Regional Search for the Resource Constrained

Assignment Problem

Ralf Borndorfer and Markus Reuther
Zuse Institute Berlin

Takustrasse 7, 14195 Berlin, Germany

(surname)@zib.de

—— Abstract

The resource constrained assignment problem (RCAP) is to find a minimal cost partition of the
nodes of a directed graph into cycles such that a resource constraint is fulfilled. The RCAP
has its roots in rolling stock rotation optimization where a railway timetable has to be covered
by rotations, i.e., cycles. In that context, the resource constraint corresponds to maintenance
constraints for rail vehicles. Moreover, the RCAP generalizes variants of the vehicle routing
problem (VRP). The paper contributes an exact branch and bound algorithm for the RCAP and,
primarily, a straightforward algorithmic concept that we call regional search (RS). As a symbiosis
of a local and a global search algorithm, the result of an RS is a local optimum for a combinatorial
optimization problem. In addition, the local optimum must be globally optimal as well if an
instance of a problem relaxation is computed. In order to present the idea for a standardized
setup we introduce an RS for binary programs. But the proper contribution of the paper is
an RS that turns the Hungarian method into a powerful heuristic for the resource constrained
assignment problem by utilizing the exact branch and bound. We present computational results
for RCAP instances from an industrial cooperation with Deutsche Bahn Fernverkehr AG as well
as for VRP instances from the literature. The results show that our RS provides a solution
quality of 1.4 % average gap w.r.t. the best known solutions of a large test set. In addition, our
branch and bound algorithm can solve many RCAP instances to proven optimality, e.g., almost
all asymmetric traveling salesman and capacitated vehicle routing problems that we consider.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases assignment problem, local search, branch and bound, rolling stock rota-
tion problem, vehicle routing problem

Digital Object Identifier 10.4230/0ASIcs. ATMOS.2015.111

1 Introduction

Let D = (V, A) be a directed graph with dedicated events taking place at every arc. We
distinguish replenishment events from other events and call arcs with replenishment events
replenishment arcs. Let r : A — Q4 x Q4 be a resource function that assigns a pair of
nonnegative rational numbers (r},r2) to every arc denoting a resource consumption before
and after the event, respectively, and define 7, :=rl +72. A resource path is an elementary
path in D of the form P = (ag, a1, ..., Gm, am+1) € A such that ag and a,,41 are replenishment
arcs and aq, ..., a,, are not replenishment arcs. Let P(A) be the set of all resource paths
and B € Q4 be a resource bound. We call a resource path P = (ag, a1, ..., @m, am+1) € P(A)

feasible if the following resource constraint is fulfilled (otherwise P is infeasible):

2 m 1
e T Zi:l Ta; +7a,,, <B. (1)

Finally, let ¢ : A — Q be some objective function associated with the arcs of D.

© Ralf Borndorfer and Markus Reuther;

37 licensed under Creative Commons License CC-BY
15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’15).
Editors: Giuseppe F. Italiano and Marie Schmidt; pp. 111-129

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2015.111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

112

Regional Search for the Resource Constrained Assignment Problem

» Definition 1 (Resource Constrained Assignment Problem (RCAP)). Given a directed graph
D = (V, A), a resource function r, an objective function ¢, and a resource bound B. The
RCAP is to find a set of directed cycles Cy, ..., C, C A in D such that every node is contained
in exactly one cycle, every cycle contains at least one replenishment arc, all resource paths
in P(U_, C;) are feasible, and ¢ (|J;_, C;) is minimal.

Figure 1 illustrates the RCAP by showing a
set of nodes covered by three cycles. The dashed
arcs are replenishment arcs. A resource path ful-
filling constraint (1) is highlighted in red where
the two stop watches indicate replenishment
events. In our previous paper [16], we addition-
ally defined all cycles C C A with 7,7, =0
to be feasible. In order to streamline the present-
ation we assume that D does not contain such

cycles in this paper. We also assume that D does
not contain multiple arcs between two nodes.
We remark that the treatment of replenishment
events “in the middle of the arcs” could be re-
placed by a consideration of replenishment nodes. This would blow up the RCAP instances
that we are interested in. In addition, the use of replenishment nodes is no more possible if
multiple resource constraint are considered which we like to keep open.

The RCAP has its roots in the rolling stock rotation problem (RSRP) [17], i.e., the RCAP
is a specialization of the RSRP. In the RSRP the resource constraint models a maintenance
constraint for rail vehicles, e.g., refueling. To model time or distance consumptions directly

before or after replenishment events at the arc a € A one can use the pair (r},72). Moreover,

a’’ a
the RCAP generalizes variants of the vehicle routing problem (VRP), see Section 3.5. In this
way the RCAP provides access to different recent and classical problems.

The RCAP is a multifaceted combinatorial optimization problem in the sense that the
variability in computational effort needed to solve an instance to proven optimality is huge.
On the one hand, a small instance can be computational hard to solve, e.g., capacitated
vehicle routing problems. On the other hand, large problem instances in which the resource
constraint is less restrictive might be solved with little computational effort. We aim at
utilizing this characteristic for our algorithmic design. The idea is that the algorithm should
automatically allot less computation time to easy instances and more computation time to
hard ones. We call this behavior self-calibration. Note that this desirable property is not

Figure 1 Cycle partition.

evident for local search algorithms or meta-heuristics in general.

Our idea to implement this design is referred to as regional search (RS). It works as
follows. Let P be a combinatorial optimization problem and let P’ be a relaxation of P.
Consider a feasible solution S for P, interpret S as a solution S’ for P’ for the moment,
and consider a local search algorithm A’ that exactly solves P'. In order to turn A’ into
an algorithm A that searches for improvements of S we “lift” the neighborhoods that are
roamed by A’ for S” back to the original problem P. In other words, the relaxation induces
a neighborhood w.r.t. S. The lifted neighborhoods are called regions in order to highlight
that they are exact for P’, i.e., A is automatically exact if an instance of P’ is considered.
This algorithmic behavior is our characterization of an RS:

» Definition 2 (Regional search). Let P be a combinatorial optimization problem and let A
be a primal heuristic algorithm for P. Further, let P’ be a relaxation of P. The algorithm A
is a regional search if A is proven exact for any instance of P’.

R. Borndorfer and M. Reuther

In this way, the computational effort of A is related to the difference in tractability between
P and P/, i.e., A can be expected to be self-calibrating.
We proceed in Section 2 with an RS for binary programs by using the simplex method

in order to argue that our idea is general enough to be directly used in other applications.

Afterwards we present a specialized RS for the RCAP by using the Hungarian method. In

Section 3 we describe a global search, namely a branch and bound procedure, for the RCAP.

This algorithm is used as sub-routine in our RS as well as standalone exact method for the

RCAP. In the last section we present computations for both the regional and global search.

2 Regional Search

In order to present our idea for a standardized setting we provide an RS for binary linear
programs by using the simplex algorithm in this section. Afterwards, our proper RS for the
RCAP is presented. In that algorithm a constraint integer program (CIP) for the RCAP
(that we solve with a branch and bound procedure, see Section 3) and the Hungarian method
take over the roles of the binary program and the simplex algorithm, respectively. In this way,
we argue that the main algorithmic ingredients of our RS approach are at hand if one comes
up with an (insufficient, i.e., not fast enough) exact algorithm and a linear programming
relaxation for an optimization problem.

2.1 Regional search for binary programs by using the simplex algorithm

Given a rational matrix A and vectors b and ¢ of suitable dimensions, we consider a binary
program BP as

min{c’z | Az = b, x binary} with its linear relaxation min{c’z|Az=5,0<2 <1}

that we call LP. Our RS for BP assumes that a feasible starting solution x* is at hand, i.e.,
all values of z* are binary and Az* = b. We now interpret z* as a basic solution of LP and
try to improve z* by using the well known primal simplex algorithm. The primal simplex
algorithm iteratively improves a basic incumbent solution by searching through the simplex
netghborhood. The simplex neighborhood of a basic solution z* of LP is defined as the set of
all basic solutions of LP that share an edge with z* in the polytope associated with LP. We
denote T ~ x* if the basic solutions and z* of LP share such an edge.

We now perform an improvement step of the primal simplex algorithm and end up with
another basic solution # for LP with # ~ 2* and ¢'# < ¢T2* (assuming a non-degenerated
simplex operation). In general, Z will not be binary, i.e., feasible for BP. In order to improve
the chances to reach an improving binary vector we “lift” the simplex neighborhood as
follows. If & ~ 2* and ¢’'# < c¢''2* we solve

min{c’ x| Az = b, x binary, xj = 1V column indices j : :cj =z; =1} (BPREGION)

Program (BPrrgion) is to solve BP under the additional constraint that all variables that
agree to be one in both solutions of & ~ z* are fixed. Note that z* is always a feasible
solution to program (BPrggron) and Z is always a feasible solution to the linear relaxation
of program (BPrggion)- The motivation behind this setup is to gain a computational
compromise between the goals (1) improvement of the objective function value while (2)
preserving feasibility and (3) solving small sub-problems in order to be fast. Goal (1) is
promised by the simplex algorithm through ¢’'# < ¢’z* and goal (2) is meet by solving a
restricted version of the original problem BP in which the current incumbent solution is

113

ATMOS’15

114

Regional Search for the Resource Constrained Assignment Problem

always feasible. Goal (3) is achieved if the difference of successive basic solutions within the
simplex algorithm is small. In this case, a large number of variables that agree to be one
lead to a huge simplification of program (BPrrgion) compared to the original problem.

We suggest to solve program (BPrrgion) whenever Z ~ z* and cT'E < Tx*. Thus, we
investigate all solutions that simplex algorithm would investigate which shows that the above
algorithm is an RS for binary programs according to Definition 2. It will always exactly
solve binary programs for which the linear relaxation has an integral optimal solution. In
this way every global search algorithm, i.e., exact algorithm, for problems that have a linear
relaxation is an RS, but not every local search algorithm is regional. Note that the proposed
algorithm can also be see as an iterated variable neighborhood search algorithm, see [4] for a
recent overview in the context of mixed integer non-linear programming.

2.2 Regional search for the RCAP using the Hungarian method

Denoting by z, € {0,1} a variable that is equal to one if a € A belongs to a solution and
zero otherwise, and using the constraint notation of Achterberg [1, Example 3.2]), the RCAP
can be formulated as a CIP that serves as basis for our approach:

min Y 4 Caa

st DaestyTa =1, VoeV

a€d— (v) La = 17 You eV (RCAPCIP)

RESOURCE CONSTRAINT (z)

zq, €40,1}, VaeA where
RESOURCE CONSTRAINT(z) < 3P € P(supp(x)) : P is an infeasible path.

By deleting the RESOURCE CONSTRAINT from program (RCAPcip) we obtain the
assignment relazation (AP): For every node v € V there must be exactly on integral incoming
and outgoing arc variable which forces = € Q4! to define a cycle partition of the nodes of D.
The assignment relaxation is the linear programming relaxation that we use for our RS. Let
7t and " be two free dual variables for each node v € V. The assignment problem, i.e., the
assignment relaxation of the RCAP, is to solve the following dual linear programs:

(AP) min) _, caZa (AD) max Y _, 7w + > ey Ty
s.t. Za€5+(1l) e =1, YveV st. wh4al <ec., VYa=(u,v)€A
acs—(yLa =1, YoeV

. €eQ, WYwevVv
ze >0, VacA eQ, WweV

In each basic solution of (AP) the z-variables are all binary and thus the integrality constraints
for them can be relaxed if one solves program (AP) with a simplex method. We do not use a
simplex method for (AP) and (AD) since it needs much effort to be implemented efficiently,
in particular for our purposes. Instead we use a more specialized combinatorial algorithm,
namely a primal version of the Hungarian method that we briefly summarize in the following.
t — 7P be the reduced cost of the arc a = (u,v) € A. By the strong
duality theorem the x- and m-variables have optimal value if and only if they are feasible for
(AP) and (AD) and the reduced cost or the z-variable is zero for each arc:

Let dy :=¢c, — 7

Zo - dq =0, VaeA (2)

R. Borndorfer and M. Reuther

*—>0
*—>0
*———>0
*———o

Figure 2 Alternating cycle C = {a] = (u1,v2), a; = (us,v2), af = (us,vs), a; = (u4,vs), a3 =
(’M4,1)3), a?? = (u17U3)}'

The primal Hungarian method of Balinski and Gomory [2] can be summarized as follows.

Start with a feasible solution for (AP), i.e., a cycle partition in D and choose a configuration
of the m-variables that need not be feasible for (AD) but have to satisfy (2). In each iteration

of the primal Hungarian method either the cycle partition or the dual solution is improved.

Thereby (2) is always preserved and the process stops if all arcs have positive reduced
cost, i.e., the m-variables provide dual feasibility. The improvements found by the primal
Hungarian method have a dedicated structure. In fact, they form alternating cycles. An
alternating cycle alternates between (old) arcs that belong to the current incumbent cycle
partition and (new) arcs that do not. By replacing the old arcs with the new arcs a new cycle
partition appears. Figure 2 provides an example of an alternating cycle that deletes the arcs
a; and adds the arcs af for i = 1,2,3. We refer to our previous paper [16] for more details
about the primal Hungarian method in particular for the purpose of generating alternating
cycles to be used as improvement operations. Moreover, we use exactly the same procedures
to find improving alternating cycles in this paper as described in our previous paper [16].

Note that alternating cycles would also appear if we use the primal simplex algorithm
because it follows exactly the same duality arguments and the symmetric difference of two
vertices T and z* of the assignment polytope with ~ z* is exactly an alternating cycle,
see [3].

Let z* € {0,1}* be the current incumbent solution to program (RCAPcrp) that is
associated with the feasible cycle partition M C A. Further, let # € {0, 1} be that one cycle
partition that we obtain if we apply an alternating cycle C = {a],ay,...,a},a;} found
by the primal Hungarian (or simplex) method to M. Analogous to the considerations for
binary programs above it is very unlike that Z is feasible again since we did not spend any
attention to the resource constraint so far. To this end, we “lift” the direct application of
the alternating cycle C' to the cycle partition M to the solution of the following alternating
cycle region (RCAPRrEGION):

min), .4 Caa

s.t. Za€5+(v) Tq =1, YoeV
> acs-(v) Ta =1, VvoeV
(RCAPRrgcION)
RESOURCE CONSTRAINT(x)

Zq =1 VYae M\ {ay,...,a,},
z, €{0,1}, VaeA.

Solving this program increases the chances of finding an improved cycle partition under a
resource constraint. An evident interpretation of solving program (RCAPgrggion) is that
the primal Hungarian method suggest to apply the cycle C' in order to improve the value of
the objective function. But this is too naive. In order to compensate the resource constraint,

115

ATMOS’15

116

© 0T Ui WN

Regional Search for the Resource Constrained Assignment Problem

boolean isRegionallyOptimal(M) // M is a cycle partition
for(a*€{ac€Alda <0}) // pricing loop
C = findAlternatingCycle(a*); // see [16]
if(C#0)
! compute optimal solution Mgr of (RCAPgrgcion) for M and C;

if(e(M)>c(Mg)) { return false; }
}
}

return true;

}

Algorithm 1 Proof of regional optimality.

we only take the arcs that the cycle proposes to delete seriously. Note that this is exactly
what we describe for binary programs above, i.e., we fix all arc variables that agree to be one
before and after the application of the alternating cycle. Program (RCAPgrgcioNn) can be
easily turned into a plain RCAP by replacing all constant arc variables associated with arcs
of |J _ 0t (u a}. We solve program (RCAPrggion) by the branch and
b01L1Jnad (éitulg())ilj\‘fﬁg lﬁ'ré’saéh}ted (in)S\eitiin 3. ()

We are now ready to state Algorithm 1 that “proves regional optimality” for an instance
of the RCAP. Our overall RS iteratively calls Algorithm 1 and replaces M by Mg if an
improvement has been found until “regional optimality is proven”. Obviously, this method is
of type RS because it investigates at least all solutions, i.e., all solutions that can be reached
by improving alternating cycles, that the primal Hungarian method would consider.

It turns out that it is computationally too short-sighted to always search for an optimal
solution of (RCAPgrggIoN) because it rarely happens that the arising problem is almost as
hard as the original instance if the alternating cycle is large. We resolve this issue by setting
a limit of 10® branching nodes during depth-first-search [1] for model (RCAPRrggION)-

The following insight provides the connection to our previous paper [16] that presents a
local search algorithm for the RCAP.

» Lemma 3. The algorithm proposed in our previous paper [16] is of type regional search.

Proof. The main difference of the algorithm in [16] to the original version of the primal
Hungarian method is that alternating cycles are decomposed and recombined before they
are applied. Let C = {a],a;,...,a},a,} C A be the alternating cycle found. A flip is a
2-OPT move that is well-defined by an entering arc a;, see [16]. The flips imposed by C' can
be applied in any sequence. Consider the cycle partition that results from any n — 1 flips: It
is exactly the same assignment that is defined by directly applying C. This is true, because
after n — 1 flips the matching clearly contains n — 1 of the entering aj’ arcs and each flip
inserts a closing arc that is deleted by another (because C is an alternating cycle). Thus, the
matching must contain also the n-th of the aj arcs. This proofs the lemma, because one can
not lose any alternating cycle, i.e., any improvement proposed by the Hungarian method. <«

We close this section with the observation that our previous RS algorithm [16] is almost
equal to our present RS with the important difference that we now exactly solve pro-
gram (RCAPgrggron). This program is tackled heuristically in [16].

R. Borndorfer and M. Reuther

3 Branch and Bound for the RCAP

We present a branch and bound algorithm for the RCAP that is based on the constraint
integer program (RCAPcp) already presented in Section 2.

An alternative formulation for the RCAP in terms of a pure integer program (IP) can
be derived by replacing the RESOURCE CONSTRAINT in model (RCAP¢p) with the
infeasible path constraints

> _p¥a < [P| =1, Vinfeasible paths P € P(A). (3)

We do, however, not expect that this integer program will produce useful results. Indeed,
a vast number of papers — the most successful by now is [13] — consider much stronger
formulations for the exact solution of the CVRP and the TSP, see the excellent and recent
survey by Toth & Vigo [19]. In this paper we do not aim to generalize or adopt those
approaches to the RCAP, even if this is an interesting research area. Instead, we pursue
a much simpler approach that can solve lightly constrained easy problems fast, namely a
branch and bound algorithm that does not generate any primal or dual cutting planes. We
refer to [7, 19] for similar algorithms developed for the VRP.

This algorithm is based on formulation (RCAP¢rp) and the assignment relaxation RCAP’
for bounding. In each node, called sub-problem, of the branching tree the following steps are
performed:

solve the assignment relaxation of the current RCAP

eliminate arcs using the assignment reduction, see Section 3.2

eliminate arcs using the shortest path reduction, see Section 3.3

eliminate arcs using the bin-packing reduction, see Section 3.4

discard current branching node if

the optimal objective value of the node relaxation is not below the upper bound

the optimal solution of the the assignment relaxation is feasible

there are no further branching candidates, see Section 3.5.
In each reduction procedure we try to find detachable arcs of the current sub-problem that
fulfill the following criterion: Any solution to the current sub-problem containing a detachable
arc is definitely not better than the incumbent solution. If a reduction procedure detects an
arc a € A fulfilling this criterion, we detach the arc from the current sub-problem, i.e., we
delete the arc from the arc set A. Note that a detached arc remains detached in all child
nodes of the branching tree. In the following sections, we explain our branching scheme and
the three reduction procedures. We do not use a special notation to distinguish sub-problems
from the original RCAP. Instead, we consider each branching node as a new RCAP instance.

3.1 Branching Scheme

Our algorithm uses the assignment relaxation of the RCAP to solve the subproblems in
the branching tree. Thus, the solution of the current node relaxation is always integral.
In fact, it is composed of a set of cycles C1,...,C; C A. If all cycles contain at least one
replenishment arc and all resource paths of P(U?Zl C;) are feasible, we do not have to perform
further branching. Otherwise, we branch on arc variables, i.e., for each branching candidate
a = (u,v) € A we create two new sub-problems. The first arises from forcing x, = 1 and
in the other one the constraint x, = 0 is imposed. The latter case is handled by detaching
a € A from the current sub-problem, while the former is handled by detaching all arcs of
5+(u) \ {a}.

The following two situations lead to further branching on a certain sub-problem:

117

ATMOS’15

118

Regional Search for the Resource Constrained Assignment Problem

a cycle, called infeasible cycle, of {Cy,...,Cr} does not contain a replenishment arc

a path of P (Ule Cl-) is infeasible.
Let I ={I,...,I,} with I; C A for i = 1,...,m be the family of cycles and paths fulfilling
one of these two criteria. In general it is valid to branch on each arc a € A of the current
sub-problem, but it is natural to only branch on arcs a € Uzl I;.

The set [J;~, I; can be large and the concrete choice of the branching candidate can have
a huge effect on the computational performance [1]. Our expectations on a branching rule
are: (1) It should remove “infeasibilities” as early as possible; (2) It should increase the
lower bound as much as possible; (3) It should be computationally easy; and (4) It should be
unique (i.e., break ties) in order to avoid random decisions. Many rules have been studied
in the TSP, ATSP, and CVRP literature. In particular, the paper [20] provides a literature
review and the ATSP case. It suggests the following two criteria to qualify arc a € A for
branching:

1. Let P C A that one infeasible path or cycle with a € P. The criterion is PL(a) := |P|.
2. The criterion is the optimal objective function value of the node relaxation s.t. x, = 0.

The maximization of criterion 2 is known as strong branching in the literature [1]. In [20]
it is suggested to lexicographically (we also always combine criteria lexicographically here)
combine strong branching with minimizing criterion 1. The argumentation for this rule is
conclusive and matches expectations (1) to (3). But we observed the following issue w.r.t.
expectation (4). Let a’ € A be an arc contained in an infeasible path or cycle. Following [20]
we have to compute the strong branching bound SB(a'):

SB(a') :==min }_ ¢4\ (4} CaZa
(RCAPgp)
s.t. > zq =1 and > o =1Vv eV, z,€{0,1}Vae A
aedt (v)\{a'} a€d~ (v)\{a'}

Our observation is that the values SB(a’) do not distinguish particular arcs, i.e., many arcs
of the infeasible path or cycle give the same strong branching bound. This is comprehensible
because if we force z, = 0, it is unlikely that all other arcs of the corresponding path or
cycle remain. Whenever at least two arcs have the same strong branching bound the choice
is random and can be expected to be “wrong” in half of all cases.

Our idea to diversify the strong branching bound is to introduce an additional constraint
into (RCAPgp) in order to force that things change. The constraint reads:

Zj; z:aef1 o < V| -2 (4)

It forces us to change at least two arcs of the current cycle partition to end up with another
cycle partition. This kind of constraints is well-known in a MIP concept that is called local
branching [6] for a different application. Denoting the bound that is given by model (RCAPgg)
including inequality (4) as LB(a) for a € A, the following lemma holds.

» Lemma 4. LB((u,v)) can be computed exactly by a local search over all 2-OPT mowves
that insert one arc of 8% (u) into the optimal solution of the current node relazation.

Proof. Inequality (4) and equality =, = 0 constrain to 2-OPT moves. <

A natural suggestion is to consider an arc a € A maximizing LB(a) for branching.
We remark that LB does also not diversify completely (which is impossible, e.g., if ¢, =0
for all @ € A) but much better than SB. To break the remaining ties, we introduce another

R. Borndorfer and M. Reuther

criterion that depends on the branching history, see [4, Section 10.2] for an overview. Suppose
that we just computed the optimal solution of the assignment relaxation of a branching node
j € N and that the arc a € A appears in this solution, i.e., x, = 1. Let z* be the relaxation’s
optimal objective value. Then we store the triple (z*,j,a) in a set O and define the average
objective value AO(a) of the arc a € A as:

AO(G) = (Z Z>/|{(z,j,a/)60a'—a}|.

(2,j,a’)€O :a’=a

At this point we considered the following four criteria for choosing a branching candidate
a €U~ I;: PL(a), LB(a), SB(a), and AO(a). Each of these criteria can be minimized as
well as maximized. Also any lexicographic order (e.g., first select all arcs a € A minimizing
PL(a), of these maximize LB(a), etc.) can be chosen. This gives rise to 2% - 4! = 384
possibilities which we implemented all in order to prove the optimality of an already optimal
solution for the instances: br17 (ATSP), gri7 (TSP), and eil22 (CVRP). Most of the
384 rules are obviously not competitive. But twelve rules are not evidently dominated, see
Table 3. We declare the rule (max LB, max AO, min PL, max SB) as (our) clear winner by
considering that computing LB(a) is much faster (O(|V])) than computing SB(a) (O(|V]?)
with warm start and O(|V'|?) without).

3.2 Assignment Reduction

The assignment relaxation RCAP’ is derived by deleting the RESOURCE CONSTRAINT
from model (RCAPcip). It is a valid relaxation which we use for bounding within our branch
and bound algorithm. The assignment problems are solved with an O(|V|?) implementation
of the Hungarian method described in the paper [11] that celebrates its 60th birthday this
year. The Hungarian algorithm produces optimal dual variables m, and m, for each arc
a = (u,v) € A. Let z1,g be the optimal objective value of RCAP’ and zyp an already known
upper bound for the RCAP. Then an arc a € A can be detached if 215 + ¢, — 7, — 7, > 2UB,
a rule which is known under the name reduced cost presolving [1].

Let M = {a € A|z, = 1} be the solution of some assignment relaxation. It is easy to
see that arcs can be detached by imposing z, = 0 for an arc a € M and z, = 1 for an arc
a € A\ M if the corresponding sub-problems turn out to be infeasible or dominated by the
best known upper bound. However, solving all these sub-problems can be computationally
expensive. This computational burden can be mitigated by performing a local optimization
before solving the sub-problems. Namely, if we try to detach a = (u,v) € A from the current

sub-problem, we can locally optimize in O(|V]) over all 2-OPT moves defined by d+(v) \ {a}.

If the best objective value during this local optimization is below the best known upper
bound we do not have to solve the assignment problem that forces x, = 0 (this is can be
done similarly for a € A\ M).

3.3 Shortest-Path Reduction

In this section we aim at developing a pruning rule that eliminates an arc a € A if it can be

proven that a feasible path P C A with a € P does not exist in the current sub-problem.
To this end, we transform the directed graph D = (V, A) into another directed graph Dgp.

We introduce the node set Vgp := V U {s,t} of Dgp, i.e., we extend D by a source s and a
target t. For a = (u,v) € A we apply the following transformation:

{(u,t),(s,v)}, if a is a replenishment arc c?};t) =l c?spﬂ)) = Tg) ,
Asp(a) =

{(u,v)}, otherwise c?iv) =rl4+ rﬁ) :

119

ATMOS’15

120

Regional Search for the Resource Constrained Assignment Problem

The transformed graph is Dgp := (Vsp, Agp) := (V U{s,t},Ugca Asp (a)) with well defined
objective coefficients c5F for all a € Agp. Every feasible path must be elementary in a solution
to the RCAP and every elementary resource path of P(A) corresponds to an elementary
s-t-path P in Dgp by construction. Our elimination criterion for an arc a € A is as follows.
If we can prove that a shortest elementary s-t-path P in Dgp such that a € P has cost
¢(P) > B we are allowed to detach a. This elimination criterion is NP-hard to compute, as
stated in Lemma 5:

» Lemma 5 (Elementary s-v-t-paths in directed graphs are NP-hard to compute). Given a
directed graph G = (V, A) and three different nodes s,v,t € V, it is NP-complete to decide if
G contains an elementary path that starts at s, traverses v, and ends at t.

Proof. Given a directed graph D = (V, A) with four different nodes vy, uy,v2,us € V the
disjoint path problem (DPP) is to find a vi-uj-path and a ve-us-path in D such that the
two paths are vertex-disjoint. The DPP is NP-hard, see [8] (the DPP for undirected graphs
is polynomial, see [18]). An instance of the DPP can be instantiated as an elementary
s-v-t-path problem by setting s = v1, t = us and by introducing arcs (u,v) and (v,v2). <«

Fortunately, we can relax the criterion by computing non-elementary paths in Dgp and also
obtain a valid elimination rule. It can be checked by first computing the shortest-paths from
s to all nodes of V, followed by computing the shortest-paths from V to ¢, and finished by
iterating over all arcs of A and to evaluate the elimination criterion. This procedure has
complexity O(|V|?).

3.4 Bin-Packing Reduction

Let J be a set of items with associated weights w; € Q4 for j € J and a bin capacity
B € Q4. The standard bin-packing problem is to find a block partition Si,...,Sg of J
with Zjesk w; < B for all blocks Si,..., S, such that k is minimal. In a solution of the
RCAP the nodes are also assigned to capacitated bins, namely, to resource paths. This gives
motivation to derive a bin-packing relaxation of the RCAP that can be used for pruning in
the branch and bound tree. To this purpose, we interpret the nodes of our graph as items
and the feasible paths as bins. The pruning rule contributes if it can be proven that more
bins are needed than available. A valid lower bound on the minimal resource consumption
that the node (or item) u € V will contribute to a feasible path can be computed by solving
the following assignment problem:

w,, = min Za€5+(u) ToZa

AP
st YaesryTa=1land 3 5t =1VvEV, 2,>0VaecA (RCAP1TEMS)

These quantities are used as node weights. Moreover an obviously valid upper bound for
the maximal number of feasible paths (or bins) can be computed by solving the following
model (RCAPBINs):

2UB = Max), iTq

s.t. Za65+(v) T, = 1 and Zae(;_(v) ro=1VveV, z,>0 VacA (RCAPpIxs)

It maximizes the number of replenishment arcs A C A which is equivalent to maximizing the
number of resource paths. The following lemma summarizes the bin-packing pruning rule.

» Lemma 6. Let I be an instance of the RCAP. Let zpp be any valid lower bound for
the optimal solution of the bin-packing problem with item set V , weights w, derived from

R. Borndorfer and M. Reuther

model (RCAPrrMs) for alluw € V and a bin capacity of B. Further let zyp be the optimal
objective value of model (RCAPgINg). If 2L > zup it is proven that I is infeasible.

Proof. Let zp5 > 2zyp and let I be a feasible instance. There must be a cycle partition
C4,...,Cy containing feasible paths. The value zyp is associated with an optimal solution
of (RCAPgins), therefore zyp > \P(Ule C%)|. Each path in]P’(Uf:1 C) provides a feasible
assignment of items to bins, i.e., an assignment of nodes to feasible paths, because the
weight of each item v € V(P) is underestimated in a worst case by the optimal objective
value w, of model (RCAPTrMms), thus zpp < |IP’(Uf=1 Ck)|. The contradiction is given by
2p < [PUiL, Ol and 205 > [P(ULZ, Cr)l. 4

Since the bin-packing problem is NP-hard, we replace zpp by the lower bounds L2 and L3
from [12]. These bounds can be computed in O(|V]) for L2 and in O(|V|?) for L3 and have
a worst case quality of %zBp and %ZBP where zgp denotes the optimal objective value of the
bin-packing problem.

3.5 Symmetry Reduction

In this section we collect some algorithmic insights found by solving symmetric TSP and
CVRP instances with our algorithm. This type of problems can be characterized as having

the property that each resource path is a cycle, and that the cost function is symmetric.

Therefore, every cycle can be reversed, such that the cost and the resource consumption of
the tour and the reversed tour are equal. This can be problematic in a branch and bound
algorithm that has to search through many essentially identical alternatives.

The capacitated vehicle routing problem (CVRP) [5] is to find a minimal set of cycles,
called tours, in a complete undirected graph G = (V U {d}, E) with node demands r, € Q4
for all v € V such that each node of V' is covered exactly once by a cycle, every cycle covers
the depot node d exactly once,) -7y < B holds for every cycle C' of the solution,
and the solution minimizes some linear objective function ¢ : F +— Q. We assume that the
minimal number of tours ¢ is known (as most of the articles of the CVRP literature do). An
instance of the CVRP can be modeled as a RCAP by introducing ¢ copies of d, using the
resource function values of the outgoing arcs of a node to model the demands, and declaring
the incoming arcs of d as replenishment arcs. For ¢ = 1, TSP instances can be modeled
directly as RCAPs. Our first observation is:

» Lemma 7. Consider a RCAP instance over the directed graph D = (V, A) such that each
resource path is a cycle and let f : V — {1,...,|V|} be some numbering of the nodes. We
only have to consider arcs a = (u,v) € A with f(u) < f(v) as branching candidates.

Proof. Consider the set of cycles C1, ...,y of an infeasible solution of the current node
relaxation. Then, an infeasible path P € P(|J;_, C;) exists. Since P is a cycle there is at least
one arc a = (u,v) € P with f(u) < f(v) which can be used as a branching candidate. <

Note that, although this attractive rule was originally developed to break symmetries, it can
also be used in an ATSP context. However, we could not find an effective way to utilize it in
our implementation. The concrete reason is unclear to us. We can only speculate that merely
using arcs a = (u,v) with f(u) < f(v) as branching candidates destroys the performance
of our branch and bound algorithm because in approximately half of the cases the one arc
that increases the lower bound at most is not chosen. Nevertheless, we were able to verify by
Lemma 7 that our implementation does not suffer from symmetric cost matrices.

121

ATMOS’15

122

Regional Search for the Resource Constrained Assignment Problem

Another symmetry issue refers to the depot copies in the CVRP case. We assume that
D does not contain loops and arcs connecting depot nodes. Then, each cycle partition of
D is symmetric to t! cycle partitions that arise from interchanging the depot nodes. This
problem can be easily resolved by excluding all arcs incident to a depot node as branching
candidates. If all other arcs, i.e., all arcs that are not incident to the depot, are fixed to one
or zero we always obtain single-customer tours for which each z, = 0 leads to an infeasible
RCAP instance.

4 Computational Results

All our computations were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20 GHz, 12 MB cache, and 128 GB of RAM by using a single thread under the operating
system Ubuntu 14.04. All implementations are written in the C++ programming language
and compiled by the compiler g++ 4.8.4 released by the Free Software Foundation.

4.1 RCAP instances from the railway application

The interpretation of the RCAP in rolling stock rotation optimization is to cover a given set
of timetabled passenger trips by a set of cycles, called rolling stock rotations. The resource
constraint models a limit on the driven distance between two consecutive maintenance
services. The main objective is to minimize the number of vehicles and the total distance of
deadhead trips (needed to overcome different arrival and departure locations between two
trips). We tested our regional and global search algorithms for 15 RCAP instances that are
specializations of the rolling stock rotation problem (RSRP) [17]. The RS is called once in
the root node of our branch and bound tree. For this application, it is advantageous to use
the RS of our previous paper [16]. It is also better to turn off the bin-packing reduction in
the railway application. By using the RS strictly as presented in this paper we get similar
results for these 15 instances w.r.t. solution quality and computation time for less constrained
instances (e.g., all with 8000 km and 6000 km and all with 97 nodes). But the computation
times for the large and hard constrained instances (e.g., RCAP_02, see below) increase w.r.t.
to our previous regional search algorithm [16].

Table 1 reports our results for the 15 instances that arise from RSRPs that are associated
with three timetables (indicated by the number of nodes in column three) for different upper
bounds of a dedicated maintenance constraint denoted in column two. The root gap in
column four is defined as @:*07:5) x 100 (all gaps in this paper are computed in this way),
i.e., the worst case optimality gap in percent, where ¢* > 0 is the objective value of the
regionally optimal solution and ¢ the value of the lower bound obtained in the root node of
the branching tree. Columns five, six, and seven contain the number of branch and bound
nodes, the computation time, and the solution status on termination of the branch and

bound algorithm.

In the industrial application, the instances associated with a maintenance constraint of
8000 km are the ones of interest that could all be solved to proven optimality fast. Also
tighter constrained instances are solved with very high solution quality. The most difficult
instances RCAP_02, RCAP_03, and RCAP_12 display worst case optimality gaps. Nevertheless,
we claim that they are also completely “resolved” from an applied point of view. In fact, the
very large lower bound proves practical inefficiency of the solution beyond doubt.

R. Borndorfer and M. Reuther

Table 1 Results for RCAP instances from the railway application.

instance B [km] |V| rootgap nodes hh:mm:ss proved
RCAP_01 1000 617 - 1 00:00:00 infeasibility
RCAP_02 2000 617 25.88 15105 15:50:56 9.81 % gap
RCAP_03 4000 617 3.95 51483 15:45:57 0.21 % gap
RCAP_04 6000 617 0.19 143 03:18:07 optimality
RCAP_05 8000 617 0.13 43 00:07:37 optimality
RCAP_06 1000 97 - 1 00:00:00 infeasibility
RCAP_07 2000 97 12.71 41 00:00:10 optimality
RCAP_08 4000 97 0.00 1 00:00:02 optimality
RCAP_09 6000 97 0.00 1 00:00:02 optimality
RCAP_10 8000 97 0.00 1 00:00:02 optimality
RCAP_11 1000 310 - 1 00:00:00 infeasibility
RCAP_12 2000 310 38.16 944551 16:07:46 16.71 % gap
RCAP_13 4000 310 16.70 119159 09:17:54 optimality
RCAP_14 6000 310 7.78 2053 00:08:33 optimality
RCAP_15 8000 310 7.78 87 00:21:40 optimality

Table 2 Summary of regional search for VRP instances.

type number of instances arithmethic mean shifted geometric mean [1] (shift 1)
ATSP 19 1.99 (1.70) 151 (L.21)
CVRP 106 0.89 (5.09) 0.63 (3.81)

ACVRP 8 1.84 1.34
TSP 65 222 (2.60) 171 (1.97)
all 198 1.47 (3.91) 1.04 (2.78)

4.2 TSP, ATSP, CVRP, and ACVRP instances from the literature

We also made experiments for a large number of instances taken from the literature [14, 15]
for which we use the regional search algorithm and the branch and bound algorithm strictly
as presented in this paper. We present results for all ATSP instances from [15] and for the
TSP instances with less than 500 nodes. From [14] we consider all CVRP and ACVRP (the
ACVRP instances were not considered in [16]) instances from the test sets A, B, E, F, G, M,
P, and V except for six instances for which we could not verify the objective values of the
solutions provided in the library (otherwise uncomparable results would appear).

Table 2 provides mean values for the column “bk gap” (i.e., the deviation in percent to
the best known objective value) of Table 4 in the appendix. The same summary is made in
our previous paper [16] and we provide the corresponding values in braces. In comparison
to [16], the exact search over the regions increases solution quality. In comparison to other
more problem specific heuristics (especially for the symmetric TSP, see [10]) our regional
search is almost competitive w.r.t. solution quality. It is definitely competitive in solving
asymmetric instances to proven optimality, as reported in the last three columns of Table 4:
18 of 19 ATSP instances from [15] and all ACVRP instances considered in [7] are solved
to proven optimality. These results give evidence that our algorithms are powerful tools
for a wide variety of resource constrained assignment problems ranging from recent railway
applications via VRPs to classical TSPs and ATSPs.

123

ATMOS’15

124

Regional Search for the Resource Constrained Assignment Problem

—— References

1

10

11

12

13

14
15

16

17

18

19

20

Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitit
Berlin, 2009.

M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Science, 10(3):578-593, 1964.

M. L. Balinski and Andrew Russakoff. On the assignment polytope. SIAM Review, 16(4):pp.
516-525, 1974.

Timo Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, Technische
Universitat Berlin, 2014.

G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568-581, 1964.

Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98(1-
3):23-47, 2003.

Matteo Fischetti, Paolo Toth, and Daniele Vigo. A Branch-and-Bound Algorithm for
the Capacitated Vehicle Routing Problem on Directed Graphs. Operations Research,
42(5):846-859, 1994.

Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111-121, 1980.

Chris Groér, Bruce Golden, and Edward Wasil. A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2(2):79-101, 2010.
Keld Helsgaun. General k-opt submoves for the Lin—Kernighan TSP heuristic. Mathemat-
ical Programming Computation, 1(2-3):119-163, 2009.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83-97, 1955.

Silvano Martello and Paolo Toth. Lower bounds and reduction procedures for the bin
packing problem. Discrete Applied Mathematics, 28(1):59-70, 1990.

Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved Branch-Cut-
and-Price for Capacitated Vehicle Routing. In Jon Lee and Jens Vygen, editors, Integer
Programming and Combinatorial Optimization, volume 8494 of Lecture Notes in Computer
Science, page 393-403. Springer International Publishing, 2014.

T. Ralphs. Branch cut and price resource web (http://www.branchandcut.org), June 2014.

G. Reinelt. TSPLIB - A T.S.P. Library. Technical Report 250, Universitit Augsburg,
Institut fir Mathematik, Augsburg, 1990.

Markus Reuther. Local Search for the Resource Constrained Assignment Problem. In
14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems, volume 42 of OASIcs, pages 62-78, Dagstuhl, Germany, 2014. Schloss Dagstuhl—-
Leibniz-Zentrum fuer Informatik.

Markus Reuther, Ralf Borndorfer, Thomas Schlechte, and Steffen Weider. Integrated optim-
ization of rolling stock rotations for intercity railways. In Proceedings of RailCopenhagen,
Copenhagen, Denmark, May 2013.

Yossi Shiloach. The two paths problem is polynomial. Technical report, Stanford University,
Stanford, CA, USA, 1978.

P. Toth and D. Vigo. Vehicle Routing. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2014.

Marcel Turkensteen, Diptesh Ghosh, Boris Goldengorin, and Gerard Sierksma. Tolerance-
based Branch and Bound algorithms for the ATSP. EJOR, 189(3):775-788, 2008.

R. Borndorfer and M. Reuther

A Appendix: Tables

Table 3 Computational evaluation of branching rules: The notation defines the lexicographic
order of the criteria by that arcs are selected as branching candidates. The last column denotes the
number of branching nodes needed to proof optimality for an already optimal incumbent solution.

instance branching rule nodes
bri7 max SB min PLL max AO max LB | 76425
eil22 max SB min PL max AO maxLB | 65769
gri7 max SB min PL, max AO max LB 765
bri7 max SB min PL max LB max AO | 78579
eil22 max SB min PL. max LB max AO | 59833
gri7 max SB min PL, max LB max AO 785
bri7 max SB max AO min PL maxLB | 52415
eil22 max SB max AO min PL maxLB | 61155
gri7 max SB max AO min PL max LB 781
bri7 max SB max AO max LB min PL | 44581
eil22 max SB max AO max LB min PL | 61247
gri7 max SB max AO max LB min PL 781
bri7 max SB max LB min PL. max AO | 35959
eil22 max SB max LB min PL max AO | 57941
gri7 max SB max LB min PL max AO 795
bri7 max SB max LB max AO min PL | 32159
eil22 max SB max LB max AO min PL | 57853
gri7 max SB max LB max AO min PL 795
bri7 max LB max SB min PL. max AO | 44233
eil22 max LB max SB min PL max AO | 40961
gri7 max LB max SB min PL max AO 485
bri7 max LB max SB max AO min PL | 30103
eil22 max LB max SB max AO min PL | 41193
gri7 max LB max SB max AO min PL 485
bri7 max LB min PL max SB max AO | 44505
eil22 max LB min PL max SB max AO | 41199
gri7 max LB min PL max SB max AO 493
bri7 max LB min PL max AO maxSB | 45355
eil22 max LB min PL max AO maxSB | 42747
gri7 max LB min PL max AO max SB 535
bri7 max LB max AO max SB min PL | 26821
eil22 max LB max AO max SB min PL | 43383
gri7 max LB max AO max SB min PL 531
bri7 max LB max AO min PL maxSB | 26847
eil22 max LB max AO min PL maxSB | 43391
gri7 max LB max AO min PL max SB 531

125

ATMOS’15

126

Regional Search for the Resource Constrained Assignment Problem

Table 4 Regional and global search for VRP instances. The third column gives the number
of nodes of the considered RCAP instance; the fourth column is the deviation in percentage of
the initial solution for our regional search (computed with a poor greedy heuristic) w.r.t. the best
known objective value [9] (column five). The columns “bk gap” and “lb gap” give the deviation
in percent of the regionally optimal objective value (column “reg. sec.” denotes its computation
seconds) w.r.t. column “best” and w.r.t. the lower bound obtained in the root node of the branching
tree, respectively. The last two columns give the number of branching nodes and the computation

time if our branch and bound approach was able to solve all remaining sub-problems.

(For M-n200-k17 (G-n262-k25) we computed a solution with objective value 1344 (5856). These
values are below the best known values provided in [9] and excluded in Table 2.)

instance type [V] initial best| Ib gap bk gap reg. sec. nodes dd:hh:mm:ss
gap
A034-02f ACVRP 35 48091 1406] 14.15 0.00 7.4 18093 00:00:00:18
A036-03f ACVRP 38 46.43 1644| 12.78 4.08 5.4 37037 00:00:00:38
A039-03f ACVRP 41 55.16 1654 9.92 4.00 10.9 11043 00:00:00:25
A045-03f ACVRP 47 58.19 1740 6.72 0.11 5.9 2025 00:00:00:10
A048-03f ACVRP 50 63.05 1891 8.39 2.12 4.4 11865 00:00:00:19
A056-03f ACVRP 58 65.61 1739] 13.64 2.41 15.1| 1192799 00:00:30:17
A065-03f ACVRP 67 69.61 1974 7.45 0.00 32.7 83185 00:00:02:23
A071-03f ACVRP 73 71.24 2054| 10.11 2.00 10.1| 121205 00:00:05:27
bri7 ATSP 17 76.65 39| 100.00 0.00 2.6| 152825 00:00:00:23
£t53 ATSP 53 50.52 6905| 16.97 3.33 23.1| 441917 00:00:15:39
ft70 ATSP 70 31.04 38673 2.09 0.29 17.2| 1462829 00:00:58:00
ftv170 ATSP 171 61.45 2755 6.87 2.48 37.2| 6683339 01:03:08:19
ftv33 ATSP 34 42.56 1286, 13.63 6.27 5.3 157 00:00:00:05
ftv35 ATSP 36 40.44 1473 7.32 1.14 4.0 1353 00:00:00:04
ftv38 ATSP 39 38.90 1530/ 7.05 1.10 4.5 5407 00:00:00:12
ftvdd ATSP 45 39.77 1613| 8.43 2.89 4.7 2323 00:00:00:09
ftv47 ATSP 48 58.59 1776| 10.22 3.48 4.6 26341 00:00:01:09
ftvb5 ATSP 56 59.54 1608/ 15.09 4.85 4.5] 209665 00:00:08:42
ftv64d ATSP 65 61.55 1839 10.08 3.92 12.3 46923 00:00:03:02
ftv70 ATSP 71 59.84 1950, 11.35 2.11 5.9] 452675 00:00:16:56
krol24p ATSP 100 8&2.71 36230 6.28 0.07 166.6{14253731 01:23:08:01
p43 ATSP 43 8.7T7 5620/ 97.37 0.05 6.5
rbg323 ATSP 323 79.37 1326 0.90 0.90 112.0 739 00:00:08:02
rbg358 ATSP 358 &3.58 1163| 0.34 0.34 113.2 663 00:00:02:46
rbgd03 ATSP 403 69.02 2465| 0.88 0.88 94.6 177 00:00:06:39
rbg44d3 ATSP 443 68.80 2720/ 0.98 0.98 121.3 43 00:00:06:32
ry48p ATSP 48 73.42 14422 15.64 2.80 10.2| 150917 00:00:05:24
A-n32-k5 CVRP 36 52.94 784| 31.63 0.00 22.0
A-n33-k5 CVRP 37 49.70 661| 38.07 2.07 62.1
A-n33-k6 CVRP 38 42.92 742| 36.74 0.13 84.4
A-n34-k5 CVRP 38 52.73 778 35.99 1.39 67.5
A-n36-k5 CVRP 40 50.00 799 38.17 0.99 68.3
A-n37-k5 CVRP 41 56.61 669| 26.99 1.33 22.7
A-n37-k6 CVRP 42 42.03 949| 45.31 0.00 321.0
A-n38-k5 CVRP 42 54.74 730| 43.72 0.27 69.3
A-n39-k5 CVRP 43 59.86 822| 37.08 0.72 206.6
A-n39-k6 CVRP 44 55.06 831| 38.42 0.24 112.0
A-n44-k6 CVRP 49 56.03 937| 31.10 0.21 75.2
A-n45-k6 CVRP 50 55.00 944| 37.18 0.00 118.7
A-n45-k7 CVRP 51 51.89 1146 40.40 0.43 1025.8
A-nd6-k7 CVRP 52 58.68 914| 37.31 0.00 187.9
A-n48-k7 CVRP 54 52.35 1073 39.09 2.45 549.6
A-n53-k7 CVRP 59 59.26 1010{ 39.45 1.37 677.7
A-n54-k7 CVRP 60 54.68 1167 51.99 3.07 1700.3
A-n55-k9 CVRP 63 54.78 1073 40.04 1.01 491.2
A-n60-k9 CVRP 68 54.23 1354| 54.60 1.17 4232.7
A-n61-k9 CVRP 69 55.98 1034| 41.66 0.29 1080.4
A-n62-k8 CVRP 69 59.67 1288 48.94 2.13 3293.0
A-n63-k10 CVRP 72 54.07 1314] 49.89 0.38 3884.1
A-n63-k9 CVRP 71 54.22 1616| 48.84 1.10 4342.6

Continued on next page

R. Borndorfer and M. Reuther

Table 4 — continued from previous page

instance type [V] initial best| Ib gap bk gap reg. sec. nodes dd:hh:mm:ss
gap
A-n64-k9 CVRP 72 57.66 1401 41.51 1.27 3110.8
A-n65-k9 CVRP 73 59.86 1174 37.05 0.00 1275.8
A-n69-k9 CVRP 77T 62.16 1159 37.10 0.69 14974
A-n80-k10 CVRP 89 58.80 1763| 41.97 0.96 6728.1
att-n48-k4 CVRP 51 63.86 40002| 26.12 0.52 83.3
bayg-n29-k4 CVRP 32 55.70 2050 17.71 0.00 12.2|34154469 00:06:08:31
bays-n29-k5 CVRP 33 46.72 2963 25.89 0.00 29.2
B-n31-k5 CVRP 35 29.56 672| 30.06 0.00 41.0
B-n34-k5 CVRP 38 44.35 788| 32.83 0.13 76.2
B-n35-k5 CVRP 39 53.30 955 37.28 0.00 130.4
B-n38-k6 CVRP 43 57.34 805| 43.85 0.00 174.0
B-n39-k5 CVRP 43 63.20 549| 52.82 0.00 61.3
B-n41-k6 CVRP 46 54.90 829| 61.88 0.00 176.5
B-n43-k6 CVRP 48 58.38 742| 52.70 0.00 425.0
B-n44-k7 CVRP 50 50.81 909| 61.72 0.00 336.1
B-n45-k5 CVRP 49 53.06 751| 45.94 0.00 184.2
B-n45-k6 CVRP 50 56.23 678 43.11 0.59 349.7
B-n50-k7 CVRP 56 67.11 741| 34.82 0.00 314.5
B-n50-k8 CVRP 57 50.13 1312 56.93 1.20 2457.7
B-n51-k7 CVRP 57 53.78 1032| 36.88 0.10 566.7
B-n52-k7 CVRP 58 66.00 747 61.50 0.13 846.0
B-n56-k7 CVRP 62 66.41 707 62.94 0.00 673.5
B-n57-k7 CVRP 63 29.65 1153| 66.67 2.45 1912.7
B-n57-k9 CVRP 65 43.09 1598 34.31 0.68 1695.2
B-n63-k10 CVRP 72 60.39 1496| 58.82 2.67 3284.2
B-n64-k9 CVRP 72 66.83 861| 46.58 0.23 2814.0
B-n66-k9 CVRP 74 52.97 1316/ 58.12 0.15 3445.1
B-n67-k10 CVRP 76 65.36 1032| 43.33 0.19 3108.3
B-n68-k9 CVRP 76 60.09 1272 56.44 0.16 2461.7
B-n78-k10 CVRP 87 62.37 1221| 61.02 0.00 8131.7
dantzig-n42-k4 CVRP 45 34.67 1142| 49.61 1.97 76.3
E-n101-k14 CVRP 114 64.54 1071 29.07 2.10 8541.6
E-n101-k8 CVRP 108 65.83 817 20.61 0.97 20779
E-n13-k4 CVRP 16 38.10 247 10.93 0.00 2.7 143 00:00:00:04
E-n22-k4 CVRP 25 38.73 375 30.13 0.00 4.5 74055 00:00:00:45
E-n23-k3 CVRP 25 50.48 569| 21.44 0.00 4.9 9321 00:00:00:09
E-n30-k3 CVRP 32 52.28 534/ 40.97 0.56 70.3
E-n31-k7 CVRP 37 66.93 379 19.26 0.00 11.3| 155737 00:00:02:24
E-n33-k4 CVRP 36 34.61 835 28.50 0.00 119.8
E-n51-k5 CVRP 55 62.00 521| 21.75 3.16 55.0
E-n76-k10 CVRP 85 63.16 830| 29.86 0.48 1899.9
E-n76-k14 CVRP 89 47.43 1021 35.36 1.35 3552.1
E-n76-k7 CVRP 82 69.68 682| 23.75 2.43 201.5
E-n76-k8 CVRP 83 61.98 735 26.28 0.94 290.0
F-n135-k7 CVRP 141 71.80 1162| 52.65 0.51 6891.6
F-n45-k4 CVRP 48 65.61 724 42.99 0.55 32.9
F-n72-k4 CVRP 75 74.10 237 31.22 0.00 151.2
fri-n26-k3 CVRP 28 23.56 1353| 17.75 0.37 6.1| 842175 00:00:06:11
gr-n17-k3 CVRP 19 29.88 2685 28.31 0.00 5.6 13977 00:00:00:09
gr-n21-k3 CVRP 23 36.02 3704| 27.54 0.00 6.3 29293 00:00:00:17
gr-n24-k4 CVRP 27 46.04 2053| 28.30 0.00 11.7] 5919153 00:00:47:50
gr-n48-k3 CVRP 50 66.55 5985 25.71 0.22 28.3
hk-n48-k4 CVRP 51 56.96 14749 25.74 0.09 361.6
M-n101-k10 CVRP 110 66.26 820| 33.98 0.49 657.2
M-n121-k7 CVRP 127 67.19 1034| 64.71 8.09 37860.9
M-n151-k12 CVRP 162 67.60 1053 34.00 0.28 12133.0
M-n200-k17 CVRP 215 66.28 1373 - - -
P-n101-k4 CVRP 104 T71.61 681 15.04 2.44 219.1
P-n16-k8 CVRP 23 1.75 450, 14.67 0.00 4.1 3033 00:00:00:07
P-n19-k2 CVRP 20 37.09 212 21.70 0.00 4.2 16959 00:00:00:12
P-n20-k2 CVRP 21 43.31 216| 19.46 2.26 3.1 10593 00:00:00:08
P-n21-k2 CVRP 22 42.03 211| 18.48 0.00 3.7 4787 00:00:00:05

Continued on next page

127

ATMOS’15

128 Regional Search for the Resource Constrained Assignment Problem

Table 4 — continued from previous page

instance type [V] initial best[Ib gap bk gap reg. sec. nodes dd:hh:mm:ss
gap
P-n22-k2 CVRP 23 45.04 216 17.13 0.00 5.6 6765 00:00:00:07
P-n22-k8 CVRP 29 20.66 603| 39.97 0.00 19.6] 818203 00:00:09:20
P-n23-k8 CVRP 30 19.73 529| 37.62 0.00 26.7| 9609861 00:02:09:07
P-n40-k5 CVRP 44 57.08 458 18.12 0.00 12.8
P-n45-k5 CVRP 49 61.07 510f 19.22 0.00 17.1
P-n50-k10 CVRP 59 41.46 696| 28.43 0.57 407.6
P-n50-k7 CVRP 56 52.08 554| 22.10 1.25 69.3
P-n50-k8 CVRP 57 50.43 631 31.54 5.68 353.7
P-n51-k10 CVRP 60 44.62 741 3144 211 372.3
P-n55-k10 CVRP 64 48.74 694| 25.71 0.86 388.4
P-nb5-k15 CVRP 69 28.28 989| 38.10 4.35 4983.0
P-n55-k7 CVRP 61 61.18 568| 21.38 2.07 146.9
P-n55-k8 CVRP 62 62.93 588 19.83 1.18 105.0
P-n60-k10 CVRP 69 52.55 744 29.61 2.11 656.2
P-n60-k15 CVRP 74 42.59 968| 31.49 0.72 1568.4
P-n65-k10 CVRP 74 57.67 792| 26.28 1.37 339.0
P-n70-k10 CVRP 79 62.34 827 29.73 1.66 704.2
P-n76-k4 CVRP 79 74.01 593| 16.97 1.33 64.0
P-n76-k5 CVRP 80 68.19 627| 20.59 2.18 90.6
swiss-n42-k5 CVRP 46 46.79 1668 31.85 1.24 30.9
ulysses-n16-k3 CVRP 19 100.00 7965| 18.75 2.60 6.1 5871 00:00:00:07
ulysses-n22-k4 CVRP 25 32.88 9179 34.51 1.21 21.4|60874403 00:07:31:41
a280 TSP 280 8.16 2579 894 3.08 1063.7
att48 TSP 48 78.68 10628| 22.02 1.67 9.4| 777323 00:00:21:35
bayg29 TSP 29 65.19 1610| 10.56 0.00 6.1 2661 00:00:00:09
bays29 TSP 29 64.88 2020, 12.93 0.30 4.3 2441 00:00:00:07
berlinb2 TSP 52 66.03 7542| 21.54 5.88 14.7 22145 00:00:01:50
bier127 TSP 127 69.98 118282 20.36 1.68 940.1
brazilb8 TSP 58 80.35 25395 35.50 1.12 23.2| 741555 00:00:41:02
brgl180 TSP 180 98.36 1950{ 100.00 2.99 256.9
burmaild TSP 14 27.16 3323] 17.33 0.00 3.3 191 00:00:00:05
ch130 TSP 130 87.22 6110 29.68 1.93 600.4
ch150 TSP 150 87.64 6528 16.09 1.45 323.0
d198 TSP 198 29.86 15780 33.40 0.92 1752.7
d493 TSP 493 69.17 35002| 15.97 2.89 11463.8
dantzig4d?2 TSP 42 0.00 699| 23.89 0.00 8.6| 224263 00:00:03:58
eiliol TSP 101 69.50 629 11.75 2.78 133.3
eilb1 TSP 51 67.43 426/ 13.16 1.62 16.3| 765927 00:00:21:30
eil76 TSP 76 72.68 538 13.26 3.58 63.6] 1929865 00:02:55:49
£1417 TSP 417 78.61 11861| 37.68 0.40 24856.1
fri26 TSP 26 17.81 937 11.10 0.00 4.6 553 00:00:00:06
gil262 TSP 262 90.96 2378] 21.33 2.66 1593.5
gri120 TSP 120 86.12 6942| 18.18 3.14 107.4
gri37 TSP 137 28.07 69853| 19.10 0.96 211.8
gri7 TSP 17 55.84 2085 20.77 0.00 5.6 843 00:00:00:03
gr202 TSP 202 30.94 40160{ 16.45 2.92 442.3
gr21 TSP 21 59.11 2707 10.60 0.00 3.5 43 00:00:00:05
gr229 TSP 229 25.15 134602| 19.48 1.54 3895.2
gr24 TSP 24 62.98 1272 17.30 0.00 5.9 215 00:00:00:06
gr431 TSP 431 26.45 171414| 21.27 5.88 31311.0
gras TSP 48 74.56 5046] 18.28 0.30 12.5 3900747 00:01:24:20
gro6 TSP 96 31.85 55209 16.99 0.15 290.8
hk48 TSP 48 76.21 11461| 16.13 2.61 9.6| 141947 00:00:04:43
kroA100 TSP 100 88.88 21282| 19.71 0.00 222.8
kroA150 TSP 150 90.79 26524 23.00 5.07 822.6
kroA200 TSP 200 92.15 29368 24.31 3.76 606.8
kroB100 TSP 100 85.91 22141| 25.83 2.20 237.3
kroB150 TSP 150 90.44 26130, 24.08 3.14 565.2
kroB200 TSP 200 91.01 29437, 23.19 3.41 1018.1
kroC100 TSP 100 88.69 20749 23.10 4.68 82.9
kroD100 TSP 100 87.55 21294| 27.39 6.52 371.0
kroE100 TSP 100 88.28 22068| 25.71 1.74 120.2

Continued on next page

R. Borndorfer and M. Reuther

Table 4 — continued from previous page

129

instance type [V] initial best| Ib gap bk gap reg. sec. nodes dd:hh:mm:ss
gap
1in105 TSP 105 60.58 14379| 39.56 2.96 181.1
1in318 TSP 318 64.94 42029 38.36 5.06 33294
pcbé42 TSP 442 77.07 50778 11.32 3.84 7646.0
pri07 TSP 107 29.40 44303| 46.48 2.05 1204.9
pri24 TSP 124 40.34 59030| 34.54 0.73 494.6
pri36 TSP 136 66.28 96772| 15.11 3.98 488.2
prid4 TSP 144 37.41 58537| 66.33 1.49 847.3
prib2 TSP 152 54.23 73682 42.51 1.58 1713.9
pr226 TSP 226 27.21 80369 39.11 2.01 3059.9
pr264 TSP 264 36.99 49135| 35.98 4.75 8072.2
pr299 TSP 299 42.29 48191 19.47 2.69 4455.0
pr439 TSP 439 60.38 107217| 31.70 4.75 20186.8
pr76 TSP 76 28.27 108159 30.33 2.28 147.5
rat195 TSP 195 42.36 2323| 14.17 4.83 551.8
rat99 TSP 99 42.98 1211 11.46 1.54 67.4
rd100 TSP 100 84.36 7910| 21.89 5.80 229.0
rd400 TSP 400 92.91 15281| 20.93 2.24 3940.3
si175 TSP 175 18.79 21407 6.00 0.59 382.1
st70 TSP 70 80.21 675 25.22 2.74 65.5
swiss4?2 TSP 42 55.08 1273 22.44 2.15 9.9 19241 00:00:00:42
ts225 TSP 225 54.20 126643| 11.63 3.20 1431.0
tsp225 TSP 225 62.16 3916| 12.98 0.31 494.2
ulb9 TSP 159 3.00 42080| 17.66 0.00 139.4
ulysses16 TSP 16 29.03 6859 18.38 0.00 3.5 549 00:00:00:05
ulysses22 TSP 22 42.51 7013| 24.58 0.00 4.3 10923 00:00:00:11

ATMOS’15

	Introduction
	Regional Search
	Regional search for binary programs by using the simplex algorithm
	Regional search for the RCAP using the Hungarian method

	Branch and Bound for the RCAP
	Branching Scheme
	Assignment Reduction
	Shortest-Path Reduction
	Bin-Packing Reduction
	Symmetry Reduction

	Computational Results
	RCAP instances from the railway application
	TSP, ATSP, CVRP, and ACVRP instances from the literature

	Appendix: Tables

