
Maximal Partition Logic: Towards a Logical
Characterization of Copyless Cost Register
Automata
Filip Mazowiecki1 and Cristian Riveros2

1 University of Warsaw, Poland
2 Pontificia Universidad Católica de Chile, Chile

Abstract
It is highly desirable for a computational model to have a logic characterization like in the seminal
work of Büchi that connects MSO with finite automata. For example, weighted automata are
the quantitative extension of finite automata for computing functions over words and they can
be naturally characterized by a subfragment of weighted logic introduced by Droste and Gastin.
Recently, cost register automata (CRA) were introduced by Alur et al. as an alternative model for
weighted automata. In hope of finding decidable subclasses of weighted automata, they proposed
to restrict their model with the so-called copyless restriction. Unfortunately, copyless CRA do
not enjoy good closure properties and, therefore, a logical characterization of this class seems to
be unlikely.

In this paper, we introduce a new logic called maximal partition logic (MP) for studying the
expressiveness of copyless CRA. In contrast to the previous approaches (i.e. weighted logics),
MP is based on a new set of “regular” quantifiers that partition a word into maximal subwords,
compute the output of a subformula over each subword separately, and then aggregate these
outputs with a semiring operation. We study the expressiveness of MP and compare it with
weighted logics. Furthermore, we show that MP is equally expressive to a natural subclass of
copyless CRA. This shows the first logical characterization of copyless CRA and it gives a better
understanding of the copyless restriction in weighted automata.

1998 ACM Subject Classification F.4.1. Computational logic

Keywords and phrases MSO, Finite Automata, Cost Register Automata, Weighted Automata,
Weighted Logics, Semirings

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.144

1 Introduction

Weighted automata are an extension of finite state automata to compute functions over
strings [8]. They have been extensively studied since Schützenberger [21], and its decidability
problems [15, 2], extensions [7], and applications [18, 6] have been deeply investigated. From
the logic-side, Weighted MSO logic (WMSO) has been introduced and investigated in [7, 14].
This logic is a quantitative extension of MSO to define functions over strings and its natural
fragment gives a logic-based characterization of weighted automata.

Recently, Alur et al. [3] introduced the computational model of cost register automata
(CRA), an alternative model to weighted automata for computing functions. The main
idea of this model is to enhance deterministic finite automata with registers that can be
combined with semiring operations, but the registers cannot be used for taking decisions
during a computation. Alur et al. show in [3] that a fragment of CRA is equally expressive
to weighted automata, but the general model is strictly more expressive.

© Filip Mazowiecki and Cristian Riveros;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 144–159

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.144
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Mazowiecki and C. Riveros 145

The main advantage of introducing a new model is that it allows to study natural
subclasses of functions that do not arise naturally in the classical framework. This is the
case for the class of copyless CRA that where proposed in [3]. The idea of the so-called
copyless restriction is to use each register at most once in every transition. Intuitively, the
automaton model is register-deterministic in the sense that it cannot copy the content of each
register, similar to a deterministic finite automaton that cannot make a copy of its current
state. Copyless CRA is also an excellent candidate for having good decidability properties.
It was stated in [3] that the existing proofs of undecidability in weighted automata rely on
the unrestricted non-deterministic nature of the model and, thus, it might be possible that
copyless CRA can have good decidability properties [3]. Despite that this is a natural and
interesting model for computing functions, research on this line has not been pursued further
and not much is known about copyless CRA.

In this paper, we introduce a new logic called Maximal Partition Logic (MP) to define
functions over strings. In contrast to the previous approaches (WMSO), MP is based on
a different set of quantifiers and it does not need to distinguish between a boolean or
quantitative level of evaluation (see [7, 14]). MP is based on regular quantifiers that partition
a string into maximal substrings, compute a subformula over each substring separately and
then aggregate these outputs with respect to a semiring operation. Recently in [5] a logic
with a similar flavor has been proposed but in a different context, namely for data words. The
authors define a syntactically restricted fragment of MSO formulas with two free variables
called rigid MSO-formulas. Each assignment of the free variables can be seen as choosing the
substrings between the assigned positions. The rigid formulas put restrictions in the chosen
set of substrings that coincides with our restriction of choosing maximal substrings.

WMSO has the drawbacks of its automata counterpart (weighted automata) – the lack of
good decidability properties [2, 7, 14, 15]. We show that MP is less expressive than WMSO
and even less expressive than weighted automata. Interestingly, MP can still define natural
functions and it is strictly more expressive than finitely ambiguous weighted automata, a
subclass of weighted automata, which has good decidability properties. In this paper we
study the expressiveness of MP and compare its expressiveness with WMSO and fragments of
WMSO. By this comparison, MP might be a good candidate for a logic with good decidability
properties.

The main result of this paper is that MP is equally expressive to a natural fragment of
copyless CRA, called bounded alternation copyless CRA (BAC). This fragment of copyless
CRA has good closure properties and, at the same time, it does not lose much in terms of
expressibility. Most examples in [3] and this paper are definable by BAC automata. This
result could also be the first step in proving the decidability of MP. For example a positive
answer to a decidability problem for copyless CRA will imply a positive answer for the same
decidability problem for MP.

Organization. In Section 2 we introduce CRA and some basic definitions. In Section 3 we
introduce MP and compare it with other formalisms. In particular we discuss the connection
between this logic and rigid formulas. In Section 4 we define BAC automata and prove
that that this class of automata is equally expressive to MP. In Section 5 we compare the
expressiveness of MP with WMSO. We conclude in Section 6 with possible directions for
future research. Due to the page limit some proofs are moved to the appendix, available
online.

CSL 2015

146 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

2 Preliminaries

In this section, we summarize the notation and definitions used for finite automata, regular
expressions, MSO logic and cost register automata.

Finite automata over strings. Let Σ be a finite set of symbols. We denote by Σ∗ the set
of all finite strings over Σ and by ε the empty string in Σ∗. The length of a string w ∈ Σ∗ is
denoted by ∣w∣. Furthermore, for any a ∈ Σ the number of a-symbols in w is denoted by ∣w∣a.

A finite automaton [11] over Σ∗ is a tuple A = (Q,Σ, δ, q0, F) where Q is a finite set of
states, δ ⊆ Q ×Σ ×Q is a finite transition relation, q0 is the initial state and F is the set of
final states. A run ρ of A is a sequence of transitions of the form: p0

a1Ð→ p1
a2Ð→⋯ anÐ→ pn where

(pi, ai+1, pi+1) ∈ δ for every i < n. We say that ρ (like above) is a run of A over w = a1 . . . an

if p0 = q0. Furthermore, we say that ρ is an accepting run if pn ∈ F . A string w is accepted
by A if there exists an accepting run of A over w. We denote by L(A) the language of all
strings accepted by A. A finite automaton A is called deterministic if δ is a function of the
form δ ∶ Q ×Σ→ Q.

Regular expressions. Let Σ be an alphabet. The syntax of regular expressions [11] over Σ
is given by:

R ∶= ∅ ∣ ε ∣ a ∣ R ⋅R ∣ R +R ∣ R∗

where a ∈ Σ. The semantics of regular expressions over strings is defined as usual [11]. We
write L(R) to denote the set of all strings that satisfy the regular expression R.

MSO. Let Σ be an alphabet. The syntax of an MSO-formula over Σ-strings is given by:

ϕ ∶= Pa(x) ∣ x ≤ y ∣ x ∈X ∣ (ϕ ∨ ϕ) ∣ ¬ϕ ∣ ∃x. ϕ ∣ ∃X. ϕ

where a ∈ Σ, x and y are first-order variables and X is a set of variables. Let w = a1 . . . an ∈
Σ∗ be a string. We represent the string w as a structure ({1, . . . , n},≤, (Pa)a∈Σ), where
Pa = {i ∣ ai = a}. Further, we denote by dom(w) = {1, . . . , n} the domain of w as a structure.
Given a finite set x̄ of first-order and second-order variables, an (x̄,w)-assignment σ is a
function that maps every first order variable in x̄ to dom(w) and every second order variable
in x̄ to 2dom(w). Furthermore, we denote by σ[x→ i] the extension of the (x̄,w)-assignment
σ such that σ[x → i](x) = i and σ[x → i](y) = σ(y) for all variables y ≠ x. Consider an
MSO-formula ϕ(x̄) and a (x̄,w)-assignment σ. We write w ⊧ ϕ(σ) if (w,σ) satisfies ϕ(x̄)
using the standard MSO-semantics.

Semirings and functions. A semiring is a structure S = (S,⊕,⊙,0,1) where (S,⊕,0) is
a commutative monoid, (S − 0,⊙,1) is a monoid, multiplication distributes over addition,
and 0 ⊙ s = s ⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say that
S is commutative. In this paper, we always assume that S is commutative. For the
sake of simplicity, we usually denote the set of elements S by the name of the semiring
S. As standard examples of semirings we will consider the semiring of natural numbers
N(+, ⋅) = (N,+, ⋅,0,1), the min-plus semiring N∞(min,+) = (N∞,min,+,∞,0) and the max-
plus semiring N−∞(max,+) = (N−∞,max,+,−∞, 0) which are standard semirings in the field
of weighted automata [8].

In this paper, we study the specification of functions from strings to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.

F. Mazowiecki and C. Riveros 147

weighted automaton, or CRA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗ where ⟦A⟧ is the semantics
of A over strings. For any string w, we denote by wr the reverse string. We say that a class
of functions F is closed under reverse [3] if for every f ∈ F there exists a function fr ∈ F
such that fr(w) = f(wr) for all w ∈ Σ∗.

Variables, expressions, and substitutions. Fix a semiring S = (S,⊕,⊙,0,1) and a set of
variables X disjoint from S. We denote by Expr(X) the set of all syntactical expressions that
can be defined from X , constants in S, and the syntactical signature of S. For any expression
e ∈ Expr(X) we denote by Var(e) the set of variables in e. We call an expression e ∈ Expr(X)
without variables (i.e. Var(e) = ∅) a ground expression. For any ground expression we define
⟦e⟧ ∈ S to be the evaluation of e with respect to S.

A substitution over X is defined as a mapping σ ∶ X → Expr(X). We denote the set
of all substitutions over X by Subs(X). A ground substitution σ is a substitution where
each expression σ(x) is ground for each x ∈ X . Any substitution σ can be extended to a
mapping σ̂ ∶ Expr(X) → Expr(X) such that, for every e ∈ Expr(X), σ̂(e) is the resulting
expression e[σ] of substituting each x ∈ Var(e) by the expression σ(x). For example, if
σ(x) = 2x and σ(y) = 3y, and e = x + y, then σ̂(e) = 2x + 3y. By using the extension σ̂, we
can define the composition substitution σ1 ○ σ2 of two substitutions σ1 and σ2 such that
σ1 ○ σ2(x) = σ̂1(σ2(x)) for each x ∈ X .

A valuation is defined as a substitution of the form ν ∶ X → S. We denote the set of
all valuations over X by Val(X). Clearly, any valuation ν composed with a substitution σ
defines an expression without variables that can be evaluated as ⟦ν ○ σ(x)⟧ for any x ∈ X .

In this paper, we say that two expressions e1 and e2 are equal (denoted by e1 = e2) if
they are equal up to evaluation equivalence, that is, ⟦ν̂(e1)⟧ = ⟦ν̂(e2)⟧ for every valuation
ν ∈ Val(X). Similarly, we say that two substitutions σ1 and σ2 are equal (denoted by σ1 = σ2)
if σ1(x) = σ2(x) for every x ∈ X .

Cost register automata. A cost register automaton (CRA) over a semiring S [3] is a tuple
A = (Q,Σ,X , δ, q0, ν0, µ) where Q is a set of states, Σ is the input alphabet, X is a set of
variables (we also call them registers), δ ∶ Q ×Σ → Q × Subs(X) is the transition function,
q0 is the initial state, ν0 ∶ X → S is the initial valuation, and µ ∶ Q → Expr(X) is the final
output function. A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X) represents
the current values in the variables of A. Given a string w = a1 . . . an ∈ Σ∗, the run of A over
w is a sequence of configurations: (q0, ν0) a1Ð→ (q1, ν1) a2Ð→ . . . anÐ→ (qn, νn) such that, for every
1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each x ∈ X . The output of A over
w, denoted by ⟦A⟧(w), is ⟦ν̂n(µ(qn))⟧.

The run of A over w can be equally defined in terms of ground expressions rather than
values. A ground configuration of A is a tuple (q, ς) where q ∈ Q and ς ∈ Subs(X) is a ground
substitution. Given a string w = a1 . . . an ∈ Σ∗, the ground run of A over w is a sequence of
ground configurations: (q0, ς0) a1Ð→ . . . anÐ→ (qn, ςn) such that for 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi),
ς0 = ν0 and ςi(x) = ς̂i−1(σi(x)) for each x ∈ X . We denote the output ground expression of A
over a string w by ∣A∣(w) = ς̂n(µ(qn)). Notice that, in contrast to ordinary runs, ground runs
keep ground expressions as partial values of the run. It is easy to see that ⟦A⟧(w) = ⟦∣A∣(w)⟧.

Copyless restriction and copyless CRA. We say that an expression e ∈ Expr(X) is copyless
if e uses every variable from X at most once. For example, x ⋅(y+z) is copyless but x ⋅y+x ⋅z
is not copyless (because x is mentioned twice). Notice that the copyless restriction is a
syntactical constraint over expressions. Furthermore, we say that a substitution σ is copyless

CSL 2015

148 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

if for every x ∈ X the expression σ(x) is copyless and Var(σ(x)) ∩Var(σ(y)) = ∅ for every
pair of different registers x, y ∈ X . Copyless substitutions, similar to copyless expressions, are
restricted in such a way that each variable is used at most once in the whole substitution.

A CRA A is called copyless if for every transition δ(q1, a) = (q2, σ) the substitution σ is
copyless; and for every state q ∈ Q the expression µ(q) is copyless, where µ is the output
function of A. In other words, every time that registers from A are operated, they can be
used just once. In the following, we give some examples of copyless CRA.

I Example 1. Let S be the max-plus semiring N−∞(max,+) and Σ = {a, b}. Consider the
function f1 that for a given string w ∈ Σ∗ computes the longest substring of b’s. This can be
easily defined by the following CRA A1 with two registers x and y.

x, y ∶= 0

max{x, y}

a
x ∶= 0
y ∶= max{x, y}

b
x ∶= x + 1
y ∶= y

A1 stores in the x-register the length of the last suffix of b’s and in the y-register the length of
the longest substring of b’s seen so far. After reading a b-symbol A1 adds one to x (the b-infix
has increased by one) and it keeps y unchanged. Furthermore, after reading an a-symbol
it resets x to zero and updates y by comparing the substring of b’s that has just finished
(i.e. the previous x-content) with the length of the longest substring of b’s (i.e. the previous
y-content) that has been seen so far. Finally, it outputs the maximum between x and y.

One can easily check that the previous CRA satisfies the copyless restriction and, therefore,
it is a copyless CRA. Indeed, each substitution is copyless and the final output expression
max{x, y} is copyless as well.

I Example 2. Again, let S be the max-plus semiring N−∞(max,+) and Σ = {a, b,#}.
Consider the function f2 such that, for any w ∈ Σ∗ of the form w0#w1# . . .#wn with
wi ∈ {a, b}∗, it computes the maximum number of a’s or b’s for each substring wi (i.e.
max{∣wi∣a, ∣wi∣b}) and then it sums these values over all substrings wi, that is, f2(w) =
∑n

i=0 max{∣wi∣a, ∣wi∣b}. One can check that the copyless CRA A2 defined below computes f2:

x, y, z ∶= 0

z +max{x, y}

x, y ∶= 0
z ∶= z +max{x, y}

a x ∶= x + 1
b y ∶= y + 1

In the above diagram of A2, we omit an assignment if a register is not updated (i.e. it keeps
its previous value). For example, for the a-transition we omit the assignments y ∶= y and
z ∶= z for the sake of presentation of the CRA. Similarly, we also omit the assignment x ∶= x
and z ∶= z for the b-transition. One should keep in mind these assignments because of the
copyless restriction.

The copyless CRA A2 follows similar ideas to A1: the registers x and y count the number
of a’s and b’s, respectively, in the longest suffix without # and the register z stores the

F. Mazowiecki and C. Riveros 149

partial output without considering the last suffix of a’s and b’s. When the last substring wi

over {a, b} is finished (i.e. there comes a #-symbol or the input ends), then A2 adds the
maximum number of a’s or b’s in wi to z (i.e. z ∶= z +max{x, y}).

Trim assumption. For technical reasons, in this paper we assume that our finite automata
and cost register automata are always trim, namely, all their states are reachable from some
initial states (i.e., they are accessible) and they can reach some final states (i.e., they are co-
accessible). It is worth noticing that verifying if a state is accessible or co-accessible is reduced
to a reachability test in the transition graph [19]; and this can be done in NLogSpace.
Thus, we can assume without lost of generality that all our automata are trimmed.

3 A quantitative logic based on partitions

3.1 Regular selectors
In this subsection we extend regular expressions for selecting intervals from a string. Our
approach is similar to the one in [9, 12], but we restrict the selection to just a set of intervals
(i.e. spans in [9]) instead of relations of intervals.

Fix a string w ∈ Σ∗. An interval of w is a pair (i, j) such that 1 ≤ i ≤ j ≤ ∣w∣. We
write Int(w) for the set of all intervals of w. For an interval (i, j), we denote by w[i, j] the
substring between positions i and j, by w[⋅, j] the prefix of w until position j and by w[i, ⋅]
the suffix of w starting from position i. For the sake of simplification, we define w[⋅, i] and
w[i, ⋅] equal to ε whenever i ∉ {1, . . . , ∣w∣}.

A regular selector (RS) over Σ (or just selector or triple) is a triple (R,S,T) where R,
S, and T are regular expressions over Σ. The set of all selectors over Σ is denoted by RSΣ.
We usually write R⟨S⟩T instead of (R,S,T). The main motivation of a selector (R,S,T) is
to select intervals (i, j) from a string w by dividing w into w = xyz such that x, y, and z
match R, S, and T , respectively, and w[i, j] = y. Specifically, we say that an interval (i, j)
of a string w is selected by a triple R⟨S⟩T if, and only if, w[⋅, i − 1] ∈ L(R), w[i, j] ∈ L(S),
and w[j + 1, ⋅] ∈ L(T). The set of all intervals of w selected by R⟨S⟩T is defined as:

Sel(w,R⟨S⟩T) = { (i, j) ∈ Int(w) ∣ w[⋅, i−1] ∈ L(R) ∧w[i, j] ∈ L(S) ∧w[j+1, ⋅] ∈ L(T) }

I Example 3. Let Σ = {a, b}. Suppose that we want to define all maximal intervals that
define substrings of b-symbols in a string. This can be defined by the following regular
selector:

((a + b)∗a + ε) ⟨b+⟩ (a(a + b)∗ + ε)
The purpose of a selector R⟨S⟩T is to extract all intervals that satisfy the regular

expression S under the context defined by R and T . In our logic, we restrict the semantics
of selectors to consider just intervals that are maximal in terms of containment. More
precisely, we say that an interval (i1, j1) is contained in an interval (i2, j2) (denoted by
(i1, j1) ⊑ (i2, j2)) if, and only if, i2 ≤ i1 and j1 ≤ j2. The ⊑-relation basically defines a partial
order between intervals and we can talk about the ⊑-maximal intervals of a set. We write
Max⊑(I) to denote the set of all maximal intervals in I with respect to the partial order ⊑
for any set I of intervals. Given a selector R = R⟨S⟩T and a string w, we define the set of
intervals selected by R over w under maximal semantics by:

Max(w,R⟨S⟩T) = Max⊑(Sel(w,R⟨S⟩T))

That is, under the maximal semantics we select just intervals that are maximal with respect
to the partial order ⊑. This new semantics simplifies selectors from Example 3.

CSL 2015

150 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

I Example 4. With the maximal semantics, we can easily define the the set of maximal
intervals that define substrings of b-symbols like in Example 3. By using the maximal
semantics we can define this set of intervals easily as follows:

(a + b)∗ ⟨b+⟩ (a + b)∗

We usually do not need the context R and T when we are using the maximal semantics. For
instance, in the previous example R and S were equal to (a + b)∗ and could be omitted. For
the sake of simplification, we usually omit R, T and the angular brackets whenever R and T
are both equivalent to Σ∗. We can simplify the above selector and just write b+ to select the
maximal intervals of b’s.

3.2 Maximal partition logic
For a fixed semiring S = (S,⊕,⊙,0,1) and an alphabet Σ we define the maximal partition
logic (MP). This is a logic for computing functions similar to weighted logics [7] but with a
different set of quantifiers that are parametrized by regular selectors. Formally, the formulas
of MP over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar:

ϕ ∶= s ∣ (ϕ⊕ ϕ) ∣ (ϕ⊙ ϕ) ∣ ⊕R. ϕ ∣ ⊙R. ϕ

where s ∈ S and R ∈ RSΣ is a regular selector. Similar as in [7], our formulas use constants
s ∈ S and moreover constants are the only atomic formulas in MP. Our logic also includes the
binary sum ⊕ and product ⊙ like it is common in weighted or quantitative logics [7, 14]. Of
course, the signature of these operators depends on the semiring that is chosen, for example
max{ϕ1, ϕ2} or ϕ1 + ϕ2 are MP-formulas for the max-plus semiring N−∞(max,+). The new
quantifiers here are the formulas of the form ⊕R. ϕ or ⊙R. ϕ. We say that ⊕R. and ⊙R.
are partition quantifiers. We stress again that the signature of these quantifiers depends on
the signature of the semiring. The idea here is that, over any input w ∈ Σ∗, R will select the
set of maximal intervals I of w and then ϕ will be computed over each substring w[i, j] for
(i, j) ∈ I. The outputs of ϕ over w[i, j] will be aggregated under the ⊕ or ⊙ operation. It
is important to remark that ϕ will be computed over a substructure of w and not over the
whole string. This differs from the classical logic semantics where an element, set or relation
is chosen and the subformulas are evaluated over the whole structure plus an assignment over
the variables. Here we have taken a different direction and we consider just the substructure
induced by the interval provided by the regular selector.

Formally, each MP-formula ϕ defines a function ⟦ϕ⟧ from Σ∗ to S. The semantics of
MP-formulas is defined recursively over any string w ∈ Σ∗ as follows:

⟦s⟧(w) ∶= s

⟦ϕ1 ⊕ ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊕ ⟦ϕ2⟧(w)

⟦ϕ1 ⊙ ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊙ ⟦ϕ2⟧(w)

⟦⊕R. ϕ⟧(w) ∶= ⊕
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

⟦⊙R. ϕ⟧(w) ∶= ⊙
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

for any MP-formulas ϕ, ϕ1, and ϕ2; and for any regular selector R over Σ. For the special
case when Max(w,R) = ∅, we define ⟦⊕R. ϕ⟧(w) = 0 and ⟦⊙R. ϕ⟧(w) = 1.

In the sequel we give some examples in order to understand the syntax and semantics of
the logic.

F. Mazowiecki and C. Riveros 151

I Example 5. Suppose that we want to compute the number of b-symbols in a string and
we want to specify this function with MP-formulas over the max-plus semiring N−∞(max,+).
Here, we use max{⋅, ⋅} and + for the binary operators, and Max R. ϕ, ∑R. ϕ for the partition
quantifiers. Then the number of b-symbols in a string can be computed easily with the
following formula:

ϕ1 ∶= ∑ b. 1

To understand ϕ1, we need to first understand the regular selector given by the simple
expression b. Recall that this is a shorthand for (a+ b)∗⟨b⟩(a+ b)∗. Thus, the regular selector
b is choosing all the maximal intervals with just one b-symbol, that is, all substrings of the
form b. Then for each b-symbol in the input the formula is outputting 1 and, by aggregating
them all, it is calculating the number of b-symbols in a string.

By definition for any fixed string u, a formula of the form ∑u. 1 counts how many times
the u-string appears in the input. It is interesting to compare how simple and readable is
this formula in comparison to any equivalent formula in other logics (e.g. weighted logics [7])
or other formalism (e.g. weighted expressions [20]) for computing function over strings.

MP also has the ability of defining regular properties in a simple way. For example, let R
be a regular expression and suppose one wants to output 1 if the input is definable by R
and 0 otherwise. This is defined by the expression ⊕ ε⟨R⟩ε. 1. Here, the prefix and suffix of
the selected interval are ε, thus the regular selector chooses the whole string depending if
it belongs to R. If the string belongs to R the formula outputs 1; otherwise it outputs 0.
Therefore, MP has a native use of regular expressions embedded in the language.

I Example 6. Suppose that one wants to compute the length of the maximum substring of
b-symbols. The following formula shows how to define this function in MP logic over the
semiring N−∞(max,+):

ϕ2 ∶= Max b+. ∑ b. 1

In the previous formula, the partition quantifier Max b+ is breaking the input into maximal
substrings of b-symbols and passing each substring to the subformula ∑ b. 1 that counts the
number of b-symbols in the substring. Finally we maximize over all maximal substrings of
b-symbols.

We want to highlight again how declarative is ϕ2 in comparison to other logics. Here the
words are partitioned into maximal substrings of b-symbols and the length of each substring
is counted. In the end it is maximized over all lengths.

The next example defines a more complicated function.

I Example 7. Let Σ = {a, b,#} and suppose that we want to compute the same function
as in Example 4, that is, for each subinterval between #-letters, we want the maximum
between its number of a- or b-symbols, and then sum these values over all intervals. This
complicated function can be easily defined by the following MP formula over the max-plus
semiring N−∞(max,+):

ϕ3 ∶= ∑ (a + b)+. max { ∑a. 1 , ∑ b. 1 }

One can easily understand the function from the definition of the MP-formula ϕ3. The first
quantifier ∑ (a + b)+ is dividing the word into maximal substrings of a- and b-symbols or,
in other words, substrings that are between #-symbols (or the prefix and the suffix). Then
for each of these substrings the subformula max { ∑a. 1 , ∑ b. 1 } is taking the maximum
between the number of a-symbols or b-symbols. In the end these values are summed over all
maximal substrings of a- and b-symbols.

CSL 2015

152 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

3.3 Design decisions behind MP
MP uses regular selectors for choosing intervals from the input and computing a subformula
over the selected substrings. Here we are taking two design decisions about this new logic:
(1) we decided to use regular expressions for selecting intervals and (2) we consider only the
maximal intervals. In the following we give evidence of how these decisions are related with
previous work.

Regular expressions have been used from the beginning for extracting intervals from
strings [1, 10]. For example, regular expressions are used in practice for matching substrings
from files or documents [10]. Similar to regular selectors, a RegExp-engine (like egrep)
parses a regular expression R and an input document D, and extracts all words from D that
match with R. RegExp-engines even use parentheses “(⋅)” for declaring that the subword
that matches the subexpressions between parentheses must be output. Furthermore, in
RegExp-engines the parentheses semantics is greedy, namely, they select the larger subword
that matches the subexpression inside parentheses. This semantics is similar to the maximal
semantics of regular selectors with the exception that the greedy-semantics is even more
restrictive since the selected interval depends on how the input is parsed from left-to-right [10].
Despite this fact, it is interesting that even a more restricted flavor of the maximal semantics
is already presented in practice which supports the decision of including it for MP.

Recently, regular expressions for substring selection have been considered in the context
of information extraction [9, 12]. In [9], the authors propose a regular expression language
enhanced with variables, called regex, to extract relations of substrings from an unstructured
document. Regular selectors can be seen as a restrictive subfragment of regex, where only
one variable is used. We note that we could have used regex language or any other formalism
with the maximal semantics for selecting intervals from a string. However, we believe that
regular selectors are very simple, flexible and concise, and they include the best features of
previous works without loosing expressibility [9].

Finally, we could have also chosen MSO logic with two free variables for selecting intervals
instead of regular expressions (i.e. with respect to the normal semantics), namely, for any
MSO-formula ϕ(x, y) to extract the set Sel(w,ϕ(x, y)) of all intervals (i, j) over a string
w such that: w ⊧ ϕ(i, j). Of course, both formalism for selecting intervals are equivalent.
Namely, it is easy to show that for every MSO-formula ϕ(x, y) there exists a finite set of
regular selectors R1, . . . ,Rn such that ⋃n

i=1 Sel(w,Ri) = Sel(w,ϕ(x, y)) and vice versa. Notice
that with this definition of selecting intervals by MSO formulas we can assume that formulas
additionally satisfy x ≤ y.

Regarding the maximal semantics of regular selectors, it is important to note that a
similar semantics was studied before. In [5] the authors define a subset of MSO formulas
with two free variables called rigid MSO-formulas. Formally, an MSO-formula ϕ(x, y) over
strings is called rigid if for all strings w ∈ Σ∗ and all positions i ∈ dom(w) there is at most
one position j ∈ dom(w) such that w ⊧ ϕ(i, j), and at most one j′ ∈ dom(w) such that
w ⊧ ϕ(j′, i); in other words, ϕ(x, y) defines two partial injective functions on dom(w). One
can easily check that intervals defined by a regular selector with the maximal semantics
are also definable by a rigid MSO-formula. Indeed, for any regular selector R suppose that
ϕR(x, y) is an equivalent MSO formula that defines the same set of intervals (i.e. with the
normal semantics). Then Max(w,R) = Sel(w,ϕ∗R(x, y)), where:

ϕ∗R(x, y) ∶= ϕR(x, y) ∧ ∀x′.∀y′. (ϕR(x′, y′) ∧ x′ ≤ x ∧ y ≤ y′)→ (x′ = x ∧ y′ = y)

The formula ϕ∗R(x, y) is restricting the intervals that satisfy ϕR(x, y) to be maximal. In
particular, one can easily check that ϕ∗R(x, y) is indeed a rigid formula. This implies that

F. Mazowiecki and C. Riveros 153

the maximal semantics can be expressed by rigid formulas. The next proposition shows that
rigid formulas can also be defined by sets of regular selectors with the maximal semantics.

I Proposition 8. For every regular selector R there exists a rigid formula ϕR(x, y) such that
Max(w,R) = Sel(w,ϕR(x, y)) for every w ∈ Σ∗. Furthermore, for every rigid formula ϕ(x, y)
there exists a set of regular selectors R1, . . . ,Rn such that Sel(w,ϕ(x, y)) = ⋃n

i=1 Max(w,Ri)
for every w ∈ Σ∗.

4 Automata-based characterization of MP

In [17] (see Corollary 1) it was shown that the class of functions defined by copyless CRA
is not closed under reverse, that is, the run of copyless CRA is asymmetric with respect
to the input. Intuitively, this fact is contrary to the spirit of a logical characterization
for a computational model: a logic should express properties over the whole string and
its expressiveness should not depend on the orientation of the input. This implies that a
characterization of copyless CRA in terms of a logic is far to be possible. To solve this,
we introduce the subclass of bounded alternation copyless CRA (in short BAC) which is a
restricted variant of copyless CRA. We show that BAC have good closure properties and,
moreover, this is the right model to capture the expressiveness of maximal partition logic.

The alternation of an expression e ∈ Expr(X) is defined as the maximum number of
switches between ⊕ and ⊙ operations over all branches of the parse-tree of e. Formally, let
⊗ ∈ {⊕,⊙} and ⊗̄ be the dual operation of ⊗ in S. We define the set of expressions Expr⊗0 (X)
with 0-alternation by Expr⊗0 = X∪S. For anyN ≥ 1, we define the set of expressions Expr⊗N(X)
as the ⊗-closure of Expr⊗̄N−1(X), namely, Expr⊗N(X) is the minimal set of expressions that
contains Expr⊗̄N−1(X) and satisfies e1 ⊗ e2 ∈ Expr⊗N(X) for all e1, e2 ∈ Expr⊗N(X). We denote
by ExprN(X) = Expr⊕N(X) ∪Expr⊙N(X) the set of all expressions with alternation bounded
by N .

We say that a copyless CRA A has bounded alternation if there exists N ∈ N such that
for every w ∈ Σ∗ it holds that ∣A∣(w) ∈ ExprN(X), that is, the number of alternations of all
ground expressions output by A is uniformly bounded by a constant. A copyless CRA A is
called a bounded alternation copyless CRA (in short BAC) if A has bounded alternation.
All the examples of copyless CRA presented in this paper have bounded alternation. For
example, functions in Examples 1 and 2 are part of the BAC-class.

Bounding the alternation of expressions or formulas is a standard assumption in logic [16]
and here we used it to syntactically restrict the expression constructed by a copyless CRA.
One can easily check that this syntactical property can be verified in NLogSpace in the
size of the copyless CRA. Indeed, a copyless CRA has unbounded alternation iff there exists
a loop that alternates between ⊙ and ⊕ in its transition graph. Of course, the existence of
such loops can be determined by standard reachability tests in NLogSpace [19].

The fact that we can express the BAC automata in Examples 1 and 2 by MP-formulas in
Examples 6 and 7 , respectively, is not a coincidence. In the following theorem, we present
the main result of the paper.

I Theorem 9. Maximal partition logic and bounded alternation copyless CRA are equally
expressive, that is:

for every MP-formula ϕ there exists a BAC Aϕ such that ⟦ϕ⟧ = ⟦Aϕ⟧;
for every BAC A there exists a MP-formula ϕA such that ⟦A⟧ = ⟦ϕA⟧.

Proof. We present here sketch proofs of the two directions. Due to the space limit, the full
proofs are moved to the appendix (available online).

CSL 2015

154 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

From logic to automata. Let ϕ be a MP-formula. We sketch the definition of a BAC A
that specifies the same function as ϕ. The proof is by induction over the size of ϕ. The
interesting case is when ϕ = ⊗R⟨S⟩T. ψ where R⟨S⟩T is a regular selector and ψ is an
MP-formula for which there exists a BAC B such that ⟦ψ⟧ = ⟦B⟧. The main idea behind
the definition of A is to keep many copies of the automaton B and each copy is responsible
for evaluating the formula ψ on intervals defined by R⟨S⟩T . For ⊗-aggregating the outputs
of the B-copies, A uses one additional register x∗ that, each time an interval is closed, the
output of the B-copy is ⊗-operated with x∗ and then stored in x∗.

Let AR, AS , and AT be the finite automata recognizing the regular languages R, S, and
T , respectively. The first issue we have to deal with is that the number of B-copies cannot
depend on the input string w. We prove that, for every k-position in w, the number of
maximal intervals defined by R⟨S⟩T and containing k is uniformly bounded. Moreover this
bound is universal for all strings, i.e., it depends only on the size of AS . To see this, suppose
that I is the set of maximal intervals defined by R⟨S⟩T and containing k. Furthermore,
suppose that the size of I is bigger than the number of states in AS . If we assign to every
interval in I the state of AS in position k, then there are two intervals i1 and i2 with the
same state assigned. It is easy to see that we can merge these two intervals into one interval
that is selected by R⟨S⟩T but is bigger than i1 and i2. This is clearly a contradiction with
the fact that both i1 and i2 are maximal.

The second issue is to recognize the maximal intervals selected by R⟨S⟩T while A is
reading the input. The main observation here is that one can rewrite R⟨S⟩T into a new
regular selector that does not needs maximal semantics, i.e., there exists a regular selector
R′⟨S′⟩T ′ that defines with the normal-semantics all maximal intervals selected by R⟨S⟩T .
Thus, we can assume that R⟨S⟩T is already in this form and we focus on all selected intervals.

Now that A does not have to deal with checking whether an interval is maximal or not,
it has to decide whether an interval will be selected by R⟨S⟩T . Of course, A can keep track
of runs of AR, AS , and AT over w to find new potential intervals selected by R⟨S⟩T . The
problem is that, in the end, the intervals can turn out to be spurious (e.g. the remaining suffix
does not belong to the language defined by T) and we cannot afford to keep all potential
intervals since the number of B-copies is bounded. To deal with this issue we use Theorem 2
in [17] which shows that BAC are closed under regular-lookahead, that is, the model can be
extended with regular look-ahead and this does not add more expressibility to the model.
This extension allows BAC to make decisions based on whether the remaining suffix of the
input word belongs to a regular language or not. By using this extension, A can determine
in advance whether an interval is going to be selected by R⟨S⟩T and solve the problem with
the spurious intervals.

The final automaton A works as follows. Whenever A finds a new interval selected by
R⟨S⟩T , it starts evaluating a B-copy over this interval. With regular look-ahead it also
checks if an interval is closing. If that is the case, then the output of the B-copy in charge of
this interval is aggregated with the additional register x∗ and the registers in this B-copy are
reset to the values defined by the initial function of B. Finally, the output function of A is
defined by aggregating x∗ with all intervals closed in the last step of A.

From automata to logic. Let A = (Q,Σ,X , δ, q0, ν0, µ) be a bounded alternation copyless
CRA. We sketch the definition of the formula ϕA that defines the same function as A. The
proof is by induction over the alternation bound N of A.

The first step is to understand the ground expressions defined by A. Let g be the
ground expression defined by the run of A on a string w. By applying the associativity and

F. Mazowiecki and C. Riveros 155

commutativity of S, one can show that g can be rewritten into an expression g∗ of the form
⊗c∈C c⊗⊗e∈E e for some operation ⊗ ∈ {⊕,⊙}, where C ⊆ S is a multiset of constants and
E is a multiset of expressions whose alternation is strictly lower than N . Interestingly, one
can define MP-formulas ϕ⊗C and ϕ⊗E each taking care of ⊗c∈C c and ⊗e∈E e, respectively. To
define ϕ⊗C , we use a set of regular selectors that chooses all 1-letter intervals where each
constant in C was generated by a transition of A. Here we define the selectors in such a way
that in each position we are able to retrieve the state and substitution used in the run of A.
The formula ϕ⊗C is then defined by aggregating the right constants (i.e. the ones in C) used
by substitutions of the run of A over w.

The formula ϕ⊗E requires more effort. For every expression e ∈ E we define a BAC Ae, a
modified variant of A, such that Ae outputs e on a substring w[ie, je]. We modify only q0,
ν0, and µ, and the other components X , Q and δ remain the same. Thus, the number of
new automata does not depend on the size of E but only on A. Given that the expressions
in E have alternation strictly less than N , then by induction we can find a formula ϕAe

for every automaton Ae. The main difficulty in the proof is to define regular selectors that
find the intervals (ie, je), where Ae or, more concretely ϕAe , must be applied. Indeed, it is
easy to define a set of expressions that find these intervals but the problem is the maximal
semantic, in particular, the set of intervals {(ie, je) ∣ e ∈ E} does not have to be a set of
maximal intervals. To solve this problem we define the intervals by rigid formulas instead of
using the maximal semantics. By Proposition 8, one can turn a rigid formula into a sum of
selectors that define the same set of intervals on every string.

Summing up, having the formulas ϕ⊗C and ϕ⊗E defined, it is easy to define the final formula
ϕA. Notice that for the base cases of the induction (i.e. when N = 0,1) we do not need the
formula ϕ⊗E and, therefore, ϕ⊗C includes the base case. Of course, there are some exceptional
cases not discussed in this proof-sketch because of space restrictions. The full proof includes
all these cases. J

Theorem 9 gives a logic-based characterization of bounded alternation copyless CRA.
This is useful to show new results in the automata model that are implications from the logic
counterpart. For example, one can easily show that MP is invariant under the orientation of
a word.

I Proposition 10. For every formula ϕ in MP there exists a formula ϕr such that for all
words ⟦ϕ⟧(w) = ⟦ϕr⟧(wr), where wr is the reverse word of w.

Interestingly, Proposition 10 and Theorem 9 implies that the BAC-class is closed under
reverse. Note that this result is unexpected if we try to prove it directly from the automata
model.

I Corollary 11. For every BAC A there exists a BAC Ar that computes the reverse function,
that is, ⟦A⟧(w) = ⟦Ar⟧(wr) for every w ∈ Σ∗.

The logic-based characterization of BAC and its good closure properties suggest that
these automata are a robust class in the world of weighted automata. In the next section,
we compare its expressibility with respect to weighted MSO and weighted automata.

5 Weighted MSO vs MP

In this section we compare MP with Weighted MSO, a quantitative logic that was proposed
as the logic counterpart of weighted automata. Recall that formulas of Weighted MSO [7]

CSL 2015

156 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

(WMSO) over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar (note that we use the modern syntax from [4, 14]):

θ ∶= ϕ ∣ s ∣ (θ ⊕ θ) ∣ (θ ⊙ θ) ∣ ⊕x. θ(x) ∣ ⊙x. θ(x) ∣ ⊕X. θ(X)

where ϕ is an MSO-formula over Σ, s ∈ S, x is a first-order variable, and X is a set of
variables. The syntax of WMSO is given by boolean formulas (for the MSO fragment) and
quantitative formulas (for the rest of the syntax). Let w = w1 . . .wn be a string over Σ and σ
a (x̄,w)-assignment. The semantics ⟦ϕ⟧(w,σ) of a boolean formula ϕ over w and σ is equal
to 1 if w ⊧ ϕ(σ) and 0 otherwise. The semantics of a quantitative formula θ over w and σ is
defined as follows.

⟦s⟧(w,σ) ∶= s

⟦(θ1 ⊗ θ2)⟧(w,σ) ∶= ⟦θ1⟧(w,σ)⊗ ⟦θ2⟧(w,σ) for ⊗ ∈ {⊕,⊙}

⟦⊗x. θ(x)⟧(w,σ) ∶=
n

⊗
i=1

⟦θ(x)⟧(w,σ[x→ i]) for ⊗ ∈ {⊕,⊙}

⟦⊕X. θ(X)⟧(w,σ) ∶= ⊕
I⊆[1,n]

⟦θ(X)⟧(w,σ[X → I])

I Example 12. One can compare WMSO with MP by defining WMSO formulas for the
functions in Examples 5 and 6. We start with the WMSO-formula for counting the number
of b-symbols in a string:

∑x.max{Pb(x) + 1,0} (1)

To understand formula (1), recall that in the semiring N−∞(max,+) the operations and
constants are defined as follows: 0 = −∞, 1 = 0, ⊕ = max and ⊙ = +. For any position i and
assignment x→ i, if i is labeled with b then Pb(x) evaluates to 0; otherwise Pb(x) evaluates
to −∞. Now it is easy to understand formula (1): we are summing 1 over all positions with
a b-symbol and 0 over all other positions.

To define the length of the maximum substring of b-symbols, as in Example 6, one can
write the following WMSO-formula:

Maxx.∑ y.max {(x ≤ y ∧ ∀z.(x ≤ z ∧ z ≤ y)→ Pb(z)) + 1,0} (2)

The formula (2) selects all pairs (x, y). The boolean subformula is satisfied if (x, y) is an
interval of b’s; then such a pair contributes 1, otherwise it contributes 0. For a fixed x the
formulas sums over all y that vary through all elements of the interval (x, y). Since we take
maximum over all variables x, we get the desired formula.

WMSO was proposed by Droste and Gastin as the logic counterpart of weighted automata
but it turns out to be more expressive. In [7] it is shown that by restricting the nesting
and alternation of semiring quantifiers ⊕x, ⊙x, and ⊕X one can capture exactly the
expressiveness of weighted automata. For more details we refer the reader to the paper [7].
We shall use their notation to define different fragments of WMSO. The fragment of WMSO
equally expressive to weighted automata is denoted WMSO[⊕X ⊙1

x]. Furthermore, in [14] it
was shown that two natural fragments of weighted automata, namely, finitely ambiguous
weighted automata and polynomial ambigous weighted automata are equally expressive to the
fragments denoted respectively by WMSO[⊙1

x] and WMSO[⊕x⊙1
x]. By results in [13, 14]

this shows that in terms of expressiveness, these fragments are strictly contained in each
other:

WMSO[⊙1
x] ⊊ WMSO[⊕x⊙1

x] ⊊ WMSO[⊕X ⊙1
x]

F. Mazowiecki and C. Riveros 157

We compare the expressiveness of MP with WMSO by exploiting the relation with copyless
CRA (Theorem 9). The first question is whether MP is more expressive than WMSO[⊕X ⊙1

x].
At a first sight, one could believe that this is possible, since the syntax of MP is symmetric
with respect to both semiring operations, that is, there is no syntactical restriction on ⊕- and
⊗-quantifiers. Interestingly, in terms of expressiveness, MP is contained in WMSO[⊕X ⊙1

x].
We prove this by showing that functions definable by copyless CRA are also definable by
weighted automata. This result combined with Theorem 9 proves the following proposition.

I Proposition 13. For every formula in MP there exists a formula in WMSO[⊕X ⊙1
x]

defining the same function.

The previous upper-bound opens the question of what is a good lower-bound for the express-
iveness of MP. An answer to this question is given in the next result which shows that MP
contains the fragment WMSO[⊙1

x]. We prove this result (see the appendix) by showing
that every function definable by a finitely ambiguous weighted automaton is definable by a
bounded alternation copyless CRA. This combined with the results in [14] and Theorem 9
proves the next proposition.

I Proposition 14. For every formula in WMSO[⊙1
x] there exists a formula in MP defining

the same function.

The examples presented in Section 3 tell us a bit more about the expressiveness of MP. For
example, it was shown in [13] that the function from Example 4 is not definable by any
finitely ambiguous weighted automata. This proves that WMSO[⊙1

x] is strictly contained in
MP. On the other hand, in [17] it is shown that there exists a function that is definable by
polynomial ambiguous weighted automata but it is not definable by any copyless CRA. This
shows that MP is strictly contained in WMSO[⊕X ⊙1

x] and, moreover, is does not contain
WMSO[⊕x⊙1

x]. Summing up, we get the following diagram representing the expressiveness
of MP in terms of WMSO.

WMSO[⊙1
x] WMSO[⊕X⊙1

x]

WMSO[⊕x⊙1
x]

MP
⊊ ⊊

⊊ ⊊

⊈

We conjecture that MP is not contained in WMSO[⊕x⊙1
x], such a result would complete

the diagram. We guess that this can be shown by proving that the function from Example 2
is not definable by any polynomial ambiguous weighted automata.

6 Conclusions and future work

In this paper we proposed and investigated maximal partition logic. Our main result shows
that MP is a logic characterization of BAC, a natural restriction of copyless CRA. MP has
no syntactical restrictions and, in contrast to Weighted MSO, there is no division between
the boolean and the quantitative parts of the logic. A mild restriction is put in the semantics
of the logic since we allow only maximal intervals. Thanks to this semantic our formulas are
usually more readable and easy to write (see Example 3).

For future work we would like to extend MP and copyless CRA beyond semirings. It
seems that in our proofs we need the commutativity, associativity and the neutral element of
each operator separately, but we do not use the distributivity. For this reason we think that
we could extend the semiring with additional operators and the results proved in this work

CSL 2015

158 Maximal Partition Logic: Towards a Logical Characterization of Copyless CRA

will still hold. The comparison of MP with WMSO shows that this logic is in the edge of
decidability. It lays between finite ambiguous weighted automata, a class of functions with
good decidability properties, and weighted automata for which most interesting problems are
undecidable. For this reason, we believe that for future work it is important to understand
the decidability properties of MP and copyless CRA.

Acknowledgments. We thank the anonymous referees for their helpful comments. In
particular for the comment simplifying the proof of Theorem 9. The first author was
supported by Poland’s National Science Center grant 2013/09/N/ST6/01170. The last
author was supported by CONICYT + PAI / Concurso Nacional Apoyo al Retorno de
Investigadores/as desde el extranjero – Convocatoria 2013 + 821320001 and by the Millenium
Nucleus Center for Semantic Web Research under grant NC120004.

References
1 V Alfred. Algorithms for finding patterns in strings. Handbook of Theoretical Computer

Science: Algorithms and complexity, 1:255, 1990.
2 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted auto-

mata? In ATVA, pages 482–491, 2011.
3 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei

Yuan. Regular functions and cost register automata. In Proceedings of the 2013 28th An-
nual ACM/IEEE Symposium on Logic in Computer Science, pages 13–22. IEEE Computer
Society, 2013.

4 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Logical charac-
terization of weighted pebble walking automata. In Proceedings of the Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
page 19. ACM, 2014.

5 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. On the use of guards for logics with
data. In Mathematical Foundations of Computer Science 2011, pages 243–255. Springer,
2011.

6 Karel Culik II and Jarkko Kari. Image compression using weighted finite automata. In
Mathematical Foundations of Computer Science 1993, pages 392–402. Springer, 1993.

7 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

8 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 1st edition, 2009.

9 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Spanners: a
formal framework for information extraction. In Proceedings of the 32nd symposium on
Principles of database systems, pages 37–48. ACM, 2013.

10 Jeffrey Friedl. Mastering regular expressions. " O’Reilly Media, Inc.", 2006.
11 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
12 Benny Kimelfeld. Database principles in information extraction. In Proceedings of the 33rd

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
156–163. ACM, 2014.

13 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unam-
biguity and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput.
Sci., 327(3):349–373, 2004.

F. Mazowiecki and C. Riveros 159

14 Stephan Kreutzer and Cristian Riveros. Quantitative monadic second-order logic. In Pro-
ceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 113–122. IEEE Computer Society, 2013.

15 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. In ICALP, pages 101–112, 1992.

16 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2004.
17 Filip Mazowiecki and Cristian Riveros. On the expressibility of copyless cost register auto-

mata. CoRR, abs/1504.01709, 2015.
18 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational

Linguistics, 23(2):269–311, 1997.
19 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1993.
20 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
21 M. P. Schützenberger. On the definition of a family of automata. Information and Control,

4:245–270, 1961.

CSL 2015

	Introduction
	Preliminaries
	A quantitative logic based on partitions
	Regular selectors
	Maximal partition logic
	Design decisions behind MP

	Automata-based characterization of MP
	Weighted MSO vs MP
	Conclusions and future work

