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Abstract
We show that any α(n)-approximation algorithm for the n-vertex metric asymmetric Traveling
Salesperson problem yields O(α(C))-approximation algorithms for various mixed, windy, and
capacitated arc routing problems. Herein, C is the number of weakly-connected components in
the subgraph induced by the positive-demand arcs, a number that can be expected to be small
in applications. In conjunction with known results, we derive constant-factor approximations if
C ∈ O(logn) and O

(
logC/log logC

)
-approximations in general.
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1 Introduction

Golden and Wong [16] introduced the Capacitated Arc Routing problem in order to
model the search for minimum-cost routes for vehicles of equal capacity that are initially
located in a vehicle depot and have to serve all “customer” demands. Applications of
Capacitated Arc Routing include snow plowing, waste collection, meter reading, and
newspaper delivery [7]. Herein, the customer demands require that roads of a road network
are served. The road network is modeled as a graph whose edges represent roads and whose
vertices can be thought of as road intersections. The customer demands are modeled as
positive integers assigned to edges of this network. Moreover, each edge has a travel cost.

Capacitated Arc Routing Problem (CARP)
Instance: An undirected graph G = (V,E), a depot vertex v0 ∈ V , travel costs c : E → N∪{0},

edge demands d : E → N ∪ {0}, and a vehicle capacity Q.
Task: Find a set W of closed walks in G, each corresponding to the route of one vehicle and

passing through the depot vertex v0, and a serving function s : W → 2E such that∑
w∈W c(w) is minimized, where c(w) :=

∑`
i=1 c(ei) for a walk w = (e1, e2, . . . , e`) ∈ E`,

each closed walk w ∈W serves a subset s(w) of edges of w and
∑

e∈s(w) d(e) ≤ Q,
each edge e with d(e) > 0 is served by exactly one walk in W .

Note that vehicle routes may traverse each vertex or edge of the input graph multiple times.
Well-known special cases of CARP are the NP-hard Rural Postman Problem [21], where
the vehicle capacity is unbounded and hence, the goal is to find a shortest possible route for
one vehicle that visits all positive-demand edges, and the polynomial-time solvable Chinese
Postman Problem [9, 10], where additionally all edges have positive demand.

© René van Bevern, Christian Komusiewicz, and Manuel Sorge;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 130–143

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.130
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


R. van Bevern, C. Komusiewicz, and M. Sorge 131

Mixed and windy problem variants. CARP is polynomial-time constant-factor approx-
imable [4, 20, 25]. It is natural to study the approximability of generalizations of CARP on
directed, mixed, and windy graphs. This is also noted in a recent survey on the computa-
tional complexity of arc routing problems by van Bevern, Niedermeier, Sorge, and Weller [5,
Challenge 5]. Herein, a mixed graph may contain directed arcs in addition to undirected
edges in order to model one-way roads or the requirement of servicing a road in a specific
direction or in both directions. In a windy graph, the cost for traversing an undirected
edge {u, v} in the direction from u to v may be different from the cost for traversing it in
the opposite direction. (This models sloped roads, for example.) In this work, we present
approximation algorithms for mixed and windy variants of CARP. To formally state the
problem, we need some terminology related to mixed graphs.

I Definition 1 (Walks in mixed and windy graphs). A mixed graph is a triple G = (V,E,A),
where V is a set of vertices, E ⊆ {{u, v} | u, v ∈ V } is a set of (undirected) edges, A ⊆ V ×V is
a set of (directed) arcs (that might contain loops), and no pair of vertices has an arc and
and an edge between them. The head of an arc (u, v) ∈ V × V is v, its tail is u.

A walk in G is a sequence w = (a1, a2, . . . , a`) such that, for each ai = (u, v), 1 ≤ i ≤ `,
we have (u, v) ∈ A or {u, v} ∈ E and such that the tail of ai is the head of ai−1 for 1 < i ≤ `.
If (u, v) occurs in w, then we say that w traverses the arc (u, v) ∈ A or the edge {u, v} ∈ E,
respectively. If the tail of a1 is the head of a`, then we call w a closed walk.

If c : V × V → N∪ {0,∞} is the travel cost between vertices of G, the cost of a walk w =
(a1, . . . , a`) is c(w) :=

∑`
i=1 c(ai). The cost of a set W of walks is c(W ) :=

∑
w∈W c(w).

Formally, we present approximation algorithms for the following problem.

Mixed and Windy Capacitated Arc Routing Problem (MWCARP)
Instance: A mixed graph G = (V,E,A), a depot vertex v0 ∈ V , travel costs c : V × V →

N ∪ {0,∞}, demands d : E ∪A→ N ∪ {0}, and a vehicle capacity Q.
Task: Find a minimum-cost set W of closed walks in G, each passing through the depot

vertex v0, and a serving function s : W → 2E∪A such that
each w ∈W serves a subset s(w) of the edges and arcs it traverses and

∑
e∈s(w) d(e) ≤ Q,

each edge or arc e with d(e) > 0 is served by exactly one walk in W .
For brevity, we use the term “arc” to refer to both edges and arcs. Besides studying the
approximability of MWCARP, we also consider the following special case:

Mixed and Windy Rural Postman Problem (MWRPP)
Instance: A mixed graph G = (V,E,A) with travel costs c : V × V → N ∪ {0,∞} and a

set R ⊆ E ∪A of required arcs.
Task: Find a minimum-cost closed walk in G traversing all arcs in R.

If, moreover, E = ∅, then we obtain the Directed Rural Postman Problem (DRPP).

Relation to metric asymmetric TSP. In the development of approximation algorithms
for MWCARP, one has to be aware of the fact that, even for DRPP, there cannot be
approximation algorithms better than those for the following strongly related variant of TSP:

Metric Asymmetric Traveling Salesperson Problem (4-ATSP)
Instance: A set V of vertices and travel costs c : V × V → N ∪ {0} satisfying the triangle

inequality c(u, v) ≤ c(u,w) + c(w, v) for all u, v, w ∈ V .
Task: Find a minimum-cost cycle that visits every vertex in V exactly once.

ATMOS’15



132 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

Given a 4-ATSP instance, one obtains an equivalent DRPP instance simply by adding a
zero-cost loop to each vertex and by adding these loops to the set R of required arcs. This
leads to the following observation.

I Observation 2. Any α-approximation for DRPP yields an α-approximation for 4-ATSP.

The constant-factor approximability of 4-ATSP is a long-standing open problem, in contrast
to the symmetric metric TSP, where the cost of an arc does not depend on its direc-
tion. Symmetric metric TSP admits the famous 3/2-approximation by Christofides [6]
and Serdyukov [23]. For 4-ATSP, however, the relatively recent O(logn/ log logn)-ap-
proximation by Asadpour, Goemans, Mądry, Gharan, and Saberi [2] is the first asymptotic
improvement over the O(logn)-approximation by Frieze, Galbiati, and Maffioli [15] from 1982.

Our contribution. As discussed above, any α-approximation for DRPP yields an α-approx-
imation for 4-ATSP. Our contribution is the following theorem for the converse direction.

I Theorem 3. If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then
(i) n-vertex DRPP is (α(C) + 1)-approximable in O(t(C) + n3 logn) time,
(ii) n-vertex MWRPP is (α(C) + 3)-approximable in O(t(C) + n3 logn) time, and
(iii) n-vertex MWCARP is O(α(C + 1))-approximable in O(t(C + 1) + n3 logn) time,
where C is the number of weakly connected components in the subgraph induced by the
positive-demand arcs and edges.

The theorem shows that, although MWCARP is generally not easier to approximate than
4-ATSP, the approximation quality of MWCARP depends mainly on the number C of
weakly connected components in the subgraph induced by positive-demand arcs. There are
applications where C is small, which is also exploited in exact exponential-time algorithms
for DRPP [12, 17, 24]. For example, the company Berliner Stadtreinigungsbetriebe provided
us with instances arising in snow plowing in Berlin, in which the required arcs induce a
subgraph with only three or four weakly connected components.

A consequence of Theoem 3 is the following corollary, which follows from the exact
O(2nn2) time algorithm for n-vertex 4-ATSP by Bell [3], Held, and Karp [19]:

I Corollary 4. MWCARP is constant-factor approximable in O(2CC2 + n3 logn) time and
thus in polynomial time for C ∈ O(logn).

For perspective on Corollary 4, recall that finding a polynomial-time constant-factor approxi-
mation for MWCARP in general would, via Observation 2, answer a question open since
1982 [15]. Computing optimal solutions of MWCARP is NP-hard even if C = 1 [5].

2 Preliminaries

Although DRPP, MWRPP, and MWCARP are problems on mixed graphs as defined in
Definition 1, in some of our proofs we use more general mixed multigraphs G = (V,E,A) with
a set V =: V (G) of vertices, a multiset E =: E(G) over {{u, v} | u, v ∈ V } of (undirected)
edges, a multiset A =: A(G) over V × V of (directed) arcs that may contain self-loops, and
travel costs c : V × V → N ∪ {0,∞}. If E = ∅, then G is a directed multigraph.

From Definition 1, recall the definition of walks in mixed graphs. An Euler tour for G
is a closed walk that traverses each arc and each edge of G as often as it is present in G.
A graph is Eulerian if it allows for an Euler tour. Let w = (a1, a2, . . . , a`) be a walk. The
starting point of w is the tail of a1, the end point of w is the head of a`. A segment of w
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(a) Input: Only required arcs R
shown, vertices in VR are black.

T1

T2
T3

(b) Compute Euler tours Ti for
each conn. component of G[R].

T1

T2
T3

TG

(c) Add closed walk TG to get a
feasible solution T .

Figure 1 Steps of Algorithm 1 executed to construct a feasible solution for DRPP when all
connected components of G[R] are Eulerian.

is a consecutive subsequence of w. Two segments w1 = (ai, . . . , aj) and w2 = (ai′ , . . . , aj′)
of a walk w are non-overlapping if j < i′ or j′ < i. Note that two segments of w might be
non-overlapping yet share arcs if w contains an arc several times. The distance distG(u, v)
from vertex u to vertex v of G is the minimum cost of a walk from u to v in G.

The underlying undirected (multi)graph of G is obtained by replacing all directed arcs by
undirected edges. Two vertices u, v of G are (weakly) connected if there is a walk starting in u
and ending in v in the underlying undirected graph of G. A (weakly) connected component
of G is a maximal subgraph of G in which all vertices are mutually (weakly) connected.

For a multiset R ⊆ V × V of arcs, G[R] is the directed multigraph consisting of the arcs
in R and their incident vertices of G. We say that G[R] is the graph induced by the arcs
in R. For a walk w = (a1, . . . , a`) in G, G[w] is the directed multigraph consisting of the
arcs a1, . . . , a` and their incident vertices, where G[w] contains each arc with the multiplicity
it occurs in w. Note that G[R] and G[w] might contain arcs with a higher multiplicity than G
and, therefore, are not necessarily sub(multi)graphs of G. Finally, the cost of a multiset R is
c(R) :=

∑
a∈R ν(a)c(a), where ν(a) is the multiplicity of a in R.

3 Rural Postman

In this section, we present our approximation algorithms for DRPP and MWRPP, thus
proving Theorem 3(i) and (ii). We first present, in Section 3.1, an algorithm for the special case
of DRPP where the required arcs induce a subgraph with Eulerian connected components.
Sections 3.2 and 3.3 subsequently generalize this algorithm to DRPP and MWRPP by
adding to the set of required arcs an arc set of low weight so that the required arcs induce a
graph with Eulerian connected components.

3.1 Special Case: Required arcs induce Eulerian components
To turn α(n)-approximations for n-vertex 4-ATSP into (α(C) + 1)-approximations for this
special case of DRPP, we use Algorithm 1. Figure 1 illustrates its two main steps.

In fact, to solve this special case of DRPP, we will not exploit that Algorithm 1 and the
following lemma allow R to be a multiset and that they allow VR, the set of vertices incident
with arcs of R, to contain more than one vertex of each connected component of G[R]. This
will become relevant in Section 3.2, when we plug in Algorithm 1 to solve DRPP in general.

I Lemma 5. Let G be a directed graph with travel costs c and R be a multiset of arcs of G
such that G[R] consists of C Eulerian connected components, let VR ⊆ V (G[R]) be a vertex

ATMOS’15



134 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

Algorithm 1: Algorithm for the proof of Lemma 5.
Input: A directed graph G with travel costs c, a multiset R of arcs of G such that

G[R] consists of C Eulerian connected components, and a set VR ⊆ V (G[R])
containing at least one vertex of each connected component of G[R].

Output: A closed walk traversing all arcs in R.
1 for i = 1, . . . , C do
2 vi ← any vertex of VR in component i of G[R];
3 Ti ← Euler tour of connected component i of G[R] starting and ending in vi;
4 (VR, c

′)←4-ATSP instance on the vertices VR, where c′(vi, vj) := distG(vi, vj);
5 TVR

← α(|VR|)-approximate 4-ATSP solution for (VR, c
′);

6 TG ← closed walk for G obtained by replacing each arc (vi, vj) on TVR
by a shortest

path from vi to vj in G;
7 T ← closed walk obtained by following TG and taking a detour Ti whenever reaching

a vertex vi;
8 return T ;

set containing at least one vertex of each connected component of G[R], and let T̃ be any
closed walk containing the vertices VR.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then Algorithm 1 applied
to (G, c,R) and VR returns a closed walk of cost at most c(R) + α(|VR|) · c(T̃ ) in O(t(n) +
n3) time that traverses all arcs of R.

Proof. We first show that the closed walk T returned by Algorithm 1 visits all arcs in R. Since
the 4-ATSP solution TVR

constructed in line 5 visits all vertices VR, in particular v1, . . . , vC ,
so does the closed walk TG constructed in line 6. Thus, for each vertex vi, 1 ≤ i ≤ C, T takes
Euler tour Ti through the connected component i of G[R] and, thus, visits all arcs in R.

We analyze the cost c(T ). The closed walk T is composed of the Euler tours Ti computed
in line 3 and the closed walk TG computed in line 6. Hence, c(T ) = c(TG) +

∑C
i=1 c(Ti).

Since each Ti is an Euler tour for some connected component i of G[R], each Ti visits each
arc of component i as often as it is contained in R. Consequently,

∑C
i=1 c(Ti) = c(R).

It remains to analyze c(TG). Observe first that the distances in TSP instance (VR, c
′)

correspond to shortest paths in G and thus fulfill the triangle inequality. We have c(TG) =
c′(TVR

) by construction of the 4-ATSP instance (VR, c
′) in line 4 and by construction

of TG from TVR
in line 6. Let T̃ be any closed walk containing VR and let T ∗VR

be an
optimal solution for the 4-ATSP instance (VR, c

′). If we consider the closed walk T̃VR

that visits the vertices VR of the 4-ATSP instance (VR, c
′) in the same order as T̃ , we

get c′(T ∗VR
) ≤ c′(T̃VR

) ≤ c(T̃ ). Since the closed walk TVR
computed in line 5 is an α(|VR|)-

approximate solution to the 4-ATSP instance (VR, c
′), it finally follows that c(TG) =

c′(TVR
) ≤ α(|VR|) · c′(T ∗VR

) ≤ α(|VR|) · c(T̃ ).
Regarding the running time, observe that the instance (VR, c

′) in line 4 can be constructed
in O(n3) time using the Floyd-Warshall all-pair shortest path algorithm [11], which dominates
all other steps of the algorithm except for, possibly, line 5. J

Lemma 5 proves Theorem 3(i) for DRPP instances I = (G, c,R) when G[R] consists of
Eulerian connected components: pick VR to contain exactly one vertex of each of the
C connected components of G[R]. Since an optimal solution T ∗ for I visits the vertices VR

and satisfies c(R) ≤ c(T ∗), Algorithm 1 yields a solution of cost at most c(T ∗) +α(C) · c(T ∗).
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Algorithm 2: Algorithm for the proof of Lemma 8.
Input: A DRPP instance I = (G, c,R) such that G[R] has C connected components

and a set VR of vertices, one of each connected component of G[R].
Output: A feasible solution for I.

1 f ← minimum-cost flow for the UMCF instance (G, balanceG[R], c);
2 foreach a ∈ A(G) do add arc a with multiplicity f(a) to (initially empty) multiset R∗;
3 T ← closed walk computed by Algorithm 1 applied to (G, c,R ]R∗) and VR;
4 return T ;

3.2 Directed Rural Postman
In the previous section, we proved Theorem 3(i) for the special case of DRPP when
G[R] consists of Eulerian connected components. We will now reduce DRPP to this special
case in order to prove Theorem 3(i) for the general DRPP. To this end, observe that a
feasible solution T for a DRPP instance (G, c,R) enters each vertex v of G as often as it
leaves. Thus, if we consider the multigraph G[T ] on the vertex set V (G) that contains each
arc of G with same multiplicity as T , then G[T ] is a supermultigraph of G[R] in which every
vertex is balanced [8, 24]:

I Definition 6 (Balance). By balanceG(v) := indegG(v)−outdegG(v), we denote the balance
of a vertex v of a graph G. We call a vertex v balanced if balanceG(v) = 0.

Since G[T ] is a supergraph of G[R] in which all vertices are balanced and since a directed
connected multigraph is Eulerian if and only if all its vertices are balanced, we immediately
obtain the below observation. Herein and in the following, for two (multi-)sets X and Y ,
X ] Y is the multiset obtained by adding the multiplicities of each element in X and Y .

I Observation 7. Let T be a feasible solution for a DRPP instance (G, c,R) such that G[R]
has C connected components and let R∗ be a minimum-cost multiset of arcs of G such that
every vertex in G[R ]R∗] is balanced. Then, c(R ]R∗) ≤ c(T ) and G[R ]R∗] consists of at
most C Eulerian connected components.

Algorithm 2 computes an (α(C) + 1)-approximation for a DRPP instance (G, c,R) by
first computing a minimum-cost arc multiset R∗ such that G[R ]R∗] contains only balanced
vertices and then applying Algorithm 1 to (G, c,R ] R∗). To find R∗, we use a folklore
reduction [8, 10, 13] to the Uncapacitated Minimum-Cost Flow problem:

Uncapacitated Minimum-Cost Flow (UMCF)
Instance: A directed graph G = (V,A) with supply s : V → Z and costs c : A→ N ∪ {0}.
Task: Find a flow f : A→ N ∪ {0} minimizing

∑
a∈A c(a)f(a) such that, for each v ∈ V ,∑

(v,w)∈A

f(v, w)−
∑

(w,v)∈A

f(w, v) = s(v). (FC)

Equation (FC) is known as the flow conservation constraint: for every vertex v with s(v) =
0, there are as many units of flow entering the node as leaving it. Nodes v with s(v) > 0
“produce” s(v) units of flow, whereas nodes v with s(v) < 0 “consume” s(v) units of flow.
UMCF is solvable in O(n3 logn) time [1, Theorem 10.34].

I Lemma 8. Let I := (G, c,R) be a DRPP instance such that G[R] has C connected
components and let VR be a vertex set containing exactly one vertex of each connected
component of G[R]. Moreover, consider two closed walks in G:

ATMOS’15



136 Approximation Algorithms for Mixed, Windy, and Capacitated Arc Routing Problems

let T̃ be any closed walk containing the vertices VR and
let T̂ be any feasible solution for I.

If n-vertex 4-ATSP is α(n)-approximable in t(n) time, then Algorithm 2 applied to I and VR

returns a feasible solution of cost at most c(T̂ ) + α(C) · c(T̃ ) in O(t(n) + n3 logn) time.

Proof. Observe that Algorithm 2 in line 2 indeed computes a minimum-cost arc set R∗ such
that all vertices in G[R ]R∗] are balanced (we provide details in Appendix A).

We use the optimality of R∗ to give an upper bound on the cost of the closed walk T
computed in line 3. Since VR contains exactly one vertex of each connected component
of G[R], it contains at least one vertex of each connected component of G[R]R∗]. Therefore,
Algorithm 1 is applicable to (G, c,R ] R∗) and, by Lemma 5, yields a closed walk in G

traversing all arcs in R ] R∗ and having cost at most c(R ] R∗) + α(|VR|) · c(T̃ ). This is
a feasible solution for (G, c,R) and, since by Observation 7, we have c(R ] R∗) ≤ c(T̂ ), it
follows that this feasible solution has cost at most c(T̂ ) + α(C) · c(T̃ ).

Finally, the running time of Algorithm 2 follows from the fact that the minimum-cost
flow in line 1 is computable in O(n3 logn) time [1, Theorem 10.34] and that Algorithm 1
runs in O(n3 + t(C)) time (Lemma 5). J

Proof of Theorem 3(i). Let (G, c,R) be an instance of DRPP and let VR be a set of vertices
containing exactly one vertex of each connected component of G[R]. An optimal solution T ∗
for I contains all arcs in R and all vertices in VR and hence, by Lemma 8, Algorithm 2
computes a feasible solution T with c(T ) ≤ c(T ∗) + α(C) · c(T ∗) for I. J

3.3 Mixed and Windy Rural Postman
In the previous section, we presented Algorithm 2 for DRPP in order to prove Theorem 3(i).
We now show how to apply Algorithm 2 to MWRPP in order to prove Theorem 3(ii).

To this end, we replace each undirected edge {u, v} in an MWRPP instance by two
directed arcs (u, v) and (v, u), where we force the undirected required edges of the MWRPP
instance to be traversed in the cheaper direction:

I Lemma 9. Let I := (G, c,R) be an MWRPP instance and let I ′ := (G′, c, R′) be the
DRPP instance obtained from I as follows:

G′ is obtained by replacing each edge {u, v} of G by two arcs (u, v) and (v, u),
R′ is obtained from R by replacing each edge {u, v} ∈ R by an arc (u, v) if c(u, v) ≤ c(v, u)
and by (v, u) otherwise.

Then, each feasible solution for I ′ is a feasible solution of the same cost for I and, for each
feasible solution T for I, there is a feasible solution T ′ for I ′ with c(T ′) < 3c(T ).

We prove Lemma 9 in Appendix B. Using Lemma 9, it is easy to prove Theorem 3(ii).

Proof of Theorem 3(ii). Given an MWRPP instance I = (G, c,R), compute a DRPP
instance I ′ := (G′, c, R′) as described in Lemma 9. This can be done in linear time.

Let VR be a set of vertices containing exactly one vertex of each connected component
of G′[R′] and let T ∗ be an optimal solution for I. Observe that T ∗ is not necessarily a
feasible solution for I ′, since it might serve required arcs of I ′ in the wrong direction. Yet
T ∗ is a closed walk in G′ visiting all vertices of VR. Moreover, by Lemma 9, I ′ has a feasible
solution T ′ with c(T ′) ≤ 3c(T ∗).

Thus, applying Algorithm 2 to I ′ and VR yields a feasible solution T of cost at most c(T ′)+
α(C) · c(T ∗) ≤ 3c(T ∗) + α(C) · c(T ∗) due to Lemma 8. Finally, T is also a feasible solution
for I by Lemma 9. J
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Algorithm 3: Algorithm for the proof of Proposition 12.
Input: An MWCARP instance I = (G, v0, c, d,Q) such that (v0, v0) ∈ Rd and such

that G[Rd] has C connected components.
Output: A feasible solution for I.
/* Compute a base tour containing all demand arcs and the depot */

1 I ′ ←MWRPP instance I ′ := (G, c,Rd);
2 T ← β(C)-approximate MWRPP tour for I ′ starting and ending in v0;

/* Split the base tour into one tour for each vehicle */
3 (W, s)← a feasible splitting of T ;
4 foreach w ∈W do
5 close w by adding shortest paths from v0 to s and from t to v0 in G, where s, t are

the start and endpoints of w, respectively;
6 return (W, s);

4 Capacitated Arc Routing

Our approximation algorithm for MWCARP uses the fact that joining all vehicle tours of a
solution gives an MWRPP tour traversing all positive-demand arcs and the depot. Thus, in
order to approximate MWCARP, the idea is to first compute an approximate MWRPP
tour and then split it into subtours, each of which can be served by a vehicle of capacity Q.
Then we close each subtour by shortest paths via the depot. This algorithm is inspired by
the CARP algorithms of Jansen [20] and Wøhlk [25] and the algorithm of Frederickson,
Hecht, and Kim [14] for (undirected) k-person minimax routing problems. Our analysis,
however, is necessarily different, since we cannot use arcs and edges in backwards direction.

I Definition 10 (Demand arc). For a demand function d : E(G)∪A(G)→ N∪ {0} we define
Rd := {a ∈ E(G) ∪A(G) | d(a) > 0} to be the set of demand arcs.

We will construct an MWCARP solution from a feasible splitting of an MWRPP tour T .

I Definition 11 (Feasible splitting). For an MWCARP instance I = (G, v0, c, d,Q), let T be
a closed walk containing all arcs in Rd and W = (w1, . . . , w`) be a tuple of segments of T .
In the following, we refer by W to both the tuple and the set of walks it contains.

Furthermore, consider a serving function s : W → 2Rd that assigns to each walk the set
of arcs in Rd it serves. We call (W, s) a feasible splitting of T if the following conditions hold:
1. the walks in W are mutually non-overlapping segments of T ,
2. when concatenating the walks in W in order, one obtains a subsequence of T ,
3. each wi ∈W begins and ends with an arc in s(wi),
4. {s(wi) | wi ∈W} is a partition of Rd, and
5. for each wi ∈W , we have

∑
e∈s(wi) d(e) ≤ Q and, if i < `, then

∑
e∈s(wi) d(e) +d(a) > Q,

where a is the first arc served by wi+1.
A feasible splitting of a given closed walk T as above can be computed in linear time using a
greedy strategy (we refer to Appendix C for details).

The algorithm. Algorithm 3 constructs an MWCARP solution from an approximate
MWRPP solution T containing all demand arcs and the depot v0. In order to ensure that
T contains v0, Algorithm 3 assumes that the input graph has a demand loop (v0, v0): if this
loop is not present, one can add it with zero cost. Note that, while this does not change
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the cost of an optimal solution, it might increase the number of connected components in
the subgraph induced by demand arcs by one. To compute an MWCARP solution from T ,
Algorithm 3 first computes a feasible splitting (W, s) of T . To each walk wi ∈ W , it then
adds a shortest path from the end of wi to the start of wi via the depot. It is not hard
to check that Algorithm 3 indeed outputs a feasible solution by using the properties of
feasible splittings and the fact that T contains all demand arcs. The remainder of this
section is devoted to the analysis of the solution, thus proving the following proposition and,
consequently, Theorem 3(iii).

I Proposition 12. Let I = (G, v0, c, d,Q) be an MWCARP instance and let I ′ be the
instance obtained from I by adding a zero-cost demand arc (v0, v0) if it is not present.

If MWRPP is β(C)-approximable in t(n) time, then Algorithm 3 applied to I ′ computes
a (8β(C + 1) + 3)-approximation for I in O(t(n) + n3) time. Herein, C is the number of
connected components in G[Rd].

The following lemma follows from the observation that the concatenation of all vehicle tours
in any MWCARP solution yields an MWRPP tour containing all demand arcs and the
depot. It is proven in Appendix D.

I Lemma 13. Let I = (G, v0, c, d,Q) be an MWCARP instance with (v0, v0) ∈ Rd and an
optimal solution (W ∗, s∗). The closed walk T and its feasible splitting (W, s) computed in
lines 2 and 3 of Algorithm 3 satisfy c(W ) ≤ c(T ) ≤ β(C)c(W ∗), where C is the number of
connected components in G[Rd].

It remains to analyze the length of the shortest paths from v0 to wi ∈ W and from wi

to v0 added in line 5 of Algorithm 3. We bound their lengths in the lengths of an auxiliary
walk A(wi) from v0 to wi and of an auxiliary walk Z(wi) from wi to v0. The auxiliary
walks A(wi) and Z(wi) consist of arcs of W , whose total cost is bounded by Lemma 13, and
of arcs of an optimal solution (W ∗, s∗). We show that, in total, the walks A(wi) and Z(wi)
for all wi ∈ W use each subwalk of W and W ∗ at most a constant number of times. For
this, we group the walks in W into consecutive pairs, for each of which we will be able to
charge the cost of the auxiliary walks to a distinct vehicle tour of the optimal solution.

I Definition 14 (Consecutive pairing). For a feasible splitting (W, s) with W = (w1, . . . , w`),
we call W 2 := {(w2i−1, w2i) | i ∈ {1, . . . , b`/2c}} a consecutive pairing.

We can now show, by applying Hall’s theorem [18], that each pair traverses an arc from a
distinct tour of an optimal solution (Appendix E).

I Lemma 15. Let I = (G, v0, c, d,Q) be an MWCARP instance with an optimal solu-
tion (W ∗, s∗) and let W 2 be a consecutive pairing of some feasible splitting (W, s). Then, there
is an injective map φ : W 2 →W ∗, (wi, wi+1) 7→ w∗ such that (s(wi) ∪ s(wi+1)) ∩ s∗(w∗) 6= ∅.

In the following, we fix an arbitrary arc in (s(wi)∪ s(wi+1))∩ s∗(w∗) and call it the pivot arc
of (wi, wi+1). Informally, the auxiliary walks for each wi are constructed as follows. To get
from the endpoint of wi to v0, walk along the closed walk T until traversing the first pivot
arc a. To get from the head of a to v0, walk along w∗, which is the walk of W ∗ containing a.
To get from v0 to wi, take the same approach, that is, walk backwards on T from the start
point of wi until traversing a pivot arc and then follow the tour of W ∗ containing a. The
formal definition of the auxiliary walks A(w) and Z(w) is given below (see also Figure 2).
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Figure 2 Illustration of Definition 16. Dotted lines are ancillary lines. Thin arrows are walks.
The braces along the bottom show a consecutive pairing of walks wi−1, . . . , wi+2. Bold arcs are
pivot arcs. Here, p(i) is exactly the pair that contains wi and q(i) is the next pair.

I Definition 16 (Auxiliary walks). Let I = (G, v0, c, d,Q) be an MWCARP instance, (W ∗, s∗)
be an optimal solution, and W 2 be a consecutive pairing of some feasible splitting (W, s) of
a closed walk T containing all arcs Rd and v0, where W = (w1, . . . , w`).

Let φ : W 2 →W ∗ be an injective map as in Lemma 15 and for each pair (w,w′) ∈W 2 let
A∗(wi, wi+1) be a subwalk of φ(wi, wi+1) from v0 to the tail of the pivot arc of (wi, wi+1),
Z∗(wi, wi+1) be a subwalk of φ(wi, wi+1) from the head of the pivot arc of (wi, wi+1) to v0.
For each walk wi ∈W with i ≥ 3 (that is, wi is not in the first pair of W 2), let
p(i) be the index of the pair whose pivot arc is traversed first when walking T backwards

starting from the starting point of wi,
A′(wi) be the subwalk of T starting at the end point of A∗(w2p(i), w2p(i)+1) and ending at

the start point of wi, and
A(wi) be the walk from v0 to the start point of wi following first A∗(w2p(i), w2p(i)+1) and

then A′(wi).
For each walk wi ∈ W with i ≤ ` − 3 (that is, wi is not in the last pair of W 2, where w`

might not be in any pair if ` is odd), let
q(i) be the index of the pair whose pivot arc is traversed first when following T starting

from the end point of wi,
Z′(wi) be the subwalk of T starting at the end point of wi and ending at the start point

of Z∗(w2q(i), w2q(i)+1), and, finally, let
Z(wi) be the walk from the end point of wi to v0 following Z ′(wi) and Z∗(w2q(i), w2q(i)+1).
We are now ready to prove Proposition 12, which also concludes our proof of Theorem 3.

Proof of Proposition 12. Let I = (G, v0, c, d,Q) be an MWRPP instance and (W ∗, s∗) be
an optimal solution. If there is no demand arc (v0, v0) in I, then we add it with zero cost in
order to make Algorithm 3 applicable. This clearly does not change the cost of an optimal
solution but may increase the number of connected components of G[Rd] to C + 1.

In lines 2 and 3, Algorithm 3 computes a tour T and its feasible splitting (W, s). Denote
W = (w1, . . . , w`). The solution returned by Algorithm 3 consists, for each 1 ≤ i ≤ `, of
a tour starting in v0, following a shortest path to the starting point of wi, then wi, and a
shortest path back to v0.

For i ≥ 3, the shortest path from v0 to the starting point of wi has length at most c(A(wi)).
For i ≤ `− 3, the shortest path from the end point of wi to v0 has length at most c(Z(wi)).
This amounts to

∑`
i=3 c(A(wi)) +

∑`−3
i=1 c(Z(wi)). To bound the costs of the shortest paths

added for i ∈ {1, 2, `−2, `−1, `}, observe the following. For each i ∈ {1, 2}, the shortest paths
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from v0 to the start point of wi and from the end point of w`−i to v0 together have length at
most c(T ). The shortest path from the end point of w` to v0 has length at most c(T )− c(W ).
Thus, the solution returned by Algorithm 3 has cost at most

∑̀
i=1

c(wi) +
∑̀
i=3

c(A(wi)) +
`−3∑
i=1

c(Z(wi)) + 3c(T )− c(W )

=
∑̀
i=3

c(A(wi)) +
`−3∑
i=1

c(Z(wi)) + 3c(T )

= 3c(T ) +

+
∑̀
i=3

c(A∗(w2p(i), w2p(i)+1)) +
`−3∑
i=1

c(Z∗(w2q(i), w2q(i)+1)) + (S1)

+
∑̀
i=3

c(A′(wi)) +
`−3∑
i=1

c(Z ′(wi)). (S2)

Observe that, for a fixed i, one has p(i) = p(j) only for j ≤ i + 2 and q(i) = q(j) only
for j ≥ i − 2. Moreover, by Lemma 15 and Definition 16, for i 6= j, A∗(wi, wi+1) and
A∗(wj , wj+1) are subwalks of distinct walks of W ∗. Similarly, Z∗(wi, wi+1) and Z∗(wj , wj+1)
are subwalks of distinct walks of W ∗ if i 6= j. Hence, sum (S1) counts every arc of W ∗ at
most three times and is therefore bounded from above by 3c(W ∗). Moreover, for a walk wi,
let Ai be the set of walks wj such that any arc a of wi is contained in A′(wj) and let Zi be the
set of walks such that any arc a of wi is contained in Z ′(wj). Observe that A′(wj) and Z ′(wj)
cannot completely contain two walks of the same pair of the consecutive pairing W 2 of W
since, by Lemma 15, each pair has a pivot arc and A′(wj) and Z ′(wj) both stop after
traversing a pivot arc. Hence, the walks in Ai ∪ Zi can be from at most three pairs of W 2:
the pair containing wi and the two neighboring pairs. Finally, observe that wi itself is not
contained in Ai ∪ Zi. Thus, Ai ∪ Zi contains at most five walks (Figure 3 in the appendix
shows such a worst-case example). Therefore, sum (S2) counts every arc of W at most five
times and is bounded from above by 5c(W ).

Thus, Algorithm 3 returns a solution of cost 3c(T )+5c(W )+3c(W ∗) which, by Lemma 13,
is at most 8c(T ) + 3c(W ∗) ≤ 8β(C + 1)c(W ∗) + 3c(W ∗) ≤ (8β(C + 1) + 3)c(W ∗). J

5 Conclusion

With the exception of MWCARP, we expect our algorithms to yield good heuristics. In
particular, the 4-ATSP instances should be sufficiently small to allow for the computation
of optimal solutions. For MWCARP, a better approach than the presented one could be to
compute an MWRPP tour and then compute an optimal splitting of this tour into vehicle
tours. Our analysis gives a worst-case bound for this approach. We conclude with an open
question: can the (α(C) + 3)-approximation for MWRPP in Theorem 3(ii) be improved to
an (α(C) + 3/2)-approximation using the 3/2-approximation for Mixed Chinese Postman
given by Raghavachari and Veerasamy [22]?
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A Omitted details in the proof of Lemma 8

Proof. To complete the proof of Theorem 8, we prove that Algorithm 2 in line 2 indeed
computes a minimum-cost arc set R∗ such that all vertices in G[R ]R∗] are balanced. This
follows from the one-to-one correspondence between arc multisets R′ such that G[R ] R′]
has only balanced vertices and flows f for the UMCF instance I ′ := (G,balanceG[R], c):

1. For each vertex v with balanceG[R](v) = 0, R′ has to contain as many incident in-arcs as
out-arcs so that balanceG[R]R′](v) = 0. Likewise, by (FC), in any feasible flow for I ′, as
many units of flow enter v as leave v.

2. Each vertex v with balanceG[R](v) > 0 has balanceG[R](v) more incident in-arcs than
out-arcs in G[R] and, thus, in order for balanceG[R]R′](v) = 0 to hold, R′ has to contain
balanceG[R](v) more out-arcs than in-arcs incident to v. Likewise, by (FC), in any feasible
flow for I ′, there are balanceG[R](v) more units of flow leaving v than entering v.

3. For each vertex v with balanceG[R](v) < 0, analogous arguments apply.
Thus, from a multiset R′ of arcs such that G[R ] R′] is balanced, we get a feasible flow f

for I ′ by setting f(v, w) to the multiplicity of the arc (v, w) in R′. From a feasible flow f

for I ′, we get a multiset R′ of arcs such that G[R ] R′] is balanced by adding to R′ each
arc (v, w) with multiplicity f(v, w). We conclude that the arc multiset R∗ computed in line 2
is such that G[R ]R∗] is balanced. Moreover, it is a minimum-cost such set, since a set of
lower cost would yield a flow cheaper than the optimum flow f computed in line 1. J

B Proof of Lemma 9

Proof. It is obvious that each feasible solution T ′ for I ′ is a feasible solution for I, since
each required edge of I is served by T ′ in at least one direction. Moreover, the cost functions
in I and I ′ are the same.

Now, for the opposite direction, let T be a feasible solution for I. We obtain a feasible
solution T ′ of I ′ as follows:
1. For each arc (u, v) or non-required edge {u, v} traversed by T in direction from u to v,

T ′ traverses arc (u, v).
2. For each required edge {u, v} traversed by T from u to v such that c(u, v) ≤ c(v, u),

T ′ traverses (u, v).
3. For each required edge {u, v} traversed by T from u to v such that c(u, v) > c(v, u),

T ′ traverses (u, v), (v, u), and again (u, v).
The closed walk T ′ is indeed a feasible solution to I ′: in (2), note that (u, v) ∈ R′ and that
it is served by T ′. In (3), in contrast, (v, u) ∈ R′, which is also served by T ′.

To compute the cost of T ′, observe that only (3) increases the cost of T ′ compared to T :
instead of c(u, v), which is paid by T for traversing {u, v} in the direction from u to v, the
closed walk T ′ pays c(u, v) + c(v, u) + c(u, v) < 3c(u, v) since c(v, u) < c(u, v). J

C Obtaining feasible splittings

Given an MWCARP instance I = (G, v0, c, d,Q), a feasible splitting (W, s) of a closed walk T
that traverses all arcs in Rd can be computed in linear time as follows. We assume that
each arc has demand at most Q since otherwise I has no feasible solution. Now, traverse T ,
successively defining subwalks w ∈W and the corresponding sets s(w) one at a time. The
traversal starts with the first arc a ∈ Rd of T and by creating a subwalk w consisting only
of a and s(w) = {a}. On discovery of a still unserved arc a ∈ Rd \ (

⋃
w′∈W s(w′)) do the



R. van Bevern, C. Komusiewicz, and M. Sorge 143

wi−2 wi−1 wi wi+1 wi+2 wi+3

p(i) q(i)

A
∗ (
w

i−
2,
w

i−
1)

A
∗ (
w

i,
w

i+
1)

A
∗ (
w

i+
2,
w

i+
3)

Z
∗(w

i−
2 ,w

i−
1 )

Z
∗(w

i ,w
i+

1 )

Z
∗(w

i+
2 ,w

i+
3 )

A′(wi)

A′(wi+1)
A′(wi+2)

A′(wi+3)Z ′(wi−2)
Z ′(wi−1) Z ′(wi)

Figure 3 Illustration of the situation in which a maximum number of five different walks in W

traverse the same pivot arc (the bold arc of wi) in their respective auxiliary walks.

following. If
∑

e∈s(w) d(e) + d(a) ≤ Q, then add a to s(w) and append to w the subwalk of T
that was traversed since discovery of the previous unserved arc in Rd. Otherwise, mark w
and s(w) as finished, start a new tour w ∈ W with a as the first arc, set s(w) = {a}, and
continue the traversal of T . If no arc a is found, then stop. It is not hard to verify that
indeed, (W, s) is a feasible splitting.

D Proof of Lemma 13

Proof. Consider an optimal solution (W ∗, s∗) to I. The closed walks in W ∗ visit all arcs
in Rd. Concatenating them to a closed walk T ∗ gives a feasible solution for the MWRPP
instance I ′ = (G, c,Rd) in line 1 of Algorithm 3. Moreover, c(T ∗) = c(W ∗). Thus, we have
c(T ) ≤ β(C)c′(T ∗) in line 2. Moreover, by Condition 1 of Definition 11, one has c(W ) ≤ c(T ).
This finally implies c(W ) ≤ c(T ) ≤ β(C)c(T ∗) = β(C)c(W ∗) in line 3. J

E Proof of Lemma 15

Proof. Define an undirected bipartite graph B with the partite sets W 2 and W ∗. A
pair (w,w′) ∈W 2 and a closed walk w∗ ∈W ∗ are adjacent in B if (s(w)∪s(w′))∩s∗(w∗) 6= ∅.
We prove that B allows for a matching that matches each vertex of W 2 to some vertex
in W ∗. To this end, by Hall’s theorem [18], it suffices to prove that, for all subsets S ⊆W 2,
it holds that |NB(S)| ≥ |S|, where NB(S) :=

⋃
v∈S NB(v) and NB(v) is the set of neighbors

of a vertex v in B. Observe that, by Condition 5 of Definition 11 of feasible splittings, for
each pair (w,w′) ∈W 2 we have d(s(w) ∪ s(w′)) ≥ Q. Since the pairs serve pairwise disjoint
sets of demand arcs (Condition 4 of feasible splittings), the pairs in S serve a total demand
of at least Q · |S| in the closed walks NB(S) ⊆W ∗. Since each closed walk in NB(S) serves
demand at most Q, the set NB(S) is at least as large as S, as required. J
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