
Evidence for Fixpoint Logic
Sjoerd Cranen, Bas Luttik, and Tim A. C. Willemse

Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.cranen,s.p.luttik,t.a.c.willemse}@tue.nl

Abstract
For many modal logics, dedicated model checkers offer diagnostics (e.g., counterexamples) that
help the user understand the result provided by the solver. Fixpoint logic offers a unifying
framework in which such problems can be expressed and solved, but a drawback of this framework
is that it lacks comprehensive diagnostics generation. We extend the framework with a notion
of evidence, which can be specialised to obtain diagnostics for various model checking problems,
behavioural equivalence and refinement checking problems. We demonstrate this by showing how
our notion of evidence can be used to obtain diagnostics for the problem of deciding stuttering
bisimilarity. Moreover, we show that our notion generalises the existing notions of counterexample
and witness for LTL and ACTL* model checking.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases fixpoint logic, diagnostics, counterexample, model checking, stuttering
bisimilarity, ACTL*

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.78

1 Introduction

Many of the techniques and tools developed for the purpose of verification of software and
hardware systems – such as model checkers for various temporal logics, and refinement
checkers for various behavioural equivalences and preorders – perform checks that can also
be encoded in fixpoint extensions of first-order logic. Rather than having specialised tools
to compute answers to specific verification problems, one can then use a solver for fixpoint
logic to compute answers to such problems. This approach is, e.g., taken by the mCRL2 tool
set [7], which solves model checking problems for transition systems (which are essentially
described by first-order structures) by translating the model checking problem to the problem
of checking validity of a formula in fixpoint logic [15]; in a similar vein, the tool set offers
tools that decide whether there is a behavioural equivalence between two transition systems
by translating the decision problem to fixpoint logic [3].

While using fixpoint logic as a unifying framework for verification problems is desirable
from a theoretical point of view, there are some practical aspects that need to be considered to
prepare such a framework for large scale use. One pertinent problem is the issue of diagnostic
generation. Many specialised tools for, e.g., LTL model checking, provide diagnostics (for
instance in the form of counterexample traces). For fixpoint logic in general, no such notion
yet exists to our knowledge, and it is not immediately obvious how diagnostics generation
for specific verification problems can be fit into the more generic framework of fixpoint logic.

Our contribution is an approach to diagnostic generation in fixpoint logic. As a starting
point for our investigation, we use the notion of a proof graph [9] for a particular fixpoint
logic called parameterised Boolean equation systems (PBES) [16]. Proof graphs for PBESs
are loosely based on the notion of support set of Tan and Cleaveland [23], and provide a

© Sjoerd Cranen, Bas Luttik, and Tim A.C. Willemse;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 78–93

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.78
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Cranen, B. Luttik, and T. A. C. Willemse 79

formal representation of an argument for the validity or invalidity of a fixpoint formula in a
first-order structure. They capture only relevant information about predicates defined by
fixpoints, and their interdependencies; in particular, they abstract from general first-order
reasoning. To build a general theory of evidence for fixpoint logics based on proof graphs,
we need to adapt the notion of proof graph proposed in [9] in two ways:

we include nodes to reveal information about first-order predicates in our proof graphs,
capturing some extra information needed for evidence extraction, and
we integrate the concept of negation (of fixpoint formulas) into our proof graphs, which
was not yet needed in the context of PBES.

Intuitively, evidence is that part of a first-order structure that captures all relevant
information in an argument for the validity or invalidity of a fixpoint formula. Given a proof
graph representing such an argument, we propose to define evidence as a weak substructure
in which all information referred to in the proof graph is still available. The weakest such
substructure we call the evidence projection associated with the proof graph.

We confirm the usefulness of our definition of evidence by suitably instantiating it to
get formal notions of counterexample and witness in the context of behavioural equivalence
checking, and in the context of model checking. First, we define stuttering bisimilarity on
Kripke structures as a general fixpoint formula, and then show how a counterexample can be
obtained using the notion of evidence presented earlier. Second, we show how to retrieve
counterexamples of a linear form (traces) for LTL model checking, and tree-like ones (as
presented by Clarke et al. in [4]) for ∀CTL*/∃CTL* model checking.

The theory of proof graphs has much in common with other formal systems for representing
proofs in the context of logics and calculi including notions of fixpoints or inductively defined
predicates, such as the various tableaux systems for fixpoint logics [17, 11], proof systems for
recursive types (see, e.g., [12] for an overview), and the proof systems for inductively defined
predicates discussed in [1]. It also has a close resemblance with parity games [13]. The notion
of proof graph, however, serves a different purpose, as a stepping stone towards a formal
notion of evidence for fixpoint logics with a focus on the predicates defined as fixpoints. It
therefore only captures relevant information about first-order predicates, predicates defined
by fixpoints, and their interdependencies; in particular, it abstracts from general first-order
reasoning.

To simplify the presentation, we discuss our results in the context of Least Fixpoint
Logic (LFP) which we introduce in Section 2.1 In Section 3 we recap and adapt the notion
of proof graph, and extend it with a notion of evidence for LFP. In Section 4.1, we first
define stuttering bisimilarity on Kripke structures as a general LFP formula, and then show
how a counterexample can be obtained using our notion of evidence. We illustrate how our
proof graphs can also be used to generate counterexamples and witnesses for model checking
problems in Section 4.2, and we conclude in Section 5.

2 Least fixpoint logic

We recall the syntax and semantics of LFP, an extension of first-order logic with least and
greatest fixpoint operators, and we fix some additional notation and concepts needed in the
rest of the paper.

1 In [6] it is shown that they also hold for a more general fixpoint logic that encompasses both LFP and
PBES.

CSL 2015

80 Evidence for Fixpoint Logic

Let Σ = 〈R,F , ar〉 be a signature consisting of a set of relation symbols R, a set of
function symbols F , and a function ar : R∪ F → N that assigns an arity to every symbol
in R and F . Furthermore, we assume a countably infinite set of first-order variables. We
inductively define a term to be either a first-order variable, or a function symbol of arity n
applied to a sequence of n terms; a term is open if it contains variables, and closed otherwise.
We also presuppose a set X of second-order variables, each with an associated arity; a
second-order variable X of arity n can be thought of as ranging over n-ary relations. Then,
the set of LFP formulas over Σ is defined by the following grammar:

ϕ,ψ ::= Xt̄ | Rt̄ | t1 = t2 | ¬ϕ | ϕ ∨ ψ | ∃x ϕ | [lfpXx̄. ϕ]t̄

with X ranging over the second-order variables in X , R ranging over the relation symbols in
R, x ranging over first-order variables, t1 and t2 ranging over terms, and x̄ and t̄ ranging
over finite sequences of first-order variables and terms of appropriate length. Not all LFP
formulas generated by the grammar above are considered well-formed; for formulas of the
form [lfpXx̄. ϕ]t̄ we impose the additional syntactic requirement that all occurrences of X
in ϕ are positive, i.e., in the scope of an even number of negations. Henceforth, we will only
consider well-formed LFP formulas. We write ϕ v ψ if ϕ is a subformula of ψ.

A (first-order) structure A is a tuple 〈A,Σ, I〉 in which A is a set (the domain of discourse),
Σ is a signature and I is an interpretation function. The interpretation function I is a
mapping that associates with every relation symbol R in Σ a relation RA on A of appropriate
arity, and with every function symbol f in Σ a function fA on A of appropriate arity.

A structure B is a weak substructure of structure A, denoted B vw A, if it has a domain
of discourse B ⊆ A, the same relation and function symbols as A, and an interpretation
function such that for every n-ary relation symbol R we have RB ⊆ RA ∩Bn, and for every
n-ary function symbol f we have that fB(b̄) = fA(b̄) ∈ B for all b̄ ∈ Bn.

Terms and LFP formulas are evaluated on a first-order structure A in a given environment
θ that maps first-order variables to elements of A and second-order variables to relations on A
of appropriate arity. If t is a term, then tA,θ is the element of A denoted by t in environment
θ defined in the usual way (i.e., if t is a variable, then tA,θ = θ(t), and if t = f(t0, . . . , tn),
then tA,θ = fA(tA,θ0 , . . . , tA,θn)). The evaluation of LFP formulas is less straightforward due
to the fixpoint operators. The idea is that, given a second-order variable X of arity n, a
sequence of first-order variables x̄ of length n, and an environment θ, we can associate with
every formula ϕ an operator TA,θ

X,x̄,ϕ on the complete lattice of n-ary relations on A. If all
occurrences of X in ϕ are positive, then the operator TA,θ

X,x̄,ϕ – which is to be defined precisely
below – is monotone on the lattice of n-ary relations on A. Therefore, it has a unique least
fixpoint (see [24]), which we will denote by lfp TA,θ

X,x̄,ϕ. We proceed to define the relation
A, θ |= ϕ and the operators TA,θ

X,x̄,ϕ : An → An (n the arity of X) simultaneously by induction
on the structure of ϕ:

A, θ |= Rt̄ iff t̄A,θ ∈ RA A, θ |= Xt̄ iff t̄A,θ ∈ θ(X)
A, θ |= t1 = t2 iff tA,θ1 = tA,θ2 A, θ |= ¬ϕ iff not A, θ |= ϕ

A, θ |= ϕ ∨ ψ iff A, θ |= ϕ or A, θ |= ψ A, θ |= ∃x ϕ iff A, θ[x 7→ a] |= ϕ for some a ∈ A
A, θ |= [lfpXx̄. ϕ]t̄ iff t̄ ∈ lfp TA,θ

ϕ,X,x̄, where TA,θ
ϕ,X,x̄(R) = {ā | A, θ[X 7→ R, x̄ 7→ ā] |= ϕ}

If A, θ |= ϕ, then we say that ϕ is valid in A and θ. If A, θ |= ϕ for all environments θ, then
we simply say that ϕ is valid in A and write A |= ϕ. We write A, θ 6|= ϕ to indicate that
A, θ |= ϕ does not hold.

To get a more succinct presentation, whenever A, θ, ϕ, X and x̄ are clear from the

S. Cranen, B. Luttik, and T. A. C. Willemse 81

s0 s1 s2

a
a

a

b

Figure 1 An LTS as a first-order structure.

s0 s1

a
a

s1 s2

a

b

Figure 2 Evidence for ϕ1 and ϕ2 in A.

context, we will omit the super- and subscripts of TA,θ
ϕ,X,x̄ and simply write T. For an

in-depth treatment of fixpoint theory, see e.g. [19, 20].
The notions of free and bound variables of a formula ϕ are defined as usual. By fv(ϕ) we

denote the set of all variables with a free occurrence in ϕ. We sometimes need to express
that environments θ and θ′ agree on the free variables of some formula ϕ; we write θ ≡fv(ϕ) θ

′

if θ(x) = θ′(x) for all first-order variables x ∈ fv(ϕ) and θ(X) = θ′(X) for all second-order
variables X ∈ fv(ϕ). Furthermore, we assume a unique-naming convention, by which a
variable does not have both free and bound occurrences in the formula, and by which a
variable is only bound by a single binder. Only in a few concrete examples we deviate from
this convention in favour of readability.

The constructs ∧, ∀_ _ and [gfp__._]_ are usually treated as syntactic abbreviations:
ϕ∧ψ for ¬(¬ϕ∨¬ψ), ∀x ϕ for ¬∃x ¬ϕ, and [gfpXx̄. ϕ]t̄ for ¬[lfpXx̄.¬ϕ[X 7→ ¬X]]t̄, where
ϕ[X 7→ ¬X] denotes the formula obtained from ϕ by replacing all free occurrences of X in ϕ
by ¬X. For our theory of evidence, to be presented in the next section, it will be convenient,
however, to associate proof graphs directly with formulas in the extended syntax, including,
in particular, the syntactic construct [gfp__._]_ as first-class citizen.

If a formula ψ has a subformula of the form [σXx̄. χ]t̄ (with σ ∈ {lfp,gfp}), then we say
that X is defined in ψ, refer to the subformula [σXx̄. χ]t̄ as the subformula defining X, and
refer to χ as the definition of X. We also let σψ,X = σ, x̄ψ,X = x̄ and ϕψ,X = χ. Usually,
the intended formula ψ will be clear from the context, and can therefore be safely omitted
as a subscripts in these notations. By dv(ψ) we denote the set of all second-order variables
defined in ψ. The formula ψ induces a partial order <ψ on dv(ψ) defined by X <ψ Y if, and
only if, the subformula defining Y is a subformula of the subformula defining X.

I Example 1. A labelled transition system can be seen as a first-order structure with the
set of states as domain of discourse, a binary relation symbol →a for every transition label a,
and a constant symbol for every state (see Figure 1).

LFP formulas can be used to express properties of a transition system. For instance,

ϕ1 = [lfpXs. ∀s′ s →a s′ =⇒ Xs′]s1

expresses that only finitely many consecutive a-transitions can be taken from the state
denoted by the constant s1; this formula is not valid on the labelled transition system in
Figure 1. The LFP formula

ϕ2 = [gfpXs. [lfpY s′.∃s′′ (s′ →a s′′ ∧ Y s′′) ∨ (s′ →b s′′ ∧Xs′′)]s]s1

expresses – about a system in which every transition is labelled with either a or b – that
from the state s1 there is a path with infinitely many b-transitions; this formula is valid on
the labelled transition system in Figure 1.

3 Evidence based on proof graphs

In this section, we adapt proof graphs, which were originally introduced in [9] for PBESs, to
the setting of LFP. Intuitively, a proof graph serves to capture the essence of a reasoning

CSL 2015

82 Evidence for Fixpoint Logic

〈f, X, [s1]〉 〈f, X, [s0]〉

〈t,→a , [s0, s0]〉〈t,→a , [s1, s0]〉

〈t, X, [s1]〉 〈t, Y, [s1]〉 〈t,→a , [s1, s2]〉

〈t, Y, [s2]〉 〈t,→b , [s2, s1]〉

Figure 3 Proof graphs for A 6|= ϕ1 and A |= ϕ2.

that proves or refutes the validity of an LFP formula in a first-order structure. The notion
of proof graph will be tailored for the purpose of identifying evidence for the validity or
invalidity of an LFP formula inside the first-order structure. Such evidence is a, preferably
smaller, weak substructure that still admits the reasoning for the validity or invalidity as
captured by the proof graph.

Before we formally introduce the notion of proof graph and the associated notion of
evidence, we illustrate the idea by means of some examples.

I Example 2. Consider the LFP formulas of Example 1. To support our claim that ϕ1 is
not valid on the labelled transition system in Figure 1, we construct the proof graph depicted
on the left in Figure 3. Let us represent by 〈f, X, [s1]〉 the statement that the relation defined
by X in ϕ1 does not hold on s1. According to the definition of X in ϕ1, to refute that X
holds on s1 it is enough to find a state s′ such that s1 →a s′ and then refute that X holds on
s′. The state s0 appears to be a good candidate for s′; in our proof graph we will therefore
include dependencies from 〈f, X, [s1]〉 to both 〈t,→a , [s1, s0]〉 (expressing that s1 →a s0) and
〈f, X, [s0]〉 (expressing that X does not hold on s0). Similarly, to refute that X holds on s0
it suffices to include a dependency from 〈f, X, [s0]〉 to 〈t,→a , [s0, s0]〉 and to itself.

Note that the reasoning expressed by this graph only involves the states s0 and s1 and the
transitions s0 →a s0 and s1 →a s0, which suggests that the weak substructure of A depicted
on the left in Figure 2 provides sufficient evidence for the invalidity of ϕ1 in A.

A similar reasoning can be held to construct the proof graph on the right in Figure 3 to
show that ϕ2 is valid in A, resulting in the evidence depicted on the right in Figure 2.

The proof graphs constructed in the example above explain the validity or invalidity of
an LFP formula in a presupposed first-order structure in terms of primitive relations defined
directly on the structure and the relations defined as fixpoints in the formula. Thus, they
abstract from the standard first-order reasoning involved. Proof graphs are going to be the
starting point for our theory of diagnostics for LFP formulas. We shall define evidence for
the validity or invalidity of an LFP formula ϕ in a first-order structure A, based on a proof
graph G, as a weak substructure of A for which G is still a proof graph. For the approach to
be valid, the information about A that is included in G should be both correct and sufficient.
Correctness means that whenever a proof graph includes a node 〈α, V, ā〉, then, depending on
whether α is t or f, the sequence ā should or should not be in the relation on A denoted by
V . Sufficiency means that G includes enough information from A to facilitate reconstruction
of the reasoning reflected by G in every weak substructure of A that inherits at least that
information from A.

We shall now first formally define the notion of proof graph for a first-order structure A,
an LFP formula ϕ, and an environment θ, and then explain how it gives rise to a formal
notion of evidence.

3.1 Proof graphs
The nodes of a proof graph are tuples of the form 〈α, V, ā〉 in which α is either t or f, V is
either a relation symbol or a second-order variable, and ā is a sequence of elements of A the

S. Cranen, B. Luttik, and T. A. C. Willemse 83

length of which corresponds to the arity of V . We denote by S the set of all such nodes, and,
for Y ⊆ R ∪ X , we denote by SY the subset of S consisting of all nodes of which the second
element is from Y, i.e.,

SY = {〈α, V, ā〉 ∈ {t, f} × Y ×A∗ | ar(X) = |ā|}.

We will often use the subscript to refer to nodes in which only specific relations or variables
occur, e.g., S{X} for all nodes of which the second element is the second-order variable X.
To concisely express that the statement represented by a node 〈α, V, ā〉 is true in a structure
A and an environment θ, we write

A, θ |= 〈α, V, ā〉 for
{

ā ∈ θ(V) ⇐⇒ α = t if V ∈ X , and
ā ∈ V A ⇐⇒ α = t if V ∈ R.

The purpose of the dependency relation of a proof graph is to reflect a sound and complete
reasoning for the truth of each of its nodes of the form 〈α,X, ā〉, with X a variable defined
in ϕ. Our definition of proof graph, below, will impose requirements on the dependency
relation to ensure that the reflected reasoning is sound and complete. First, we present a
local requirement on the dependency relation to ensure that the truth of a node 〈α,X, ā〉 can,
according to the definition of X in ϕ, be inferred from the truth of all its successors together.
This local requirement should, moreover, be satisfied in every substructure with sufficient
information from the perspective of the reflected reasoning. Thus, we obtain the intermediate
notion of dependency graph, which only admits reasonings of which every individual inference
step is justified. To obtain a suitable notion of proof graph, we then still need to add a global
requirement that excludes non-wellfounded reasonings to the extent that they are invalid.
We shall establish that the resulting notion of proof graph is sound and complete: all nodes
in a proof graph for A, θ and ϕ are true in A and θ, and if a node is true in A and θ, then
there is a proof graph that includes it.

Consider a node v = 〈α,X, ā〉, with X a variable defined in ϕ, and let ϕX be the definition
of X in ϕ. We denote by v• the set of successors (the postset) of v. To express that if
the elements of v• are all true, then ϕX forces v to be true as well, we need to be able to
influence the values of the second-order variables defined in ϕX . Let us denote by fo(ϕX)
the formula obtained from ϕX by replacing every [lfpY x̄. ψ]t̄ v ϕX by Y t̄. We can then
consider environments satisfying the nodes in v•, and require that such environments satisfy
fo(ϕX) if, and only if, α = t. To avoid having to distinguish between the different values for
α every time, we introduce the following shorthand notation:

A, θ α|=ϕ denotes A, θ |= ϕ ⇐⇒ α = t.

Recall that we want to use proof graphs to define a notion of evidence for the validity
or invalidity within a first-order structure A. Given a proof graph with nodes S, we will be
looking at weak substructures of A that have a domain of discourse that includes all the
elements that are referenced by the nodes in S. We denote by A � S the smallest (with
respect to vw) weak substructure of A of which the domain of discourse is a superset of
{a ∈ A | ∃〈α,V,c̄〉∈S a ∈ c̄}. Note that, according to the definition of weak substructure, if I
is the interpretation function of A � S, then I(R) = ∅ for all first-order relation symbols R.

We enforce consistency of the reasoning represented by the graph by requiring that the
successors of a node are never contradictory: a relation → ⊆ S × S is consistent if and only
if for all v, X and ā, not both 〈t, X, ā〉 ∈ v• and 〈f, X, ā〉 ∈ v•.

I Definition 3 (dependency graph). A dependency graph for A, θ and ϕ is a directed graph
〈S,→〉 with S ⊆ S and → ⊆ S × S, such that → is consistent, and for all 〈α, V, ā〉 ∈ S:

CSL 2015

84 Evidence for Fixpoint Logic

if V ∈ dv(ϕ):

for all A � S vw B vw A and all η such that η ≡fv(ϕ) θ,

if B, η |= v for all v ∈ 〈α, V, ā〉• then B, η[x̄V 7→ ā] α|= fo(ϕV)

if V /∈ dv(ϕ):
A, θ |= 〈α, V, ā〉 and 〈α, V, ā〉• = ∅

I Example 4. Let A be the transition system in Figure 1. The left graph in Figure 3 is a
dependency graph for A, any θ and ϕ1, and the right graph in Figure 3 is a dependency
graph for A, any θ and ϕ2. Let us verify in some detail that the left graph in Figure 3 indeed
satisfies the conditions of dependency graphs.

Clearly, the dependency relation of the graph in Figure 3 is consistent. Furthermore, the
nodes 〈t,→a , [s0, s0]〉 and 〈t,→a , [s1, s0]〉 do not have successors and they are true in A.

For the nodes 〈f, X, [s0]〉 and 〈f, X, [s1]〉 we need to check the first condition of Definition 3.
We show how to check the condition for 〈f, X, [s0]〉, the check for 〈f, X, [s1]〉 is similar.
Consider a weak substructure B of A and an environment η (η ≡fv(ϕ1) θ holds for every η
because fv(ϕ1) = ∅) such thatB, η |= 〈f, X, [s0]〉 andB, η |= 〈t,→a , [s0, s0]〉. The latter means
that B, η |= s0 →a s0, and the former means that B, η 6|= Xs0, so B, η 6|= s0 →a s0 =⇒ Xs0.
This is equivalent to B, η f |= fo(ϕX).

A least fixpoint is proved by an inductive argument, which is necessarily well-founded. A
greatest fixpoint is proved by a coinductive argument, which need not be well-founded. In
fact, a coinductive argument of a statement can be thought of as a reasoning that argues the
absence of a well-founded reasoning for the negation of the statement. The quantification
over all well-founded reasonings gives rise to a reasoning that is inherently not well-founded.
A dependency graph admits reasonings that are not well-founded without taking into account
whether such reasonings are justified. We formulate an extra requirement on dependency
graphs to filter out invalid non-well-founded reasonings. Let IX(π) denotes the set of indices
i on path π such that πi ∈ S{X}.

I Definition 5 (proof graph). A dependency graph G = 〈S,→〉 for A, θ and ϕ is a proof
graph iff for every infinite path π in G, for all X minimal w.r.t. <ϕ such that IX(π) is infinite
it holds that:

if σX = lfp, then {i ∈ IX(π) | ∃ā πi = 〈t, X, ā〉} is finite; and
if σX = gfp, then {i ∈ IX(π) | ∃ā πi = 〈f, X, ā〉} is finite.

I Example 6. As we saw in Example 4, the graphs in Figure 3 are dependency graphs; it
remains to verify that they satisfy the condition of Definition 5 to conclude that they are proof
graphs. For the proof graph on the right in Figure 3 the reasoning is as follows: On every
infinite path π in the graph, each of the three nodes 〈t, X, [s1]〉, 〈t, Y, [s1]〉, and 〈t, Y, [s2]〉
occur infinitely often. Note that X is the (only) <ϕ2 -minimal second-order variable on such an
infinite path. We have that σϕ2,X = gfp, and, indeed, the set {i ∈ IX(π) | ∃ā πi = 〈f, X, ā〉}
is finite.

The following theorem, which is proved for an equally expressive, but syntactically more
general fixpoint logic (it has LFP as a normal form) in [6], establishes that the notion of
proof graph defined above is sound and complete for capturing reasoning about the validity
of relations defined by fixpoints in LFP formulas. Soundness here means that whenever a
proof graph for a structure A, an environment θ and a formula ϕ includes a node 〈α,X, ā〉
with X a second-order variable defined in ϕ, then 〈α,X, ā〉 expresses a true statement with

S. Cranen, B. Luttik, and T. A. C. Willemse 85

respect to A, θ and ϕ. That is, the relation on A associated with X by ϕ includes ā if α = t,
and the relation on A associated with X by ϕ does not include ā if α = f. Conversely,
completeness means that if 〈α,X, ā〉 expresses a true statement with respect to A, θ and ϕ,
then there exists a proof graph for A, θ and ϕ including this node.

I Theorem 7. Let A be a first-order structure, let θ be an environment, let ϕ be an LFP
formula, and let X be a second-order variable defined in ϕ. Then, for all 〈α,X, ā〉 ∈ S{X},
the following are equivalent:

There exists a proof graph for A, θ and ϕ that includes the node 〈α,X, ā〉.
ā ∈ σXTA,θ

ϕX ,X,x̄X
⇐⇒ α = t,

The notion of proof graph defined above deviates in two respects from the notion
introduced for PBESs in [9]. Firstly, the new notion requires nodes to be included that
capture the information about the first-order relations in the original structure that is needed
in the reasoning reflected by the proof graph. These nodes will be used in Section 3.2 to
extract an appropriate weak substructure that can serve as evidence. Secondly, the new notion
includes an extra {t, f}-element in a node, which facilitates the inclusion in a proof graph of
both positive and negative statements as to whether relations hold for certain sequences of
elements, and an associated additional consistency requirement for the dependency relation.
Such a facility was not needed in the setting of PBESs by the absence of negation.

3.2 Evidence
We proceed to define a general notion of evidence based on proof graphs. In Section 4 we
illustrate how this notion can be used to provide diagnostics for behavioural equivalence
checking, and we will show that this notion specialises to familiar notions of evidence in the
context of model checking.

It follows from Theorem 7 that for LFP formulas of the form [σXx̄. ϕ]t̄ we have that

A, θ α|=[σXx̄. ϕ]t̄ iff there exists a proof graph for A, θ and [σXx̄. ϕ]t̄
that includes a node 〈α,X, t̄A,θ〉.

We shall refer to a proof graph for A, θ and [σXx̄. ϕ]t̄ that includes the node 〈α,X, t̄A,θ〉
as a proof graph for A, θ α|=[σXx̄. ϕ]t̄. Since, in fact, every LFP formula ψ is equivalent to
[lfpX0. ψ], provided that X0 /∈ dv(ψ) ∪ fv(ψ), we may use the terminology more generally:
a proof graph for A, θ α|=ψ is a proof graph for A, θ α|=[lfpX0. ψ] if ψ is not already of
the form [σXx̄. ϕ]t̄ for some X, x̄, ϕ and t̄. We now propose the following definition of
evidence for LFP formulas, which formalises that evidence based on some proof graph for
the (in)validity of an LFP formula in a first-order structure is that part of the structure that
facilitates the reasoning reflected by that proof graph.

I Definition 8 (evidence). By evidence for A, θ α|=ϕ we mean a weak substructure B vw A

such that there is a proof graph for B, θ α|=ϕ that is also a proof graph for A, θ α|=ϕ.

Naturally, we would like evidence to be as concise as possible, and so we would like to
obtain, given a proof graph for A, θ α|=ϕ, the smallest weak substructure of A that serves as
suitable evidence.

I Definition 9 (evidence projection). Given a proof graph 〈S,→〉 for A, θ α|=ϕ, define
ev(〈S,→〉) as the smallest B vw A such that for each node 〈β, V, ā〉 ∈ S (with V ∈ R ∪ X)
we have ā ∈ B∗, and for each v ∈ S \ SX we have B, θ |= v.

CSL 2015

86 Evidence for Fixpoint Logic

It is easy to see that ev(〈S,→〉) as defined in the preceding definition always exists, and
that it can be computed straightforwardly from A � S by adding, for every node 〈t, R, ā〉,
the sequence ā to the interpretation of relation symbol R.

I Theorem 10. If G is a proof graph for A, θ α|=ϕ, then ev(G) is evidence for A, θ α|=ϕ.

Our notion of evidence projection results in the smallest evidence for A, θ α|=ϕ given a
particular proof graph. There may, however, be many proof graphs for A, θ α|=ϕ, and it
appears that, roughly speaking, smaller proof graphs lead to smaller evidence. A proof graph
may contain redundant information; a subgraph that contains no redundant nodes or edges is
called a minimal proof graph. We refer to [9] for a more elaborate discussion on minimality.

4 Counterexamples and witnesses

Some problems that can be encoded in fixpoint logic consist of checking an ‘implementation’
against a ‘specification’. For instance, if the behaviour of some system is described as a Kripke
structure, and we want to establish correctness properties on that Kripke structure, then we
may view it as an ‘implementation’ of sorts, which we could check against a set of CTL*
formulas, the ‘specifications’. We might also want to check if this Kripke structure refines
another, more abstract Kripke structure. In this case, the ‘specification’ is not a formula,
but another Kripke structure. We refer to such problems as model checking problems.

For problems that have this characteristic of a division into implementation and specific-
ation, we tend to think of the specification as being given and well-understood, whereas
the implementation may contain mistakes that need to be clarified with diagnostics. Such
diagnostics should highlight the parts of the implementation that cause a problem, but should
not include details from the specification. To achieve this, we propose a general scheme that
combines an implementation A with a specification B, and that extracts the information
from A from evidence relating to the combined structure. These combination and extraction
operations are defined in terms of the operators ∪ and ∩. Essentially, the ∪ operator must
merge two structures A and B together, and the ∩ operator must be able to retrieve a
weak substructure of A again from the merged structure. Natural candidates to implement
these operations on the domain of discourse of the two structures are the set union and set
intersection operations. The function and relation symbols are also obtained by taking the
set union or intersection of the symbols in A and B.

If R is a relation symbol with interpretations in both A and B, then RA∪B = RA ∪RB

and RA∩B = RA∩RB, and if R only has an interpretation in A (resp. B), then RA∪B = RA

(resp. RA∪B = RB). A natural way to define the interpretation of a function symbol f in
A ∩B is to define fA∩B as the restriction of fA to the new domain of discourse, A ∩ B.
Defining the interpretation for f in A∪B is problematic however, if fA and fB do not agree
on the intersection of their domains. If they do agree on this intersection, we can define
fA∪B such that it assigns to every input the same output as fA does if the input is in the
domain of fA, or the output of fB if the input is in the domain of fB.

For pairs of structures in which the interpretation of the function symbols are compatible
in this way – we will call such structures composable – we define union and intersection
operators ∪ and ∩ as described above. Using these operators, witnesses and counterexamples
can be extracted as follows.

I Definition 11. If A and B are composable structures, E vw A ∪B, θ is an environment
and ϕ is an LFP formula such that E is evidence for A ∪B, θ α|=ϕ, then we call E ∩ A an
A-witness if α = t. We call it an A-counterexample if α = f.

S. Cranen, B. Luttik, and T. A. C. Willemse 87

If, from the context, it is clear which structure was used to extract the A-witness, we
simply refer to the resulting structure as a witness; likewise for counterexamples. A desirable
property of a witness is that it can be related to the structure from which it is derived.
Furthermore, a witness should contain all the information that is essential in proving the
same LFP formula ϕ.

I Theorem 12 ([6]). If A and B are composable, θ is an environment, ϕ is an LFP formula
over A ∪B, and C is an A-counterexample or A-witness for A ∪B, θ α|=ϕ, then

C vw A and C ∪B, θ α|=ϕ.

Usually, ϕ will be a closed formula, in which case the value of θ is irrelevant. In such cases,
we will not explicitly mention θ, but assume that an arbitrary environment is given. In the
following sections we will give an example of a formula that encodes stuttering equivalence
checking, in which case A and B are Kripke structures, and an example of a formula that
encodes ∃ECTL* model checking, in which case A is a Kripke structure, and B is a structure
that represents an ∃ECTL* formula. This approach differs from those in [3, 14, 15], in which
a different fixpoint formula is generated for every A and B.

4.1 Counterexamples for stuttering bisimulation checking
To illustrate the use of the ∪ and ∩ operators on structures, and to illustrate how counter-
examples can be extracted for an equivalence checking problem, we consider the problem
of checking that two systems are stuttering bisimilar. We use Namjoshi’s formulation of
stuttering bisimulation [21], because it already closely resembles our definition in LFP.

I Definition 13. Given a Kripke structure 〈A,AP,→, `〉, a relation X ⊆ A×A is a stuttering
bisimulation if and only if it is symmetric, and there exist a well-founded order 〈W,≺〉 and
some mapping rank : A×A×A→W such that for all s, t such that Xst:

`(s) = `(t) ∧ ∀u s→ u =⇒ ((Xut ∧ rank(u, u, t) ≺ rank(s, s, t)) ∨
∃v t→ v ∧ ((Xsv ∧ rank(u, s, v) ≺ rank(u, s, t)) ∨Xuv)).

States s and t are said to be stuttering bisimilar, denoted s ' t, if a stuttering bisimulation
exists that relates s and t.

I Proposition 1 ([6]). Let A be a Kripke structure 〈A,AP,→, `〉.

Φlr , [gfpXst.Xts ∧ `(s) = `(t) ∧
[lfpY st. ∀u s→ u =⇒ ((Xut ∧ Y ut) ∨

[lfpZsut. ∃v t→ v ∧ ((Xsv ∧ Zsuv) ∨Xuv))]sut]st]lr

If l and r are terms of A and s = lA and t = rA, then A |= Φlr if and only if s ' t.

Consider the following two Kripke structures, that are stutter trace equivalent, but not
stutter bisimulation equivalent.

L =
l0{a}

l1 {a} l2 {c}l3{b}
R =

r0{a}

r1{b} r2 {c}

Let A = L ∪R, and suppose that lL = l0 and rR = r0. Consider the following proof graph
for A |=/ Φlr.

CSL 2015

88 Evidence for Fixpoint Logic

〈f, X, [l0, r0]〉 〈f, Y, [l0, r0]〉 〈f, Z, [l0, l1, r0]〉
〈f, X, [l0, r2]〉
〈f, X, [l1, r2]〉

〈f, X, [l0, r1]〉
〈f, X, [l1, r1]〉

〈t,→, [l0, l1]〉 〈f, X, [l1, r0]〉

〈f, X, [r0, l1]〉

〈f, Y, [r0, l1]〉

〈f, X, [r2, l1]〉〈t,→, [r0, r2]〉

〈f, Z, [r0, r2, l1]〉
〈f, X, [r0, l3]〉
〈f, X, [r2, l3]〉

To extract evidence from this proof graph, we construct an evidence projection as per
Definition 9. That is, we construct a substructure B vw A which must contain at least those
states from L and R referred to in the proof graph (all states from L and R), and which
satisfies l0 → l1 and r0 → r2. This yields the following Kripke structure B as evidence. Note
that B ∩ L and B ∩R return the offending parts of L and R, respectively.

l0{a}

l1 {a} l2 {c}l3{b}

r0{a}

r1{b} r2 {c}

Observe that in B, l0 and r0 are again not stuttering bisimilar, and moreover, they can
be shown not to be equivalent with the same reasoning: the transition from l0 to a state
unrelated to r0 with label a cannot be mimicked by r0. All the states from A are retained
in the evidence, because the existential quantifier requires an explanation for the invalidity
of every X-node in the proof graph. Taking the projection of the proof graph minimised
with respect to B would yield evidence in which only the reachable states from l0 and r0 are
included.

Other proof graphs are possible, leading to different evidence. For instance, if we
had chosen 〈f, X, [l0, r0]〉 to depend on 〈f, X, [r0, l0]〉 (using the symmetry of stuttering
bisimulation), we could have obtained evidence in which only the edge r0 → r1 was retained.
The explanation here is that it is sufficient to show that r0 can reach an equivalence class
labelled with b, without moving through another class first, whereas l0 cannot do so.

We would like to remark that there are alternatives to our notion of evidence for bisimula-
tion and stuttering bisimulation. For instance, a common notion is a distinguishing formula
in Hennessy-Milner logic (for bisimulation [5]) or CTL*\X (for stuttering bisimulation [18]).
However, in our experience, such formulas tend to get very unwieldy and do not always offer
much insight. We believe that our notion of evidence can be a more practical alternative to
distinguishing formulas in such cases.

4.2 Counterexamples for LTL and ACTL* model checking
In [4], Clarke et al. noted that for certain model checking problems, instead of generating
substructures, one can generate counterexamples of a specific form: for LTL model checking,
counterexamples are usually defined as a single (possibly infinite) trace through the model
that does not satisfy the specification. These traces can again be seen as Kripke structures
that do not satisfy the desired property. For model checking ∀CTL* – a subset of CTL*
which adds to LTL universal quantification over branches – counterexamples consist of a
number of traces that are attached to each other in a tree-like fashion. More formally, a
tree-like counterexample is a Kripke structure that can be simulated by the system under

S. Cranen, B. Luttik, and T. A. C. Willemse 89

scrutiny, which does not satisfy the desired property, in which every strongly connected
component (SCC) consists of a single cycle, and of which the SCC decomposition is a tree.

In the remainder of this section, we show that these special types of counterexample
can be obtained from proof graphs. To simplify presentation, we consider the dual problem
of generating witnesses for ∃CTL*. Furthermore, to also capture the expressivity of the
ω-regular extensions used in [4], we consider the extended logic ∃ECTL* (originally presented
in [25]), which uses Büchi automata as primitives. We note that it is also possible to define
what follows directly for ∃CTL*, but this requires encoding the translation of LTL to Büchi
automata in first-order logic, as was done in [8].

An ∃ECTL* formula f can be described by a structure Bf over a domain that includes
at least one element for every subformula and every set of subformulas of f, and for each
subformula of the form E(B) a unique element for every state of B. We let Bf contain an
element representing AP and an element representing the set F of accepting Büchi states.
We assume that it also includes the usual relations on sets, relations to recover the structure
of formulas, and a ternary transition relation → for the Büchi automata. To distinguish
CTL* operators from Boolean connectives, we add a dot to the CTL* operators: ¬· for CTL*
negation, and ∧· ,∨· for CTL* conjunction and disjunction. A structured LFP encoding of the
∃ECTL* model checking problem is given below.

I Proposition 2. Let Φ be defined as:

Φsf , [lfpXsf.

(f ∈ AP ∧ f ∈ `(s))
∨ ∃g (f = ¬· g ∧ g /∈ `(s))
∨ ∃g,h (f = g∨· h ∧ (Xsg ∨Xsh))
∨ ∃g,h (f = g∧· h ∧Xsg ∧Xsh))
∨ ∃b (f = E(B(b)) ∧Ψsb)

]sf

Ψsb , [gfpY sb.

[lfpZsb.∃s′,b′,g s→ s′ ∧ b →g b′ ∧Xsg ∧
((b′ ∈ F ∧ Y s′b′) ∨ (b′ /∈ F ∧ Zs′b′))]sb]sb

Let A be a Kripke structure over AP, and let f be an ∃ECTL* formula over AP. If s is a
term of A and f is a term of B, and â = sA and b̂ = fBf , then A ∪Bf |= Φsf if and only
if A, â |= b̂.

Let G be a minimal proof graph for A ∪Bf |= Φsf . Firstly, the first element of all nodes in
G that are also in SX is equal to t. Notice that per Definition 5, G cannot contain cycles
that pass through S{X}. Because G is minimal, nodes from S{Y,Z} have exactly one successor
in S{Y,Z}. Therefore, the only cycles in G are cycles through S{Y,Z}, and every node in the
proof graph can be in at most one cycle, leading to the following property:

I Property 1. Let G be a minimal proof graph for A ∪Bf |= Φsf . Then every SCC in G
consists of a single cycle.

I Example 14. Consider the ∃ECTL* formula E(B(b0))∧· E(B(b1)), where b0 and b1 are
states of the Büchi automata below; the formula expresses that there are infinite y-paths
and infinite x-paths.

b0 b1

x y

k0

{x, y}
k1

{y}

CSL 2015

90 Evidence for Fixpoint Logic

〈t, X, [k0, E(B(b0))∧· E(B(b1))]〉〈t, X, [k0, E(B(b0))]〉

〈t, Y, [k0, b0]〉

〈t, Z, [k0, b0]〉

〈t,→, [b0, b0]〉

〈t, F, [b0]〉

〈t, X, [k0, x]〉

〈t,∈, [x, {x, y}]〉〈t,∈, [x, AP]〉

〈t, X, [k0, E(B(b1))]〉

〈t, Y, [k0, b1]〉

〈t, Z, [k0, b1]〉〈t, F, [b1]〉 〈t, X, [k0, y]〉

〈t,∈, [y, {x, y}]〉

〈t,∈, [y, AP]〉〈t, Y, [k1, b1]〉

〈t, Z, [k1, b1]〉 〈t, X, [k1, y]〉

〈t,→, [b1, b1]〉

〈t,→, [k0, k0]〉

〈t,→, [k0, k1]〉

〈t,→, [k1, k0]〉 〈t,∈, [y, {y}]〉

Figure 4 A proof graph explaining that state k0 satisfies E(B(b0))∧· E(B(b1)).

The state k0 of the Kripke structure satisfies the ∃ECTL* formula. Following Proposition 2,
Φk0(E(B(b0))∧· E(B(b1))) must therefore hold. Indeed, a proof graph explaining this is given
in Figure 4. This proof graph is minimal: none of its edges or nodes are redundant. The
proof graph contains two SCCs, and no cycle passes through nodes from S{X}. The witness
obtained from the proof graph of Figure 4, consisting of all Kripke structure states and
relations defined by the shaded proof graph nodes, is essentially the original Kripke structure.

Our goal is to obtain a tree-like witness from a proof graph for A ∪Bf |= Φsf , if state
â satisfies ∃ECTL* formula b̂. We do so by first finding a witness in which every SCC is
again a single cycle. We can however not use the witness obtained from G by Definition 11,
because disjoint cycles in G may correspond to cycles in A that share nodes. This may lead
to a witness with SCCs that are no longer simple cycles.

To ensure that SCCs become simple cycles, in [4], cycles that share a subset of their
nodes are ‘unrolled’. In ibid. this is done by running a model checking algorithm not on
A, but on a bisimilar indexed Kripke structure Aω, which contains for every cycle in A an
infinitely unrolled path. We adopt the same approach: we transform G to a proof graph for
Aω ∪Bf |= Φsf , and then use Definition 11 to extract a witness from this proof graph.

I Definition 15. Given a Kripke structure A = 〈A,AP,→, `〉, its corresponding indexed
Kripke structure Aω is the Kripke structure 〈Aω,AP,→ω, `ω〉 such that:

Aω = A× N,
→ω is such that 〈a, i〉 →ω 〈a′, j〉 iff a→ a′ (for all a, a′, i and j),
`ω is such that `ω(〈a, i〉) = `(a).

Note that every a ∈ A is bisimilar to all 〈a, i〉 ∈ Aω. Therefore, fixing some i ∈ N
and replacing every a ∈ A occurring as a parameter of a node in G by 〈a, i〉 yields a valid
proof graph Gi (for Aω ∪Bf). For distinct i and j, the sets of nodes of Gi and Gj that
have outgoing edges are disjoint, so Gi ∪ Gj is again a valid proof graph. By the same
reasoning, so is Gω =

⋃
i∈NG

i. Associate with every node v of G a distinct number k(v),
fixing k(〈t, X, [â, b̂]〉) = 0, and extend k to nodes of Gω by defining for v in G and v′ in Gω
that k(v′) = k(v) iff v′ is equal to v in which every a ∈ A is replaced by 〈a, i〉.

For every v in Gω ∩S{Z}, we replace every edge v → 〈t, V, [〈a, i〉, b]〉 with V ∈ {Y,Z} and
i 6= k(v) by v → 〈t, V, [〈a, k(v)〉, b]〉. Note that v also has a successor 〈t,→, [〈a′, i〉, 〈a, i〉]〉.

S. Cranen, B. Luttik, and T. A. C. Willemse 91

Replace this successor by the node 〈t,→, [〈a′, i〉, 〈a, k(v)〉]〉. Let Gt be the result of this
transformation, restricted to the part that is reachable from v0 = 〈t, X, [〈â, 0〉, 〈b̂, 0〉]〉. This
transformation preserves Property 1:

I Property 2. Every SCC in Gt consists of a single cycle.

Gt is a valid dependency graph again; the restriction to the reachable part from v0 is easily
seen to preserve the conditions of Definitions 3 and 5. In the replacements we made, only the
first and last conjunct in the right-hand side of the equation for Z are affected by a different
choice for s′. These two conjuncts are represented by the new successors we introduced,
satisfying the constraint from Definition 3.

To see that Gt is also a proof graph for Aω ∪Bf |= Φsf , notice that no ‘bad’ cycles were
introduced during the transformation: if we view proof graphs as Kripke structures in which
two nodes are labelled identically if and only if they differ only in the index of a state in Aω

(i.e., if they are of the form 〈t, V, [〈a, i〉, b]〉 and 〈t, V, [〈a, j〉, b]〉), then all identically labelled
nodes in Gω are bisimilar. Moreover, we only replaced edges v → u by v → u′ such that u
and u′ are bisimilar.

I Example 16. Consider the nodes 〈t, Z, [〈k0, j〉, b0]〉 in Gω. Note that these have edges
to 〈t, Y, [〈k0, j〉, b0]〉. Let k(〈t, Z, [k0, b0]〉) = 1. The transformation then yields edges
〈t, Z, [〈k0, j〉, b0]〉 → 〈t, Y, [〈k0, 1〉, b0]〉. Likewise, the successors 〈t,→, [〈k0, j〉, 〈k0, j〉]〉 are all
replaced with 〈t,→, [〈k0, j〉, 〈k0, 1〉]〉; see the small snippet of Gt depicted below (left). A
witness from Gt, as per Definition 11 is depicted below (right); note that it is tree-like.

〈t, Z, [〈k0, 0〉, b0]〉〈t,→, [〈k0, 0〉, 〈k0, 1〉]〉

. . .
〈t, Y, [〈k0, 1〉, b0]〉

〈t, Z, [〈k0, 1〉, b0]〉

. . .

〈t,→, [〈k0, 1〉, 〈k0, 1〉]〉

〈k0, 0〉{x, y}

〈k0, 1〉{x, y}

〈k1, 2〉 {y}

〈k0, 3〉 {x, y}

〈k1, 3〉 {y}

We now define a witness C as defined in Definition 11, i.e., C = ev(Gt)∩Aω. The following
theorem characterises the shape of C; the theorem essentially follows from a correspondence
between the transition relation of Gt and C.

I Theorem 17 ([6]). Every SCC in C consists of a single cycle and C is weakly connected.

If the SCC decomposition of C is not a tree, C can be transformed to a bisimilar, tree-like
structure Ct by duplicating SCCs with more than one incoming transition. A simulates Ct
because A is bisimilar to Aω, C vw Aω, and C is again bisimilar to Ct. The fact that f holds
on C follows from Proposition 2, so we may conclude that f also holds on the bisimilar Ct.

I Corollary 18. Ct is a tree-like witness.

In ∃ELTL model checking there is at most one Büchi automaton in the formula and
therefore at most one cycle in G. The SCC duplication described above is then unnecessary.

I Corollary 19. If f was an ∃ELTL formula, then C is a linear witness.

5 Concluding remarks

The diagnostics generation framework presented in this paper is inspired by Tan’s attempt
at diagnostics generation from support sets [23], which was shown to be flawed in [9]. The

CSL 2015

92 Evidence for Fixpoint Logic

diagnostics generation frameworks by Chechik and Gurfinkel [2], and Shoham and Grumberg
[22] generate counterexamples and witnesses for CTL, for the purpose of counterexample
guided abstraction refinement. The game-based approach of these frameworks is similar to
ours, but aimed at a specific application, and in case of [22], at efficient computation. Our
framework is more general in comparison, because it defines counterexamples and witnesses
for a large variety of model checking problems, and also provides a notion of evidence for the
more general setting of least fixpoint logic. Our contribution lies in providing a framework in
which diagnostics for a wider variety of problems can be understood in the same way, while
focusing less on how such diagnostics are obtained (although suggestions on how to do this
are given in [6]).

In order to define our notion of evidence, we have adapted the notion of proof graph from
[9] to include constructs that deal with negation. A side effect is that these proof graphs also
induce a semantics for non-monotone formulas; for instance, one could assert that the formula
[lfpXn. n = 0 ∨ ¬X(n− 1)]4 holds on the first-order structure 〈Z,−, 0〉, because there is a
proof graph that witnesses it. It would be interesting to investigate whether this yields a
usable semantics, and in particular, how it relates to the fixpoint theorem for non-monotonic
functions in [10].

Our notion of evidence projection (see Definition 9) yields that part of a first-order
structure that is relevant for the particular proof or refutation of a fixpoint formula captured
by a proof graph. In some cases, the evidence projection alone will provide sufficient insight
as to why the formula holds or does not hold, but in other cases it may be necessary to
combine the evidence projection with additional information from the proof graph. We leave
it as future work to further develop a theory of practical diagnostics based on the notions of
proof graph and evidence discussed here.

Acknowledgements. The authors would like to thank the CSL reviewers for their construct-
ive feedback and useful suggestions.

References
1 J. Brotherston and A. Simpson. Sequent calculi for induction and infinite descent. J. Log.

Comput., 21(6):1177–1216, 2011.
2 M. Chechik and A. Gurfinkel. A framework for counterexample generation and exploration.

STTT, 9(5-6):429–445, 2007.
3 T. Chen, B. Ploeger, J.C. van de Pol, and T.A.C. Willemse. Equivalence checking for

infinite systems using parameterized boolean equation systems. In CONCUR 2007, volume
4703 of LNCS, pages 120–135. Springer, 2007.

4 E.M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model checking. In
LICS 2002, pages 19–29. IEEE Computer Society, 2002.

5 R. Cleaveland. On automatically explaining bisimulation inequivalence. In CAV 1990,
volume 531 of LNCS, pages 364–372. Springer, 1991.

6 S. Cranen. Getting the point – Obtaining and understanding fixpoints in model checking.
PhD thesis, Technische Universiteit Eindhoven, 2015. Available at http://repository.
tue.nl/791780.

7 S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, J.W. Wesselink, and
T.A.C. Willemse. An overview of the mCRL2 toolset and its recent advances. In TACAS
2013, volume 7795 of LNCS, pages 199–213. Springer, 2013.

8 S. Cranen, J.F. Groote, and M.A. Reniers. A linear translation from CTL* to the first-order
modal µ-calculus. Theoretical Computer Science, 412(28):3129–3139, 2011.

http://repository.tue.nl/791780
http://repository.tue.nl/791780

S. Cranen, B. Luttik, and T. A. C. Willemse 93

9 S. Cranen, B. Luttik, and T.A.C. Willemse. Proof graphs for parameterised boolean equa-
tion systems. In CONCUR 2013, volume 8052 of LNCS, pages 470–484. Springer, 2013.

10 Z. Ésik and P. Rondogiannis. A fixed point theorem for non-monotonic functions. Theor-
etical Computer Science, 574:18–38, 2015.

11 O. Friedmann and M. Lange. The modal µ-calculus caught off guard. In TABLEAUX 2011,
volume 6793 of LNCS, pages 149–163. Springer, 2011.

12 C. Grabmayer. Relating Proof Systems for Recursive Types. PhD thesis, Vrije Univesiteit
Amsterdam, 2005.

13 E. Grädel. Model checking games. Electr. Notes Theor. Comput. Sci., 67:15–34, 2002.
14 J.F. Groote and R. Mateescu. Verification of temporal properties of processes in a setting

with data. In AMAST 1998, volume 1548 of LNCS, pages 74–90. Springer, 1999.
15 J.F. Groote and T.A.C. Willemse. Model-checking processes with data. Science of Com-

puter Programming, 56(3):251–273, 2005.
16 J.F. Groote and T.A.C. Willemse. Parameterised boolean equation systems. Theoretical

Computer Science, 343(3):332–369, 2005.
17 D. Janin. Automata, tableaus and a reduction theorem for fixpoint calculi in arbitrary

complete lattices. In LICS 1997, pages 172–182. IEEE Computer Society, 1997.
18 H. Korver. Computing distinguishing formulas for branching bisimulation. In CAV 1991,

volume 575 of LNCS, pages 13–23. Springer, 1992.
19 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
20 Y. Moschovakis. Elementary induction on abstract structures. North Holland, 1974.
21 K.S. Namjoshi. A simple characterization of stuttering bisimulation. In FSTTCS 1997,

volume 1346 of LNCS, pages 284–296. Springer, 1997.
22 S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and

3-valued abstraction-refinement. ACM Trans. Comput. Log., 9(1), 2007.
23 L. Tan. Evidence-Based Verification. PhD thesis, Department of Computer Science, State

University of New York, 2002.
24 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of

Mathematics, 5(2):285–309, 1955.
25 W. Thomas. Computation tree logic and regular omega-languages. In Linear Time, Branch-

ing Time and Partial Order in Logics and Models for Concurrency, School/Workshop 1988,
volume 354 of LNCS, pages 690–713. Springer, 1989.

CSL 2015

	Introduction
	Least fixpoint logic
	Evidence based on proof graphs
	Proof graphs
	Evidence

	Counterexamples and witnesses
	Counterexamples for stuttering bisimulation checking
	Counterexamples for LTL and ACTL* model checking

	Concluding remarks

