
Bi-directional Search for Robust Routes in
Time-dependent Bi-criteria Road Networks∗

Matúš Mihalák1 and Sandro Montanari2

1 Department of Knowledge Engineering, Maastricht University, The
Netherlands

2 Department of Computer Science, ETH Zurich, Switzerland

Abstract
Based on time-dependent travel times for N past days, we consider the computation of robust
routes according to the min-max relative regret criterion. For this method we seek a path
minimizing its maximum weight in any one of the N days, normalized by the weight of an
optimum for the respective day. In order to speed-up this computationally demanding approach,
we observe that its output belongs to the Pareto front of the network with time-dependent
multi-criteria edge weights. We adapt a well-known algorithm for computing Pareto fronts in
time-dependent graphs and apply the bi-directional search technique to it. We also show how
to parametrize this algorithm by a value K to compute a K-approximate Pareto front. An
experimental evaluation for the cases N = 2 and N = 3 indicates a considerable speed-up of the
bi-directional search over the uni-directional.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shortest path, time-dependent, bi-criteria, bi-directional search, min-max
relative regret

Digital Object Identifier 10.4230/OASIcs.ATMOS.2015.82

1 Introduction

The standard goal of route planning is the computation of a quickest route from a location s
to a location t when departing at a time τ . Road networks are modeled as directed graphs
with time-dependent edge weights representing travel times at a given period of time and a
quickest route corresponds to a shortest s-t path in the time-dependent graph. The edge
weights are usually an aggregation (e.g., average) of measured travel times of many individual
cars over many similar time points. These aggregated values provide a good estimate of
the expected travel time, yet only over a large amount of past days. They say little about
deviations of the actual travel times and about per-day nuances of the traffic situations. In
fact, a quickest path computed from such aggregated values can perform substantially bad
on one particular day. In such situations a more appropriate goal is the computation of a
robust route [22], that is a path offering guarantees on its travel time in the various situations
we can encounter.

In this paper we consider the computation of robust routes in time-dependent road
networks. Our focus is on speeding-up a particular method called min-max relative regret.

∗ This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities and Sustainability),
under grant agreement no. 288094 (project eCOMPASS) and by the Swiss National Science Foundation
(SNF) under the grant number 200021 138117/1.

© Matúš Mihalák and Sandro Montanari;
licensed under Creative Commons License CC-BY

15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 82–94

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.82
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Matúš Mihalák and Sandro Montanari 83

The method looks for a route minimizing the maximum normalized travel time in the worst-
case scenario. In our case, there are N scenarios (N past days), and the normalization is
done with respect to the travel time of a quickest route in the respective day.

In a straightforward implementation, we enumerate all s-t paths in order of increasing
travel times, alternatively for each day, until the desired s-t path is found. This implementa-
tion is however computationally extremely demanding and impractical. Thus, we observe
that its output lies on the Pareto front of the road network with appropriate time-dependent
and multi-criteria edge weights induced by the N instances. We adapt a known algorithm
of Hansen/Martins [19, 23] for computing the Pareto front of such a graph and apply the
speed-up technique of bi-directional search to it. To the best of our knowledge, our paper is
the first one to consider speeding-up the computation of shortest paths in a setting where
every component of the edge weights is time-dependent and multi-criteria.

2 Quickest Paths and Min-max Optimization

We consider a directed graph G = (V,E) with time-dependent edge weights w : E × T → N
defined over a given time horizon T . In our road network application w(e, τ) expresses the
travel time needed to traverse the edge e ∈ E when the vehicle enters e at time τ ∈ T . This
information for an edge e ∈ E is obtained from a piecewise-linear function fe : T → N with
period of one week, represented succinctly by a number of breakpoints. In our data-set the
week is divided into 2016 breakpoints, one every 5 minutes. We can therefore compute w(e, τ)
for any τ ∈ T in time O(1).

A path P is a sequence 〈v1, . . . , vk〉 of vertices where (vi, vi+1) ∈ E for i = 1, ..., k− 1. We
overload the function w to express the travel time of P = 〈v1, ..., vk〉 departing at τ ∈ T as

w(P, τ) =
{

0 if k = 1
w ((v1, v2), τ) + w (〈v2, . . . , vk〉, τ + w ((v1, v2), τ)) otherwise.

A quickest path for given source s ∈ V , target t ∈ V , and time τ ∈ T , is an s-t-path P

minimizing w(P, τ). Note that in the above definition we do not allow waiting at vertices;
this is clearly not beneficial if waiting at a vertex on an s-t path does not result in arriving
at t earlier, a property formally defined as follows.

I Definition 1 (FIFO Property). A weight function w : E×T → N satisfies the FIFO property
if for all e ∈ E and all τ, τ ′ ∈ T with τ ≤ τ ′ it holds τ + w(e, τ) ≤ τ ′ + w(e, τ ′).

If the edge weights satisfy the FIFO property, a quickest path can be computed efficiently
using a generalization of Dijkstra’s algorithm [11]. Since road networks are known to satisfy
this property, we therefore focus on algorithms not waiting at nodes.

Given a departure time τ ∈ T , vertices s, t ∈ V , and a finite discrete set of scenarios, the
problem we consider is that of computing an optimum s-t path according to the min-max
relative regret criterion. A scenario or instance Ii is specified by an edge weight function
wi : E × T → N. The relative regret of an s-t path P in instance Ii is the ratio between its
weight and the weight OPTi of a quickest path in Ii. Given N different instances I1, . . . , IN ,
we want to compute a path minimizing its maximum relative regret. In other words, we look
for a path

arg min
P

max
i

{
wi(P, τ)
OPTi

}
. (1)

The motivation for the study of this problem comes from its relation to robust optimization.
For example, Buhmann et al. [4] define a general framework for robust optimization according

ATMOS’15

84 Bi-directional Search in Time-dependent Bi-criteria Road Networks

to several different criteria. Among these criteria, the one denoted by the authors as “First
intersection” corresponds to the min-max relative regret.

Problem (1) is similar in nature to the problems of optimizing according to the min-max
absolute or the min-max deviation criteria [25], the difference lying only in the normalization
factor. In the former we look for a path arg minP maxi {wi(P, τ)}, while in the latter the goal
is arg minP maxi {wi(P, τ)−OPTi}. All these problems are NP-hard even for 2 instances;
hardness for the min-max absolute and the min-max deviation criteria was proven by Yu and
Yang [25], while for the min-max relative regret it follows straightforwardly as a reduction
from the constrained shortest path problem [13].

Since a worst-case efficient algorithm is unlikely to be found, we consider efficiency only
from a practical perspective. Even though our theoretical results can be generalized for any
number N of scenarios, for practical reasons we focus on the particular case N = 2. As
additional motivation for considering a small number of scenarios, we observe that approaches
based on the min-max or min-max (relative) regret criteria are of more interest in these cases.
If the number of scenarios is large, approaches based on statistical analysis are typically more
efficient and produce results of similar if not better quality. In Section 3 we prove that there
always exists an optimum solution lying on the Pareto front of all s-t paths. In Section 5 we
design a bi-directional algorithm for computing such a front that can be parametrized by
a factor K in order to compute a K-approximate solution. In Section 6 we experimentally
show that, on a road network of the Berlin and Brandenburg area, the speed-up of the
bi-directional search over uni-directional is considerable. A preliminary evaluation of the
algorithm for the case N = 3 seems to indicate that this speed-up scales with the number
of instances. In Section 7 we propose a simple modification to the bi-directional algorithm
exploiting the correlation between the travel times of the different instances.

3 Relation to Bi-criteria Quickest Paths

For the case of 2 scenarios, the instances I1 and I2 with edge-weight functions respectively
w1 and w2 induce a bi-criteria weight function w : E × T → N2 defined as

w(e, τ) =
(
w1(e, τ)
w2(e, τ)

)
. (2)

Again, we overload the definition of w to express the weight of a path P as

w(P, τ) = w(P ′, τ) +
(
w1(e, τ + w1(P ′, τ))
w2(e, τ + w2(P ′, τ))

)
, (3)

where P ′ is the path obtained from P without the last hop e. Given two s-t paths P and
P ′, we say that P dominates P ′ if wi(P, τ) ≤ wi(P ′, τ) for all i ∈ {1, 2}, with the inequality
being strict for some i. If two paths have the same weight in both components, they are said
to be equivalent. The Pareto front of a set of paths P is the subset of all paths in P that
are not dominated by another path in P. For the sake of readability, in the following we
will assume that no two paths are equivalent. It is well known [1] that an optimum path for
Problem (1) lies in the Pareto front F of all s-t paths departing at τ ∈ T . The following
theorem proves a slightly stronger statement.

I Theorem 2. Let Fρ be the Pareto front of all optimum paths of Problem (1). Then,
Fρ ⊆ F .

Matúš Mihalák and Sandro Montanari 85

Proof. Assume towards contradiction that there exists a path P ∈ Fρ \ F . Then, there is a
path P ′ /∈ Fρ dominating P . For i ∈ {1, 2}, we let

ρ′i = wi(P ′, τ)
OPTi

≤ wi(P, τ)
OPTi

= ρi,

Note that the relative regret of an optimum path is ρ∗ = max{ρ1, ρ2} and that max {ρ′1, ρ′2} >
ρ∗. If max {ρ′1, ρ′2} = ρ′i for some i ∈ {1, 2} we get a contradiction, because

ρ′i ≤
wi(P, τ)
OPTi

≤ ρ∗ < ρ′i. J

Theorem 2 implies that an optimum path for Problem (1) can be computed by enumerating
all paths in F and picking one with smallest relative regret. Note that there may exist
paths in F that are not optima, typically the quickest paths in either of the two instances.
It is straightforward to prove Theorem 2 also for the min-max absolute and the min-max
deviation criteria, implying that the bi-directional search algorithm proposed in the second
half of this paper can be applied for those criteria as well. We further observe that the paths
in Fρ might not be extreme points of the convex hull of F . This observation rules out the
possibility of adopting known algorithms for the computation of such points [6, 12, 14].
I Remark. The definition in eq. (3) might appear unusual to a reader familiar with bi-criteria
quickest path problems. In the literature it is more typically assumed that one of the two
criteria of the weight of a path is its travel time while the other one is a cost depending on
the travel time (for example, fuel consumption). Such a weight function can be written as

w(P, τ) = w(P ′, τ) +
(
w1(e, τ + w1(P ′, τ))
w2(e, τ + w1(P ′, τ))

)
. (4)

Note the difference in the time at which the second component is evaluated. Since our target
application is robust routing, we however need to consider different travel times for the same
path and hence use the definition in eq. (3). Under similar assumptions on the FIFO property
of the edge weights, our results can be generalized for eq. (4) as well.

4 Related Work

We now consider the computation of an optimum path for Problem (1) by means of time-
dependent multi-criteria optimization. Our aim is to apply the speed-up technique bi-
directional search to an algorithm by Martins for computing Pareto fronts and experimentally
investigate the improvements to its running time on road networks. In spite of its relevance,
the literature about the problem is scant, and not many practical algorithms are known.
The most closely related work is by Batz and Sanders [3] that consider the computation of
shortest paths in a graph with multi-criteria edge weights where only one of the components
is time-dependent. A great amount of work has been however invested by the community
into the speed-up of routing algorithms in settings where edge weights are either only
time-dependent [2, 7, 21] or only multi-criteria [8, 10].

Hansen [19] introduced several variants of bi-criteria shortest path problems and a pseudo-
polynomial time algorithm computing the Pareto front of a graph with static non-negative
bi-criteria edge weights. Martins [23] generalized this algorithm to static edge weights with
more than two criteria. His algorithm keeps a priority queue of temporary labels Q and
a set of permanent labels πu for every vertex u ∈ V . Each label (u,ω) represents a path
from s to u with weight ω ∈ Nk (for k criteria); we write P ∈ πu to indicate that the label

ATMOS’15

86 Bi-directional Search in Time-dependent Bi-criteria Road Networks

Listing 1 Time-dependent Martins’ algorithm.

∀v ∈ V : πv := ∅
Q. insert (s,

(0
0

)
)

{ Compute front}

while Q 6= ∅ do

(u,ω) := Q. extract_min ()

for e = (u, v) ∈ E do

ν := (v,ω +(w1(e,τ+ω1)
w2(e,τ+ω2)))

if ¬πv. dominates (ν) and ¬πt. dominates (ν) then Q. insert (ν)

representing P is in πu. At the beginning every πu is empty, and a label (s,0) is created
and put into Q. At each iteration the algorithm extracts from Q the smallest label (u,ω) in
lexicographical order and puts it into πu. A new label (v,ν) is then generated for each vertex
v that can be reached from u, with ν = ω + w(u, v). If no label in πv or πt dominates the
new one, it is inserted into Q and all labels corresponding to s-v paths that are dominated by
(v,ν) are removed from Q. The algorithm ends when Q is empty; at this point, πt contains
labels representing all paths in the Pareto front F . By storing labels in Q and in all πv in
lexicographical order, we can implement the operations of extract minimum, insertion, and
dominance checking to run, for the bi-criteria case, in logarithmic time. For a number of
criteria larger than 2 it is currently not known how to efficiently implement these operations.

Gräbener et al. [17] provide an experimental evaluation of a straightforward time-
dependent extension of Martins’ algorithm, shown in Listing 1, on some publicly acces-
sible networks. The correctness of this extension crucially depends on the FIFO property.
Hamacher et al. [18] consider the setting where the FIFO property does not hold, and provide
algorithms computing the Pareto front for a given s-t pair as well as for the all-to-all variant.

Dijkstra’s algorithm for finding shortest s-t paths in the static single-criteria case gradually
grows a shortest-path tree from s. At any step, each vertex is in one of the following states:
unreached, settled, or discovered. A vertex is unreached if its distance from s is not
known, it is settled if its distance from s is known exactly, and it is discovered if only an
upper bound on the distance is known. At every iteration the algorithm introduces a new
edge in the shortest path tree and sets its tail vertex as settled. The algorithm terminates
when t is settled. In the worst-case the tree contains all vertices, even though we are only
interested in those on the shortest s-t path that is returned.

The idea behind the bi-directional search [15, 16] is to grow two trees rooted at s and
t using Dijkstra’s algorithm alternatively from s and from t. The execution from t, called
backward search, uses the edges of the reverse graph, i.e., the graph containing the edges of
the original one in reverse direction. As soon as a vertex v is settled by both the forward
and the backward search the algorithm terminates and a shortest s-t path is guaranteed to
lie in the union of the so-far constructed shortest path trees (such a path might however not
pass through v). Any alternation works correctly; a typical choice is to balance the number
of iterations of the two searches.

For static multi-criteria edge weights one can apply the bi-directional search by replacing
Dijkstra’s algorithm with Martins’. Since the goal is to compute the whole Pareto front of
s-t paths (and not only a single path), the stopping criterion is however different. Demeyer
et al. [9] show that terminating the computation when the sum of the point-wise minima of

Matúš Mihalák and Sandro Montanari 87

the forward and backward queues is dominated by the front computed so far ensures that
the Pareto front is found. The point-wise minimum of a queue Q, denoted as Q.p_min(),
is the vector where each component is equal to the minimum among all labels in Q for the
corresponding criterion.

When the edge weights are time-dependent, even in the single-criterion case, applying
the bi-directional search is not straightforward anymore: the input consists of s, t, and the
departure time τ . Thus, we can grow a tree from s starting at time τ , but we do not know the
time τ ′ from which we shall start growing the tree from t – ideally, τ ′ is the earliest arrival
time at t, but that is the number we wish to compute. A way to overcome this difficulty is
to make the backward search static: for each edge (v, u) of the reverse graph ←−G = (V,←−E),
use a static weight defined as

←−w ((v, u)) = min
τ∈T
{w((u, v) , τ)} . (5)

Nannicini et al. [24] propose a bi-directional algorithm using the weights in eq. (5) working
in three phases. In phase 1 the forward and backward search run alternatively until a vertex
is discovered in both directions, resulting in an upper bound µ on the weight of a quickest
path. In phase 2 both searches continue until the distances of all the discovered vertices in
the backward queue are at least µ. In phase 3 only the forward search continues, with the
constraint that only vertices that were settled by the backward search are considered. In
the following we show how to apply this idea to the time-dependent multi-criteria case.

5 Bi-directional Time-dependent Martins’ Algorithm

A bi-directional algorithm for edge weights that are both time-dependent and bi-criteria can
be designed by straightforwardly combining the ideas of Demeyer et al. and of Nannicini
et al. This results in a three-phases search using Martins’ algorithm both from s and from
t, where the edge weights in the reverse graph are defined as in eq. (5) for both criteria.
The termination condition of the backward search (i.e., the end of phase 2) is the stopping
condition of Demeyer et al. As it turns out, however, this trivial algorithm can be improved
considerably.

A critical observation to improve the straightforward algorithm is to note that in the
backward direction our only interest is to identify vertices that might be on a Pareto optimal
path. In other words, to determine whether or not the Pareto front of a given vertex contains
at least one “promising” label. However, a label that is good for one criterion might not be
good for the other one and we cannot know in advance which labels are promising. Our
solution is to consider only the pointwise minima of the Pareto front πv of each vertex v.

If the only purpose of the backward search is to compute pointwise minima, then Martins’
algorithm is more than what is necessary. We can instead implement the backward search
as two independent Dijkstra’s runs on the reverse graph for each criterion. We modify the
three phases of the bi-directional algorithm according to this observation as follows.

For phase 2, suppose we have found (in some way during phase 1) a number of non-
necessarily Pareto-optimal s-t paths, and let M denote the Pareto front of these paths, while−→
Q is the forward queue and ←−Q1,

←−
Q2 are the backward queues. Suppose further that at some

point during the computation, the weight of a path in M dominates

β := −→Q.p_min() +
(←−
Q1.min()
←−
Q2.min()

)
.

ATMOS’15

88 Bi-directional Search in Time-dependent Bi-criteria Road Networks

At this point, if a vertex v has not been settled by both backward searches, then the weight
of any s-t path through v is dominated by β and therefore by a path in M (we prove the
correctness of this argument formally in the following). We can thus terminate phase 2 and
the backward searches as soon as a path in M dominates β.

For phase 3 consider the situation where the forward search created a label (v,ω) to
insert into −→Q . Let the vector of distances computed by the backward searches for v be v.d,
the value of the second term of β (the minima of the backward queues) at the end of phase 2
be
←−
β , and the minimum between v.d and

←−
β in each component be θ; that is, for i ∈ {1, 2},

we define θi := min{v.di,
←−
βi}. At the beginning of the computation v.di is set to ∞ and at

the end it holds that v.di ≤
←−
βi if v has been settled by the i-th backward search. If in

phase 3 a path in M dominates ω + θ then no path with the same s-v prefix as ω can be
optimal. We can thus discard all labels (v,ω) for which ω + θ is dominated by a path in M .

According to the above phases, the purpose of phase 1 is the computation of a suitable
tentative front M . Intuitively, a tentative front is good if the domination of β happens as
early as possible, because less labels carry over to phase 3. We propose to terminate phase 1
as soon as a vertex v with πv 6= ∅ is discovered by both backward searches and set M as
the corresponding set of s-t paths passing through v. This strategy has the advantage of
being efficient while at the same time being simple to implement. We note however that it is
easy to come up with different strategies; it is an interesting open question to identify an
optimum one.

To summarize, the three phases of the bi-directional algorithm are in detail as follows:
Phase 1 We let the forward and the backward search run alternatively. In the forward

direction we use the time-dependent Martins’ algorithm. In the backward direction we
use two independent runs of Dijkstra’s algorithm, one per criterion, using edge weights as
in eq. (5). This phase ends as soon as a vertex v with πv 6= ∅ is discovered by both
backward searches. At the termination of the phase we let M be the Pareto front of the
s-v paths in πv concatenated with the v-t paths discovered in the backward direction.

Phase 2 Both the forward and the backward searches continue to run as in phase 1, until a
path in M dominates β.

Phase 3 Only the forward search continues, with the constraint that labels (v,ω) for which
ω + θ is dominated by a path in M are ignored. This phase terminates when −→Q becomes
empty.

The pseudocode of the algorithm under the name of BiTdMartins is illustrated by
Listing 2. We use φ to denote the current phase and ↔ to denote either the forward (↔=→)
or the backward search (↔=←). The command ↔∈ {→,←} selects the direction for the
current iteration according to the alternation strategy; in our implementation we alternate
between one iteration of the forward search and one iteration for each backward search. Note
that to check the termination condition of phase 1 it is not necessary to search through all
vertices. It is sufficient to check whether the condition holds only for the vertex extracted at
the current iteration.

In the algorithm of Nannicini et al. [24] phase 2 terminates when the upper bound µ

computed in phase 1 is at most the minimum of the backward queue. The authors proved
that replacing this condition with one that, for a fixed parameter K, checks whether µ is
at most K times the minimum of the backward queue results in an algorithm computing
a K-approximate quickest path (i.e., a path with weight at most K times the weight of a
quickest path). The following theorem shows that BiTdMartins satisfies a similar property.
A corollary of this theorem, obtained by setting K = 1, implies correctness of the algorithm
in the exact variant.

Matúš Mihalák and Sandro Montanari 89

Listing 2 Algorithm BiTdMartins.

1 M := ∅, φ := 1, ∀v ∈ V : πv := ∅, v.d :=
(∞

∞

)
2 −→

Q . insert (s,
(0

0

)
),
←−
Q1. insert (t, 0),

←−
Q2. insert (t, 0)

3 while
−→
Q 6= ∅ do

4 if φ = 3 then ↔:=→ else ↔∈ {→,←}
5 { terminate phase 1}

6 if φ = 1 and ∃v ∈ V : πv 6= ∅ and v.d1 6=∞ and v.d2 6=∞ then

7 M . insert (< s-t paths through v >), φ := 2
8 { terminate phase 2}

9 if φ = 2 and M . dominates (β) then φ := 3
10 {relax edges}

11 if ↔=→ then

12 (u,ω) := −→Q . extract_min ()

13 for e = (u, v) ∈ −→E do

14 ν := ω +
(
w1(e,τ+ω1)
w2(e,τ+ω2)

)
15 if φ = 3 and M . dominates (ν + θ) then continue

16 if ¬πv. dominates (ν) and ¬πt. dominates (ν) then
−→
Q . insert (v,ν)

17 else

18 for i ∈ {1, 2} do

19 ui :=←−Qi. extract_min ()

20 for e = (ui, v) ∈ ←−E do

21 if ui.di +←−wi(e) < v.di then
←−
Qi. insert (v, ui.di +←−wi(e))

I Definition 3. Given τ ∈ T and K ≥ 1, we say that a path P is a K-approximation of
another path P ′ if w(P, τ) dominates or is equivalent to K ·w(P ′, τ). Given two sets of paths
P and P ′, we say that P is a K-approximation of P ′ if every path in P ′ is K-approximated
by a path in P.

I Theorem 4. Given K ≥ 1, if we replace the condition to terminate phase 2 with
M .dominates(K · β) and in phase 3 we discard all labels (v,ν) such that M .dominates(K ·
(ν + θ)), then BiTdMartins computes a K-approximation of F .

Proof. Assume there exists a path P ∈ F not K-approximated by a path in πt. That is, for
every P ′ ∈ πt there is i ∈ {1, 2} such that

K · wi(P, τ) < wi(P ′, τ). (6)

Let Psv be the prefix of P from s to the first vertex v such that Psv /∈ πv, and Pvt be the
suffix of P from v to t. Since Psv /∈ πv, there is a path in M dominating K · (w(Psv, τ) + θ).
Let P ′ be either this path, if it belongs to πt, or a path in πt dominating it otherwise. Note
that for all i ∈ {1, 2} it holds θi ≤ ←−wi(Pvt) since, if v was settled by the i-th backward
search, then θi = v.di = ←−wi(Pvt) while, if v was not settled by the i-th backward search,
then θi =

←−
βi ≤ ←−w (Pvt). Supposing without loss of generality that eq. (6) holds for i = 1 we

obtain a contradiction, because

K ·w1(P, τ) < w1(P ′, τ) ≤ K ·(w1(Psv, τ)+θi) ≤ K ·(w1(Psv, τ)+←−w1(Pvt)) ≤ K ·w1(P, τ).J

ATMOS’15

90 Bi-directional Search in Time-dependent Bi-criteria Road Networks

Table 1 Run-time in milliseconds and average number of scanned labels.

Labels
Max Rel Regret Run-time (ms) Phase 1 Phase 2 Phase 3

Dijkstra 1.0711 261 – – 220,620
Naive 1.0074 – – – 8,420

Uni-dir 1.0074 3,105 – – 1,419,524
Bi-dir 1.0074 1,888 178,855 189,336 449,560

K = 1.02 1.0085 1,570 178,855 177,133 402,970
K = 1.04 1.0108 1,427 178,855 165,209 356,479
K = 1.06 1.0156 1,286 178,855 153,549 311,216
K = 1.08 1.0232 1,150 178,855 142,190 268,139
K = 1.10 1.0337 1,028 178,855 131,160 228,646
K = 1.20 1.0724 712 178,855 80,678 93,660
K = 1.40 1.0830 338 178,855 16,854 10,420
K = 1.60 1.0856 275 178,855 1,858 2,407
K = 1.80 1.0865 269 178,855 270 1,787
K = 2.00 1.0868 269 178,855 81 1,692

I Corollary 5. BiTdMartins computes the Pareto front F .

Note that the converse of Theorem 4 in general does not hold. There might be paths in πt
not approximating a Pareto optimal path.

6 Computational Results

The experimental evaluation was performed on one core of an Intel Xeon E5-2697v2 processor
clocked at 2.7 GHz and 64 GB main memory. The code was written in C++ and compiled
using GNU C++ compiler version 4.8.2 and optimization level 3.

6.1 Input Road Network
The input data consists of a road network of the area around Berlin and Brandenburg
kindly provided by TomTom within the project eCOMPASS [5]. The largest strongly
connected component of the graph consists of 443,365 vertices and 1,038,284 edges. The
travel times of 750,544 edges are constant, while for the remaining 287,740 edges are given
by a piecewise-linear function with period of one week.

To obtain two instances (edge weight functions) I1 and I2 we consider departure times τ1
and τ2 in two consecutive days. We select uniformly at random one of the 24 hours of a day
and let τ1 be the corresponding point in time on Tuesday and τ2 be the same time in the
following Wednesday. The edge weight functions are obtained by setting the beginnings of
the time horizon (in other words the departure times) of I1 and I2 respectively at τ1 and at
τ2. We select 10,000 pairs of vertices s and t uniformly at random.

6.2 Results
Table 1 shows a comparison of the algorithms considered in terms of quality (i.e., the maximum
relative regret of the computed path) and efficiency, averaged among the performed 10,000
tests. The efficiency of an algorithm is measured in terms of CPU time and the number
of labels scanned for each phase of the algorithm. The number of labels scanned, i.e.,

Matúš Mihalák and Sandro Montanari 91

Table 2 Run-time and number of scanned labels for 3 instances.

Labels
Max Rel Regret Run-time (ms) Phase 1 Phase 2 Phase 3

Uni-dir 1.0328 954,267 - - 7,927,858
Bi-dir 1.0328 487,993 210,374 212,609 3,678,017

K = 1.2 1.0861 190,960 210,374 96,108 1,161,266
K = 1.4 1.1013 53,154 210,374 23,114 339,865
K = 1.6 1.1068 6,180 210,374 4,209 76,958
K = 1.8 1.1095 1,670 210,374 1,159 16,383
K = 2.0 1.1095 975 210,374 197 2,805

the overall number of labels extracted from the forward and from the backward queues,
represents a machine-independent measure of efficiency. The counter of labels scanned for
the bi-directional algorithm is increased by one for each iteration of the forward search, and
by 0.5 for each iteration of one of the two backward searches.

The algorithms considered for comparison are: the unidirectional search using the time-
dependent implementation of Martins’ algorithm, the bi-directional search of BiTdMartins,
the K-approximate BiTdMartins for different values of K, and the naive algorithm for the
min-max relative regret problem. As additional reference, the table also shows information
on the computation of a quickest path in I1 using the time-dependent Dijkstra’s algorithm.

The naive algorithm enumerates all s-t paths alternatively for I1 and I2 until an optimum
path is found; it is implemented as a straightforward time-dependent generalization of an
algorithm by Hershberger et al. [20] for the computation of the k-shortest paths. The row
corresponding to this algorithm in Table 1 does not show the number of labels scanned.
Instead, we display the average number of iterations before finding a path in the intersection.
Since each iteration consists of several (a number linear in n) repetitions of the time-dependent
Dijkstra’s algorithm, we can have an idea on the number of labels scanned by looking at the
first two rows of the table.

The improvements of the bi-directional search over the uni-directional is considerable
both for the run-time and for the number of scanned labels. The efficiency further increases
if we allow an approximation factor K greater than 1. It appears however that there is a
limit to the speed-up that can be obtained via approximation. The reason for this limit is
that large values of K greatly reduce the amount of time spent by the algorithm in phases 2
and 3, but do not decrease the time in phase 1. In particular, for some value of K, say K∗,
the algorithm spends no time at all in phase 2 because the termination condition is met as
soon as the phase begins. All values of K greater than K∗ will therefore result in similar
run-time and number of scanned labels.

6.3 Results for 3 Instances
Table 2 shows experimental results for the case of 3 instances (the third day being Thursday).
Since in this case the operations of extract minimum, insertion and dominance checking
necessary to implement Martins’ algorithm cannot be implemented efficiently, all algorithms
are as a result much slower than in the previous case. For this reason, the experimental
evaluation is not as thorough, and only 240 pairs of s, t vertices were considered.

We can see that the speed-up of the bi-directional search over the uni-directional is still
considerable, and an even more remarkable speed-up can be obtained via approximation. By
setting an approximation factor of K = 2.0, computations that in the exact case require in
average 25 minutes to terminate can be performed in less than one second.

ATMOS’15

92 Bi-directional Search in Time-dependent Bi-criteria Road Networks

1,0 1,2 1,4 1,6 1,8 2,0

K

0

50
0

10
00

15
00

20
00

25
00

30
00

R
u
n
ti

m
e
 (

m
s
)

UNREL

REL

1,0 1,2 1,4 1,6 1,8 2,0

K
10
00
00

20
00
00

30
00
00

40
00
00

50
00
00

60
00
00

70
00
00

80
00
00

90
00
00

L
a
b
e
ls

UNREL

REL

Figure 1 Comparison of bi-directional algorithms.

7 Single Backward Search

In our input data there is a strong correlation between the weights of a path in the different
instances, since they represent travel times in very similar time periods. However, this
correlation is not explicitly exploited by our algorithm. One might ask for a way to improve
the efficiency of BiTdMartins by considering this feature more directly. For example, for
the case of 2 instances we might get some improvement by replacing the two backward
searches with a single one that, for each backward edge e ∈ ←−E , considers weights of the kind

←−w (e) = min
i∈{1,2}

{←−wi(e)} .

The correctness of this algorithm and its approximated variants follows trivially from the
previous proofs under the same assumptions as for BiTdMartin. The benefits of this new
algorithm over the original one are however not trivial to estimate. On the one hand, if

max
e∈
←−
E

{|←−w1(e)−←−w2(e)|} (7)

is small, the modified backward search will settle almost the same vertices as before, with
almost the same values, at the price of one execution of Dijkstra’s algorithm instead of two.
On the other hand, the lower bounds on the distances computed in the reverse graph are
less accurate. As a result, the number of labels scanned by the modified algorithm is larger.
The benefit of the modified algorithm is, in loose terms, inversely proportional to eq. (7).

Figure 1 shows a plot of the average run-time and the number of labels settled by the
original bi-directional algorithm (unrel) and the modified one (rel) for different values K
of approximation and for the same 10,000 s-t pairs. We can see that unrel is faster but it
indeed settles more labels than rel. However, the difference between the two is very small
and further decreases for increasing values of K until the point where the performance of the
two algorithms is almost equal. It is an interesting open question to identify cases where the
benefit of a single backward search takes over both the run-time and the number of labels.

8 Conclusions

We have considered the problem of computing an optimum path according to the min-max
relative regret criterion and shown that there always exists one such path on the Pareto front

Matúš Mihalák and Sandro Montanari 93

of a multi-criteria weight function. We have therefore engineered a bi-directional algorithm for
the computation of Pareto fronts in time-dependent multi-criteria graphs and experimentally
demonstrated a considerable speed-up compared to the uni-directional variant.

We observe that the presented results appear of practical interest for the application of
robust routing. A peculiarity of this application is that the considered criteria correspond
to travel times for different days of the week. If the days considered are correlated like, for
example, working days as opposed to working days and holidays, we expect this correlation
to somehow appear in the travel times as well. As a result, the number of paths in the Pareto
fronts is not too big; for our experiments, the average size of the fronts is 8 (although for the
case of 3 instances this number increases to 40). It is an interesting open question to assess
the practical efficiency of the proposed algorithms for multi-criteria edge weights inducing
fronts of larger size, such as those considered by Delling and Wagner [8]. Furthermore,
an assessment of the robustness of the routes computed using the min-max relative regret
criterion on the Berlin and Brandenburg data-set is planned for a follow-up paper.

References
1 H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret versions of

combinatorial optimization problems: A survey. European Journal of Operational Research,
197(2):427–438, 2009.

2 G. V. Batz, R. Geisberger, P. Sanders, and C. Vetter. Minimum time-dependent travel
times with contraction hierarchies. ACM Journal of Experimental Algorithmics, 18, 2013.

3 G. V. Batz and P. Sanders. Time-dependent route planning with generalized objective
functions. In ESA, pages 169–180, 2012.

4 J. M. Buhmann, M. Mihalák, R. Šrámek, and P. Widmayer. Robust optimization in the
presence of uncertainty. In ITCS, pages 505–514, 2013.

5 European Commission. eCOMPASS Project. http://www.ecompass-project.eu/, 2011-
2014.

6 C. Daskalakis, I. Diakonikolas, and M. Yannakakis. How good is the chord algorithm?
CoRR, abs/1309.7084, 2013.

7 D. Delling. Time-dependent SHARC-routing. Algorithmica, 60(1):60–94, 2011.
8 D. Delling and D. Wagner. Pareto paths with SHARC. In SEA, pages 125–136, 2009.
9 S. Demeyer, J. Goedgebeur, P. Audenaert, M. Pickavet, and P. Demeester. Speeding up

Martins’ algorithm for multiple objective shortest path problems. 4OR, 11(4):323–348,
2013.

10 S. Erb, M. Kobitzsch, and P. Sanders. Parallel bi-objective shortest paths using weight-
balanced B-trees with bulk updates. In SEA, pages 111–122, 2014.

11 L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent shortest
paths. Algorithmica, 68(4):1075–1097, 2014.

12 S. Funke and S. Storandt. Polynomial-time construction of contraction hierarchies for
multi-criteria objectives. In ALENEX, pages 41–54, 2013.

13 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

14 R. Geisberger, M. Kobitzsch, and P. Sanders. Route planning with flexible objective func-
tions. In ALENEX, pages 124–137, 2010.

15 A. V. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph
theory. In SODA, pages 156–165, 2005.

16 A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from external
memory. In ALENEX, pages 26–40, 2005.

17 T. Gräbener, A. Berro, and Y. Duthen. Time dependent multiobjective best path for
multimodal urban routing. Electronic Notes in Discrete Mathematics, 36, 2010.

ATMOS’15

http://www.ecompass-project.eu/

94 Bi-directional Search in Time-dependent Bi-criteria Road Networks

18 H. W. Hamacher, S. Ruzika, and S. A. Tjandra. Algorithms for time-dependent bicriteria
shortest path problems. Discrete Optimization, 3(3):238–254, 2006.

19 P. Hansen. Bicriterion path problems. In Multiple Criteria Decision Making Theory and
Application, pages 109–127. Springer Berlin Heidelberg, 1980.

20 J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths: A new
algorithm and its implementation. ACM Transactions on Algorithms, 3(4), 2007.

21 S. C. Kontogiannis and C. D. Zaroliagis. Distance oracles for time-dependent networks. In
ICALP 2014, pages 713–725, 2014.

22 P. Kouvelis and G. Yu. Robust discrete optimization and its applications, volume 14.
Springer Science & Business Media, 2013.

23 E. Q. V. Martins. On a multicriteria shortest path problem. European Journal of Opera-
tional Research, 16(2):236–245, 1984.

24 G. Nannicini, D. Delling, D. Schultes, and L. Liberti. Bidirectional A* search on time-
dependent road networks. Networks, 59(2):240–251, 2012.

25 G. Yu and J. Yang. On the robust shortest path problem. Computers & OR, 25(6):457–468,
1998.

A Computing the Pareto Front

We provide as reference the proof of correctness for the time-dependent Martins’ algorithm.
The analysis of its run-time follows trivially from the one by Hansen [19].

I Theorem 6. Let G = (V,E) be a graph with edge weights w : E × T → N2 as in eq. (2).
If wi : E × T → N satisfies the FIFO property for every i ∈ {1, 2}, Listing 1 computes the
Pareto front F .

Proof. The computed front πt is not correct if there is a path in F that is not in πt, there is
a path in πt that is not in F , or both. We consider only the first case, since the remaining
two follow from the fact that if πt contains at least the paths in F then all other paths are
dominated by those.

Suppose towards contradiction that there exists P ∈ F such that P /∈ πt. Consider the
prefix Psv of P from s to the first vertex v such that Psv /∈ πv, and the suffix Pvt of P from
v to t. We can express the weight of P as

w(P, τ) = w(Psv, τ) +
(
w1(Pvt, τ + w1(Psv, τ))
w2(Pvt, τ + w2(Psv, τ))

)
.

Since Psv /∈ πv, there exists another path P ′sv dominating it, and we can obtain an s-t path
P ′ (not necessarily simple) by concatenating P ′sv and Pvt. The weight of P ′ can be written
as

w(P ′, τ) = w(P ′sv, τ) +
(
w1(Pvt, τ + w1(P ′sv, τ))
w2(Pvt, τ + w2(P ′sv, τ))

)
.

Since P ′sv dominates Psv, we know that, for every i ∈ {1, 2}, it holds that

wi(P ′sv, τ) ≤ wi(Psv, τ).

Since both w1 and w2 satisfy the FIFO property, we get that w(P ′, τ) dominates w(P, τ).
This contradicts the assumption that P ∈ F . J

I Corollary 7. The run-time of Listing 1 is O(nmW · log(nW)), where

W = min
i∈{1,2}

{
max

e∈E,τ∈T
wi(e, τ)

}
.

	Introduction
	Quickest Paths and Min-max Optimization
	Relation to Bi-criteria Quickest Paths
	Related Work
	Bi-directional Time-dependent Martins' Algorithm
	Computational Results
	Input Road Network
	Results
	Results for 3 Instances

	Single Backward Search
	Conclusions
	Computing the Pareto Front

