation.

Square matrices can capture the arguments and the attacking relations of an argumentation
framework in a relatively easy way. We first need to label each argument with a distinct
natural number and use the rows and columns of the matrix to represent the arguments and
the attacks respectively. For example, the third row a3,∗ of a square matrix consists of the
elements {a3,1, a3,2, . . . , a3,n}. If argument a3 attacks argument a4 then the element a3,4 of
the square matrix will be one (1), otherwise it will be zero (0). The value of the element a3,3
will show if argument a3 is self attacking.

I Definition 2 (mapping an argumentation framework to a matrix). Let A = (ai,j) be
the adjacency matrix of an argumentation framework AF = 〈A,R〉 such that: ai,j ={

1 if (i, j) ∈ R
0 if (i, j) /∈ R

It is important to know who attacks who. The attacker is represented by the row of
the adjacency matrix and each column represents the attacked argument. Therefore, a3,4
represents the attack from argument a3 to argument a4 while a4,3 represents the attack from
a4 to a3.
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a // b // c

(a)

0 1 0
0 0 1
0 0 0


(b)

Figure 1 (a) and (b) show respectively the directed graph and matrix representation of Example 3.

I Example 3. Let {a, b, c} = A be three arguments such that {(a, b), (b, c)} = R. Figure 1
depicts this example.

Matrix operations exist, i.e. multiplication, where when performed on the adjacency
matrix of an argumentation framework, an interpretation exists connecting the operating
result with the argumentation framework.

I Definition 4 (representing a set of arguments as a column vector). Let AF = 〈A,R〉 be an
argumentation framework with A its adjacency matrix and S ⊆ A. Set S is represented by a

column vector Sn×1 = (si,1), where si,1 =
{

1 if ai ∈ S
0 if ai /∈ S

I Proposition 5. Let A be the adjacency matrix of an argumentation framework AF = 〈A,R〉
and let S ⊆ A be a set of arguments with S its column (resp. ST its row) vector representation.
The product AS is a column (resp. STA is a row) vector where the entry (AS)i,1 (resp.
(STA)1,i) shows how many times argument ai ∈ A attacks (resp. is attacked by) S.

Proof. Let AF = 〈A,R〉 be an argumentation framework with n arguments and A = (ai,j) its
adjacency matrix. Let S ⊆ A be a set of arguments with S its column vector representation.
The product (of the two matrices A and S) AS is defined as follows: (AS)i,1 =

∑n
t=1((i, t)th

element of A× (t, 1)th element of S) =
∑n

t=1 ai,tst,1. Based on Definition 4 and Definition 2,
(AS)i,1 is an addition of zeroes if at least one of the entries ai,t or st,1 is zero as 0 × 1 =
1 × 0 = 0 × 0 = 0 or an addition of ones if both entries ai,t = st,1 = 1 since 1 × 1 = 1.
Intuitively, it is an addition of ones if and only if there exists an attack from ai to at in AF
and at ∈ S. Similar results hold for STA. J

3 Algorithms

In this section, we give a computerized method under which given a set of arguments, we
can answer whether this set of arguments is conflict-free, admissible, stable, or complete.

3.1 Conflict-free test
Given a set of arguments we can check if this set is conflict-free by running a conflict-free
test as follows.

I Definition 6 (conflict-free). A set of arguments S is said to be conflict-free if there are no
arguments a, b ∈ S such that (a, b) ∈ R.

I Proposition 7 (conflict-free test). Let AF = 〈A,R〉 be an argumentation framework and
A its adjacency matrix. Let S ⊆ A be a given set of arguments with S its column vector
representation. Let Γ = STA. S passes the conflict-free test if and only if whenever γi 6= 0 ∈ Γ
then si = 0 ∈ S.

ICCSW’15
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Proof. Based on Proposition 5, γi ∈ Γ shows how many times argument ai ∈ A is attacked
by S. Therefore, when γi 6= 0 ∈ Γ means that argument ai is attacked in γi ways by the
arguments in S. This does not conform with Definition 6. To pass the test arguments that
are attacked should not be part of S, thus si = 0 ∈ S. J

By constructing a matrix multiplication we can answer if a given set of arguments S is
conflict-free. When a row matrix passes (resp. fails) the test we conclude that S is (resp.
is not) conflict-free. Note that the empty set always passes the conflict-free test as the
generated matrix Γ has zeroes everywhere.

I Example 8. (a) Consider Example 3 illustrated in Figure 1. Let S1 = {a1} with S =
(

1
0
0

)
and STA = Γ = ( 0 1 0 ). γi 6= 0 when i = 2 and s2 = 0. For this reason it passes the
conflict-free test. Therefore, the set S1 = {a1} is conflict-free, i.e. not self attacking. Let us
now consider the set S2 = {a1, a2} with S =

(
1
1
0

)
and STA = Γ = ( 0 1 1 ). γ2 = s2 = 1, thus

the set S2 fails the conflict-free test.

3.2 Admissibility test
To check the admissibility of a given set of arguments S we perform two tests: (a) the
conflict-free test and (b) the defending test. For S to be admissible it has to pass both tests.

I Definition 9 (defendable). An argument a is defendable with respect to a set S if and only
if each argument attacking a is attacked by an argument in S.

I Proposition 10 (defending test). Let AF = 〈A,R〉 be an argumentation framework with
adjacency matrix A and let S ⊆ A be a set of arguments. Let S be the column vector
representation of S and Γ = (γi) = AS. For every i that γi 6= 0 create a column vector

∆(i) = (δ(i)
j ), such that: δ

(i)
j =

{
1 if i = j

0 if i 6= j
. Set S passes the defending test if and

only if at least one of the following holds: (1) Γ is a zero matrix. (2) E(i) = A∆(i) and
∀i,∃e(i)

k ∈ E(i) such that e(i)
k 6= 0 and 0 6= sk ∈ S.

Proof. Based on Definition 9. Matrix Γ = (γi) = AS shows if S is under attack. When (a)
Γ = 0, S passes the defending test as no attackers exist. When (b) Γ 6= 0, i.e. attackers
exist, we check if S counter attacks them. γi 6= 0 shows the number of attacks but the
information who attacks who is lost through the algebraic operations of matrix multiplication.
To retrieve this critical information we create ∆(i),∀i that γi 6= 0 and evaluate E(i) = A∆(i).
E(i) shows if any arguments in A attack ∆(i). To ensure that when counter attacks exist,
they come from arguments in S, we add the restriction ∀i, ∃e(i)

k ∈ E(i) when e(i)
k 6= 0, sk 6= 0,

i.e. for every attack there exists at least one argument counter attacking it and this argument
belongs to S. J

The defending test is based on matrix multiplication. Γ = AS shows if S is under attack,
i.e. if any arguments that exist in our argumentation framework can attack S. When Γ = 0,
set S passes the defending test as no attackers exist and there are no arguments to defend
against. When Γ 6= 0, set S is under attack and we have to check if S counter attacks them.
Because we do not know who attacks who, instead we get an indication of the number of
times each argument in the AF attacks S, we need to separate the arguments under attack
and create the vectors ∆(i). Based on another matrix multiplication, E(i) = A∆(i), we find
E(i) that shows any arguments in A that attack ∆(i). To make sure that when these counter
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attacks exist, they come from arguments in S, we compare S with E(i),∀i. If the comparison
shows that any attack is counter attacked by S, we conclude that set S has passed the
defending test.

I Example 11 (defending test examples). In Example 3 consider the sets S′ = {} and
S = {a, c}.

For S′ : all entries for its column vector representation are zeroes and since S′ is represented
by a zero matrix, the empty set passes the defending test.

For S: S =
(

1
0
1

)
and AS =

(
0 1 0
0 0 1
0 0 0

)(
1
0
1

)
=
(

0
1
0

)
= Γ. Using S =

(
1
0
1

)
, we are interested

in which arguments can attack arguments a and c. The answer is
(

0
1
0

)
= Γ which means

that argument b attacks the argument set S = {a, c}. From Γ and its non zero entries
we find ∆(1) =

(
0
1
0

)
. To check if all attackers (i.e. b) are attacked back by S we evaluate

E(1) = A∆(1) =
(

0 1 0
0 0 1
0 0 0

)(
0
1
0

)
=
(

1
0
0

)
. The result is

(
1
0
0

)
and since e(1)

1 6= 0 ∈ E(1) and
s1 6= 0 ∈ S we conclude that S has passed the defending test.

I Definition 12 (admissible extension). Let S be a conflict-free set of arguments. S is
admissible if and only if S is conflict-free and defends itself.

I Proposition 13 (admissibility test). Let S be a given set of arguments. For S to be
admissible its matrix representation S has to pass both the conflict-free and defending test.

Proof. The proof follows directly from Definition 12, Proposition 7 and Proposition 10. J

3.3 Stable extensions test
I Definition 14 (stable extensions). Let S be a conflict-free set of arguments. S is called a
stable extension if and only if every argument not in S is attacked by an argument in S.

Stable extensions are conflict-free and admissible. For any given set S to be stable it first
has to pass the conflict-free test. We then want to see if S can attack all other arguments
which do not belong to it. This is done with the stable extension test.

I Proposition 15 (stable extensions test). Let AF = 〈A,R〉 be an argumentation framework
with adjacency matrix A. Let S ⊆ A be a given set of arguments and S the column vector of
S and Γ = STA. The set S passes the stable extensions test if and only if:
1. S passes the conflict-free test, and
2. ∀i such that si = 0, γi 6= 0, (si ∈ S, γi ∈ Γ).

Proof. Let AF = 〈A,R〉 be an argumentation framework, S ⊆ A be a set of arguments with
S its column vector representation. Based on Definition 14, S should be conflict-free, i.e.
it should pass the conflict-free test and every argument not in S should be attacked by an
argument in S. Γ = STA is a row vector where its entry (STA)i,1 shows how many times
argument ai ∈ A is attacked by S. Fulfilling the constrain ∀i such that si = 0, γi 6= 0 we
make sure that every argument not in S should be attacked by an argument in S. J

Note that for the stable extension test we do not use the admissibility test. Intuitively, a
set attacking anything that is “outside” of it means that it attacks all its potential attackers.
This is true since passing the conflict-free test shows that there do not exist attacks coming
“inside” of it thus any existing attacks should be from “outside” and it attack them back
anyway.

ICCSW’15
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I Example 16 (stable extension test). For Example 3 illustrated in Figure 1, we check if set
S = {a, c}, S =

(
1
0
1

)
passes the stable extension test. STA = ( 1 0 1 )

(
0 1 0
0 0 1
0 0 0

)
= ( 0 1 0 ) = Γ.

First of all it passes the conflict-free test as γ2 6= 0 and s2 = 0. Using ST = ( 1 0 1 ) we ask
which arguments in A are attacked by the set S = {a, c}. The answer is Γ = ( 0 1 0 ) which
means that it only attacks argument b. Based on the stable extension test, we compare
matrices Γ = STA = ( 0 1 0 ) and (S)T = ( 1 0 1 ). s2 = 0 and γ2 = 1 and therefore it is stable.

3.4 Complete extensions test
I Definition 17 (complete extension). An admissible set S of arguments is a complete
extension if and only if S contains all arguments it defends.

Let S be a given set. For S to be complete it has to be admissible and for this reason its
matrix representation has to first pass the admissibility test. We then have to check if it
contains all arguments it defends. Note that if an argument has no attackers, it is trivially
defended by any set. This check can be done through two matrix multiplications. The first
multiplication B = ( 1 1 ... 1 )1×n An×n that finds all arguments that are not under attack
and these arguments should be in any complete extension. The second multiplication is to
check if the set S contains all arguments it defends. Γ = (STA)A = STA2, where Z = STA

will show (when mapped to the argumentation framework) all arguments that are under
attack by the set S and Γ = ZA, will show all arguments that set S can defend. To find
all complete extensions, we have to run the admissibility test with an extended set S that
contains all possible combinations of the arguments in A. This technic is time consuming
and its computational complexity exponentially growths as the number of arguments not in
S become bigger. To consider all possible combinations with n-many arguments, a matrix
with 2n number of columns has to be created.

I Proposition 18 (complete extensions test). Let AF = 〈A,R〉 be an argumentation frame-
work with adjacency matrix An×n. Let S ⊆ A with S its column vector. S passes the complete
extension test if and only if:
1. S passes the admissibility test
2. Compute B = ( 1 1 ... 1 )1×n A and Γ = SA2. For each entry bi = 0 then si ⊆ S, and for

each entry γj 6= 0 then sj ⊆ S.

Proof. The proof follows directly from Proposition 13, Definition 9 and Definition 17. J

I Example 19. Consider Example 3, its set S = {a, c} and its matrix representation
ST = ( 1 0 1 ). Condition 1 is satisfied as S passes the admissibility test (see Example 11)
and therefore S is admissible. To check if S is complete condition 2 should also be satisfied.
Evaluate B = ( 1 1 1 )A = ( 1 1 1 )

(
0 1 0
0 0 1
0 0 0

)
= ( 0 1 1 ) and Γ = STA2 = ( 1 0 1 )

(
0 0 1
0 0 0
0 0 0

)
= ( 0 0 1 ). Note that b1 = 0 and s1 ⊆ S. Additionally, γ3 6= 0 and s3 ⊆ S. Thus condition 2
is satisfied and S = {a, c} is complete.

4 Related work

We have introduced a matrix-based mathematical approach for answering questions of the
form: “Is set A an extension?”. Similar to this approach, is the work presented in [15].
Their approach is structured as follows: Consider the adjacency matrix of an argumentation
framework and then define several parts of the adjacency matrix, which they call sub-blocks.
Finding all sub-blocks that have zeroes everywhere, it is like finding the conflict-free sets
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of the argumentation framework. Map each one of these sets into its matrix representation
norm form, with respect to a specific semantics (stable, admissible, complete). Based on
matrix criteria they find among the conflict-free sets which qualify as stable, admissible or
complete extensions. Finally, select all extensions passing a given criteria based on matrix
operations.

Our approach differs in the fact that we do not use sub-blocks but we also create sets of
arguments in a matrix representation to define tests for the different argumentation semantics.
Our work when considering all possible sets of arguments, comes close to their work as it
answers similar questions but with a different algorithm. Our approach focuses on a given
set of arguments as we do not try to find all arguments passing a given criteria.

5 Conclusion & Future work

Given a set S of arguments, we can present it as a matrix and perform different kinds of
tests. Based on the results, we can answer whether a set S has a property, i.e. belongs to an
argumentation extension of some kind.

In the work of Modgil et all [9] several questions are answered: 1) Does an extension
exist? 2) Give an extension. 3) Give all extensions. Let A be a set of arguments. We can
answer the question: “Is A an extension?”. To find several extensions or all extensions we
have to create such a matrix S ′ where each one of its columns will represent all possible
combination sets that the argumentation framework can define. Then by running tests under
S ′ we can tackle similar questions by comparing each column of the resulting matrix.

We have implemented a system, called ASSA that is able to answer different questions
for stable semantics for any given abstract argumentation framework. This program creates
all possible instances of selected set S into a vector form S. Instead of handling each vector
as an individual, it handles them all together when all vectors are combined into a massive
matrix S ′ . By handling S ′ in a similar way as S we manage to find all stable extensions that
exist in an abstract argumentation framework. ASSA at this time is ineffective as it needs
to create a massive matrix with 2n number of columns. We plan to study ways to make
this more effective. We also plan to extend our algorithms to cover other extensions (e.g.
grounded, ideal) and to extend the ASSA system to handle these semantics as well.

There is a lot of interest in computing extensions at a point where a competition exist
(see ICCMA’15). Other approaches that tackle similar results exist, such as the ASPARTIX
(Answer Set Programming Argumentation Reasoning Tool) and DIAMOND [7, 8, 3] but all
of them do not use matrices to compute extensions. As a future work, a comparison to these
methods in relation to speed and complexity can be studied.

As matrix representation of argumentation frameworks has not received much attentions
so far, and our approach constitutes an interesting new research direction, we hope many
researches will be inspired and find the content stimulating and thought provoking. We are
optimistic that our technique can be used to query graph related problems. Known properties
of directed graph can improve our understanding of argumentation extensions since directed
graphs allow us to approach the formalizations in a way that ignores the logical meaning
and concentrates on their structural properties.
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