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Abstract
We consider weighted automata with both positive and negative integer weights on edges and
study the problem of synchronization using adaptive strategies that may only observe whether
the current weight-level is negative or nonnegative. We show that the synchronization problem
is decidable in polynomial time for deterministic weighted automata.
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1 Introduction

The problem of synchronizing automata [4, 13, 14] studies the following natural question:
“how can we gain control over a device when its current state is unknown?” Synchronizing
automata have classically been studied in the setting of deterministic finite automata (DFA),
aiming at finding short synchronizing words, i.e. finite sequences of input symbols that will
bring the automaton from any (unknown) state into a unique state. Here the existence of
a synchronizing word is NLOGSPACE-complete [4, 14], and polynomial bounds were given
on the length of the shortest synchronizing word. Yet, establishing a tight bound on the
length of the shortest synchronizing word has been an open problem for the last 50 years,
with Černý [4] conjecturing that words of length at most (n− 1)2, where n is the number of
states in the DFA, are sufficient.

We consider synchronization of deterministic weighted automata (WA), where their states
are composed of locations and integer weights, and where transitions have their associated
weights from Z. In this setting, weights are simply accumulated during the run of the system,
and thus it is impossible to find a word that will ensure synchronization to a single state:
for any two states with identical locations but different weights, e.g. (`, z) and (`, z + 1),
any word will – by the assumption of determinism – maintain the relative difference in
their weights. We therefore assume that during the synchronization, the controller has some
(minimal) information available concerning the current weight of the system; in particular,
we assume that the controller is able to observe whether the current weight is negative or
nonnegative. Under this assumption, a solution to the synchronization problem becomes
an adaptive strategy, in the sense that the next input to be selected may be based on the
previous weight-observations made by the controller.

Our main result is that the existence of a synchronizing strategy, using only observations
of the sign of the current weight-level, is decidable in polynomial time for deterministic WA.
This result relies on a polynomial time algorithm for detecting cycles of weight +1 and −1
in a given weighted graph.
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Figure 1 Blind Packman with moves north (n), south (s), east (e) and west (w).

Fig. 1 illustrates BP (Blind Packman), a WA with 6 locations and 4 actions. We have to
find a strategy that will (under partial observability of weights) synchronize infinitely many
states of the form (`i,j , z) where `i,j is one of the 6 locations and z ∈ Z is the starting weight.
First, we note that after an n-input, BP will be in one of the 3 (top-row) locations `i,2 for
i = 1, 2, 3. Given the cyclic, horizontal structure, it is also clear that no further sequence of
inputs from the set {n, e, s,w} can provide any additional information in which of the three
locations we are located. However, assuming the weight-level is observed to be nonnegative
(a similar case applies if the weight-level is observed to be negative), we may infer that BP
is in a state of the form (`i,2, z) with z ≥ 0. Noting the −1-loops from `1,2 and `2,2, it is
tempting to repeatedly offer n as input until the weight-level becomes negative. However,
the presence of the 0-loop at `3,2 makes it possible that such a strategy will not terminate.
Instead, we observe that the input-word (n · e)3 will constitute a (composite) cycle in BP
that makes the weight-level drop exactly by −1, regardless as to from which of the three
top-locations the word was executed. Thus, by repeating this input-word while constantly
observing the sign of the weight-level and terminating as soon as the weight-level becomes
negative, we are able to infer that the BP automaton is either in the location `3,2 in case
the observation changed after the input e, or in one of the states (`1,2,−1) or (`2,2,−1) if
the change happened after the input n. In the former case, we exercise the cycle e3 until a
change in observation brings us to (`3,2, 0). In the latter case, an e-input followed by a test
of the weight-level will reveal the true identity of the state; using ±1 cycles, it is now easy to
reach (`3,2, 0), thus completing the synchronization.

As illustrated by the above example, the presence of cycles with weights +1 and −1 is
essential for the synchronization under partial observability. As we shall demonstrate, the
existence of such cycles is decidable in polynomial time, and constitutes, with a few other
polynomial time checks, a necessary and sufficient condition for the synchronization of a WA.

Related work

Survey of results and applications for classical synchronizing words may be found in [13, 14].
Recently, there has been an increasing interest in novel extensions of the synchronization
problem. Volkov [9] studied synchronization games and priced synchronization on weighted
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144 Polynomial Time Decidability of Weighted Synchronization

automata with positive weights and finds a synchronizing word where the worst accumulated
cost is below a given bound. In [6, 7, 8], (infinite) synchronizing words were studied in
the probabilistic settings. Synchronization of weighted timed automata was studied in [5],
where location synchronization with safety conditions on the weight was considered, though
without the requirement on the weight synchronization. Finally, synchronization under
partial observability was recently studied in [12] but only in the context of finite automata
without weights.

2 Definitions

We shall now formally define the synchronization problem on deterministic and complete
weighted automata.

I Definition 1 (Weighted Automaton). A (deterministic) weighted automaton (WA) is a
tuple A = (L,Act,T ,W ) where

L is a finite set of locations,
Act is a finite set of actions,
T : L×Act → L is a transition function, and
W : L×Act → Z is a weight function.

A state of A is a pair (`, z) ∈ L × Z where ` is the current location and z the current
weight. Let S(A) be the set of all states of A. We write (`, z) a,w−−→ (`′, z′) if T(`, a) = `′,
W (`, a) = w and z′ = z + w.

A path in A is a finite sequence of states π = s0s1 . . . sn such that for all i, 0 ≤ i < n, we
have si

ai,wi−−−→ si+1 for some ai ∈ Act and wi ∈ Z. The last state sn in the path π is referred
to as last(π). The set of all paths is denoted by Paths(A). For the complexity analysis in
the rest of this paper, we assume a binary encoding of integers in A.

I Definition 2 (Observation Function). An observation function γ : S(A)→ O maps each
state of A to an observation from an observations set O.

Assume now a given observation function γ to the set of observationsO. Let π = s0s1 . . . sn

be a path in A. The observation function γ is naturally extended to an observation sequence
for π by

γ(π) = γ(s1)γ(s2) . . . γ(sn) .

I Definition 3 (Strategy). A strategy is a function δ : O+ → Act ∪ {done} that maps a
nonempty sequence of observations to a proposed action or the symbol done 6∈ Act, signaling
that no further actions will be proposed.

A path π = s0s1 . . . sn follows a strategy δ if si
ai,wi−−−→ si+1 for ai = δ(γ(s0s1 . . . si)) and

wi ∈ Z, for all i, 0 ≤ i < n. A strategy δ is terminating if it does not generate any infinite
path, in other words there is no infinite sequence where all its finite prefixes follow δ.

Given a subset of states X ⊆ S(A) and a terminating strategy δ, the set of all maximal
paths that follow the strategy δ in A and start from some state in X, denoted by δ[X], is
defined as follows:

δ[X] = {π = s0s1 . . . sn ∈ Paths(A) | s0 ∈ X,π follows δ and δ(γ(π)) = done} .

The set of final states reached when following δ starting from X is defined as last(δ[X]) =
{last(π) | π ∈ δ[X]}. Assuming a given observation function γ, we can now define a
synchronizing strategy that will bring the system from any unknown initial state to the same
single synchronizing state.
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I Definition 4 (Synchronization). Given a WA A, a strategy δ is synchronizing if δ is
terminating and |last(δ[S(A)])| = 1. Further, A is synchronizable if it admits a synchronizing
strategy.

We limit our study to systems where we see no information about the current location
and have a partial observability of the current weight so that we can distinguish whether its
value is negative or nonnegative. This is the minimal possible observation as if we cannot
observe anything about the weight then synchronization is impossible. Hence, we define the
observation function γ to the set of observations O = {<0,≥0} by

γ((`, z)) =
{
<0 if z < 0
≥0 if z ≥ 0 .

We are interested in deciding whether a given WA is synchronizable under this observation
function γ.

3 Polynomial Time Algorithm for Synchronizing

Let A = (L,Act, T,W ) be a WA. We write ` a,w−−→ `′ for `, `′ ∈ L whenever T(`, a) = `′

and w = W (`, a). A cycle in A starting in `0 is a path of the form `0
a0,w0−−−−→ `1

a1,w1−−−−→
. . . `n

an,wn−−−−→ `0. The weight of the cycle is
∑n

i=0 wi.
We now perform a series of checks in order to test whether we can synchronize from

any possible initial state. The tests will give a necessary and sufficient condition for
synchronization. At the end, we will argue that all the checks can be done in polynomial
time. Therefore, we provide a polynomial time algorithm for deciding synchronizability.
Furthermore, if all the checks succeed, we also construct a synchronizing strategy. It works
in several phases, each concerning some of the tests. However, we note that although our
algorithm decides synchronizability in polynomial time, the construction of a synchronizing
strategy as an explicit function is not possible due to the fact that the lengths of the
synchronizing sequences proposed by the strategy are unbounded (they depend on the initial
weight values). We instead provide an algorithm, describing the unbounded strategy from
any given initial state.

First, we check if the given A, viewed as a labelled directed graph, has the following
property.

Property 1. The graph A has a strongly connected component that is reachable from any
location in A.

If Property 1 is not satisfied, and such a bottom strongly connected component does not
exist, clearly there is no synchronizing strategy for A. From now on, assume that Property 1
holds. Taking advantage of this property, we define the first phase of the constructed
synchronizing strategy δ.

. Phase 1. For every location ` let home(`) be a sequence of actions that will bring ` into
this strongly connected component and for any sequence of actions x let `[x] be the location
that we will reach from ` after performing the sequence x (note that this is well defined due
to the fact that A is deterministic). Our synchronizing strategy will start by performing the
action sequence x1x2x3 . . . xn where

x1 = home(`1), x2 = home(`2[x1]), x3 = home(`3[x1x2]), . . . , xn = home(`n[x1x2 . . . xn−1])
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146 Polynomial Time Decidability of Weighted Synchronization

assuming that L = {`1, `2, . . . , `n}. We shall refer to this technique as sequentialization:
intuitively, even if the initial location is unknown, we can perform given actions for each
possible initial location, meanwhile tracking where we move if the actual initial location was
different, and execute these steps in a sequence for each possible location. /

I Example 1. We illustrate Phase 1 on the system below in Figure 2. We first execute
home(`1) = a. Meanwhile both `2 and `3 move to `2. Therefore, we proceed with home(`2) =
ba. Therefore, if we started in `3 we are now in `4, too. Since `4 is in a bottom strongly
connected component, home(`4) is the empty sequence and we are done.

`1 `2 `3

`4

a

b

b

a

a

b

a, b

Figure 2 Example of sequentialization (the word aba will bring all locations to `4).

Consequently, after Phase 1, we are for sure in the strongly connected component. Within
this component, we check the following property.

Property 2. Let A be strongly connected. In A, there is a cycle with weight 1 and a cycle
with weight −1.

I Lemma 5. If Property 2 is not satisfied then there is no synchronizing strategy.

Proof. Assume that A is synchronizable. Then there must be a positive and a negative cycle
in A. Further, for any location `, the states (`, 0) and (`, 1) can be synchronized. Therefore,
there is a path from both these states to some state (`′, z) for some z ∈ Z. Since A is
strongly connected, there is also a path from (`′, z) back to the state (`, z′) for some z′ ∈ Z.
Consequently, there are two cycles from ` with weights z′ and z′ − 1, respectively; moreover,
these weights can be chosen non-zero due to existence of a positive cycle. Hence the weights
of these two cycles are relative primes and in combination with the presence of a positive
and negative cycle in A, this implies the existence of cycles with the weights +1 and −1. J

From now on, assume that A is strongly connected and Property 2 holds. Observe that,
consequently, there are +1 and −1 cycles starting and ending in each location `. Let us
denote the corresponding sequences of actions by `+ and `−. The first, and rather naive, use
of these cycles is to get the weight component of the state close to zero.

. Phase 2. We extend our strategy δ by performing the ±1 cycles until we see a change
in our observation. Assuming we start with nonnegative observation, Phase 2 ends at the
moment when a negative observation is reached (and symmetrically for the other case). To
this end, assuming L = {`1, . . . , `n}, we employ the sequentialization technique again. We
first execute the word `−1 for the −1 cycle from `1 and keep track of the resulting locations
{`′1, . . . , `′n}. Note that their weights could have increased instead, say by at most c1. Next
we execute `′2

− exactly (c1 + 1)-times, so that even if the initial location was `2, after this
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many cycles the weight decreased no matter how it increased by performing `−1 . Meanwhile
`′3 changes to `′′3 and its weight could have in total increased by at most c2. We thus execute
`′′3
− exactly (c2 + 1)-times and so on for all locations cyclically (starting again at the first

location once we went through all of them) until the weight decreases below zero. This
process terminates since whenever performing cycles for a particular location, its weight (if
we indeed started in the respective location) drops below any previous value. /

I Example 2. We illustrate Phase 2 on the system below in Figure 3 when the observation
is nonnegative. We first execute `− = a. Meanwhile r loops under a and increases by c1 = 3.
Therefore, we proceed with repeating r− = bab for 4 times. This in turn makes ` return
again to ` with value increased by c2 = 4 · 3 = 12. Next we repeat `− for 13 times etc.

` r

b, 0

b, 0
a, −1 a, 3

Figure 3 Example illustrating Phase 2.

We are now guaranteed that right after Phase 2, the observation has just changed.
Therefore, we are now in a state (`, z) for some ` ∈ L and

0 ≤ z < M if γ((`, z)) = ≥0 or −M ≤ z < 0 if γ((`, z)) = <0

where M is the largest absolute value of any weight used in A. Therefore, there are finitely
many states we can be at. Now that we have a bound how far we are from zero, we can
make a better use of ±1 cycles and derive for each location, where we possibly might be at,
its weight.

. Phase 3. Once again, we employ sequentialization. Assuming first that we are in
location `1 ∈ L of a state (`1, z) with −M ≤ z < M , we can perform a sequence of
actions corresponding to −1 or +1 cycle from `1 (depending on whether γ((`1, z)) = ≥0 or
γ((`1, z)) = <0) until the observation changes at the end of the cycle when we are again in
`1. If we indeed started in the location `1, we know that we are now in the state (`1,−1)
if γ((`1, z)) = ≥0, or (`1, 0) if γ((`1, z)) = <0. If the weight in the reached states did not
change from nonnegative to negative (or the other way round) even after performing M
cycles, we know for sure that we were not in the location `1. The situation where we started
in a different location than `1 and the weight observation still changed as expected simply
adds an extra (false) hypothesis that can be eliminated (as shown later on in this section).

Now consider what would happen, until now, if we were instead in location `2 ∈ L at the
moment before we started to perform the −1 or +1 cycles for `1. After playing according to
the strategy above, we would be now in a possibly different location `′2 with weight in the
range [−M ′,M ′] where M ′ can be computed from M and the strategy performed so far. We
can now start performing −1 or +1 cycle from `′2 exactly as before in order to determine
the exact weight in this location (provided we started in `2) and we continue like this with
handling `3 etc., for each location in L. /

I Example 3. We illustrate Phase 3 on the system below in Figure 4. If the observation is
nonnegative, the current weight is at most 2 and we start with repeating bbaa, a −1 cycle
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for `, for at most M = 3 times. If the observation remains nonnegative after this sequence
(case 1) we must be in r. Otherwise (case 2), we stop when the observation changes and
if we are in ` the current weight is −1. Meanwhile r returned back to r and could have
increased its weight to at most 5 in case 2. Then we proceed with repeating bbaa at most 6
times to get for sure to (r,−1). In case 1, the observation is negative and the weight is at
least −2. Hence, we repeat aab, a +1 cycle for r. Say that the observation changes after two
repetitions. Then we are either in (r, 0) or in the meanwhile achieved (`,−3). (The latter is,
however, impossible here since the observation would remain negative.)

` r

b, 0

b, 3
a, −2 a, −1

Figure 4 Example illustrating Phase 3.

We conclude that after Phase 3 we must be in one of the states from the set

{(`1, z1), (`2, z2), . . . , (`n, zn)}

called the hypothesis set, where all zi’s are exactly known. We can w.l.o.g. assume that all
locations in the assumption are pairwise different. Indeed, we can perform a number of ±1
cycles from the location that appears in the hypothesis set more times and determine which
one of the weights is still feasible (at most one is). Note that the size of the hypothesis set is
thus at most |L|.

The next task is to distinguish between these hypotheses. For each pair of locations,
assuming their weights from the hypothesis set, there must be a way to synchronize them.
We present three tests such that at least one of them must be passed by each pair. All tests
refer to the following notion of difference graph.

I Definition 6 (Difference Graph). The difference graph of a WA A is a weighted graph
GA = (V,E) with E ⊆ V × Z × V such that V = L × L, and for every a ∈ Act we have(
(`, `′),W (`, a)−W (`′, a), (T (`, a),T (`′, a))

)
∈ E.

In other words, GA is a synchronous product of two A’s, where each edge weight is the
difference of edge weights in the first and the second component.

I Example 4. Consider the system on the upper part of Figure 5, parametrized by k ∈ Z.
We depict a part of its difference graph on the lower part of the figure.

We have already seen how to distinguish states with the same location using ±1 cycles.
For all pairs of locations (`1, `2) where `1 6= `2, we run the following three tests.

Property 3. There is a path in GA from (`1, `2) to (`, `) for some ` ∈ L.

Property 4. There is a path in GA from (`1, `2) to (`′1, `′2) such that there is a cycle of
nonzero weight (positive or negative) in GA starting in (`′1, `′2).

In order to define the last Property 5, we need additional notions and reasoning. If
Property 4 is not satisfied for a given pair (`1, `2) then every cycle in GA reachable from
(`1, `2) has zero weight. Therefore, whenever any cycle C in GA is performed in A starting
from location `1 or `2, the weight changes in both cases by the same value, called the projected
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`1

`2

r1

r2 r3

r4

a, k

b, 3

a, −k + 1 b, −k − 1 a, 0
b, 3

a, 1
b, −1

a, 0

b, 3

a, 1
b, −1

(`1, r1) (`2, r2) (`1, r3) (`2, r4)

. . . . . .

a, k

b, 0

a, −k b, −k a, k

b, 0

a, −k b, −k

Figure 5 Example of difference graph.

weight P(C) of C. Although GA may be disconnected, we may w.l.o.g. assume that (`1, `2)
is a node in GA that is a part of some strongly connected component (otherwise, we bring it
there, using sequentialization).

I Lemma 7. For every strongly connected component S of GA satisfying Property 2 and
not satisfying Property 4, there is a number p such that 1 ≤ p ≤ |L| and for any node
(pair of locations) in S there are cycles C+, C− starting in this node with P(C+) = p and
P(C−) = −p. Moreover, such p can be computed in polynomial time.

Proof. Let (`1, `2) be an arbitrary node in S. Due to Property 2, there is a cycle from `1 in
A with weight +1. We repeatedly perform this +1 cycle and follow the same behaviour from
(`1, `2) in GA. At the end of each cycle, the first component in GA will be in the location `1
and the second component in one of the |L| possible locations. By the pigeon-hole principle,
after performing the +1 cycle at most |L| times, we will find a repeated pair in GA. Hence
we found a cycle C+ in GA with zero weight in GA, due to the violation of Property 4, and
with the projected weight 0 < P(C+) ≤ |L|. By the same arguments, but using the fact
about the existence of −1 cycle in A, we can find a cycle C− in GA with the projected weight
0 > P(C−) ≥ −|L|.

Let us now argue that for each node we can choose cycles with absolute weights equal to
a fixed integer. Let pmin := min{|P(C)| | C is a cycle in S} denote the smallest projection
over all cycles in the strongly connected component S. We claim that for any pair of states
(`1, `2) in S, there are cycles in S starting in (`1, `2) with projected weights pmin and −pmin.
Indeed, note that there is a cycle C in S with |P(C)| = pmin and there are cycles D+ and
D− from (`, `′) that visit some state of C and have positive and negative projected weight,
respectively. Now by repeating C on the way either in D+ or in D−, we construct cycles E+

and E− with 0 < P(E+) ≤ pmin and 0 > P(E−) ≥ −pmin, respectively. By minimality of
pmin, we obtain P(E+) = pmin and P(E−) = −pmin. Note that, moreover, for each cycle C
is S, P(C) is a multiple of pmin. And vice versa, for each multiple of pmin, there is a cycle
with such projected weight in any node of S. Therefore, we can perform the pigeon-hole
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construction of a cycle (in polynomial time), obtaining a weight 0 < p ≤ |L|, and we are
guaranteed that from each node there are cycles with projected weights p and −p, respectively
(although p is not necessarily minimal). J

Consequently, for each strongly connected component S, we have 0 < p ≤ |L|. For S, we
define a reachability problem on a graph AS = (V,→) where

V = (L× {0, . . . , p− 1})× (L× {0, . . . , p− 1}) ∪ {separated}, and
for each v =

(
(`1, z1), (`2, z2)

)
and a ∈ Act, let v′ =

(
(`′1, z′1), (`′2, z′2)

)
where `′1 = T (`1, a),

`′2 = T (`2, a) and z′1 = z1 + W (`1, a) +α · p and z′2 = z2 + W (`2, a) +α · p for the unique
α ∈ Z such that the larger of z′1, z′2 lies in the interval [0, p− 1]; we set
v → v′ if v′ ∈ V , i.e. the lower weight is also nonnegative, and
v → separated, otherwise, i.e. the lower weight is negative.

We say that the graph AS is distinguishing for a pair of locations (`1, `2) ∈ S if from any
initial node

(
(`1, z1), (`2, z2)

)
, for each 0 ≤ z1, z2 ≤ p− 1, we can reach the node separated.

Note that the size of AS is at most |L|4 + 1, hence polynomial in |A|. Now we state the final
test.

Property 5. If (`1, `2) belongs to a strongly connected component S of GA then the graph
AS is distinguishing for (`1, `2).

I Example 5. Consider the difference graph of Figure 5. Observe that there is no path from
(`1, r1) to a pair with identical components, as well as no nonzero cycle. The length p is equal
2 here. If k ≥ 2 then we have ((`1, 0), (r1, 0))→ separated as action a immediately creates
a large enough difference. If k = 1, then separated is still reachable from ((`1, 0), (r1, 0)),
but only after aa is taken. Then both weights are 1 and the next action a creates the
distinguishing difference as the weights would now be 2, 1, i.e. transformed to 0,−1.

Supposing each pair of locations satisfies Property 3 or Property 4 or Property 5, we can
iteratively decrease the size of the hypothesis set until it becomes a singleton as shown in
the next phase.

. Phase 4. We employ sequentialization again. We pick any two states from the current
hypothesis set and eliminate at least one of them as described below. Meanwhile, we update
all remaining states from the hypothesis set to their current states. We repeat this procedure
until the hypothesis set becomes a singleton. Let (`1, z1) and (`2, z2) be the currently explored
pair from the hypothesis set.

First, if Property 3 holds we perform the sequence of actions that brings both locations
into a single location. Afterwards, if their respective weights are different, using the ±1
cycles, we detect at least one of the weights impossible as above. Thus we decrease the size
of the hypothesis set.

Second, if Property 4 holds then we can extend our strategy δ by executing the sequence
of actions that brings (`1, `2) to some (`′1, `′2) where we can repeatedly execute actions on
the nonzero cycle in GA until the weights in the pair of states reached after this sequence
are sufficiently (see below) far away from each other. Assume w.l.o.g. that the weights z′1, z′2
of the two reached states are both positive and z′1 < z′2 (the other situations are symmetric).
Now from the location with the lower weight (`′1), we enter a simple cycle in A with the
minimal (negative) weight and start executing it. This ensures that if we started from `1
or `2, then the observation will change to negative in n1 or n2 steps, respectively, where
n1 < n2 (since |z′2 − z′1| was sufficiently large) and we can compute these numbers. If the
observation changes after exactly n1 steps, we eliminate the state corresponding to `2 from
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the hypothesis set. If the observation changes after exactly n2 steps, we eliminate the state
corresponding to `1 from the hypothesis set. If the observation changes after a different
number of steps, we eliminate both.

Third, let Property 5 hold (and Property 4 not) and (`1, `2) be in a strongly connected
component S of GA. By Lemma 7, we have zero cycles in AS with projected weights p
and −p where 0 < p ≤ |L|. We perform these cycles until the larger weight is in [0, p− 1].
If the lower weight is negative at this moment, the current observation eliminates one of
the hypotheses. Otherwise, the weights in both states are in [0, p− 1]. Due to Property 5
we have a strategy to reach separated in AS , inducing a strategy in A by inserting the −p
and p cycles. Upon reaching separated in AS , the observation in A proves one of the two
hypotheses impossible. (If at any moment throughout the process, an unexpected change of
observation occurs, we eliminate the respective hypothesis from the set immediately.)

Once the hypothesis set is a singleton, we know precisely the current state. Finally, we
deterministically reach a fixed location and fixed weight (by performing ±1 cycles) and thus
synchronize. /

The stated properties are not only sufficient, but also necessary conditions for synchroniz-
ability:

I Lemma 8. Let A be a strongly connected WA satisfying Property 2. Then A is synchron-
izable if and only if for each pair of locations (`1, `2) either Property 3 or Property 4 or
Property 5 is satisfied.

Proof. The “if”-part follows from the previously constructed synchronizing strategy. For
the “only-if”-part, assume that there is a pair (`1, `2) satisfying neither Property 3, nor
Property 4, nor Property 5. By the last one, there are weights z1, z2 ∈ [0, p− 1] such that
the node separated is not reachable from the configuration init =

(
(`1, z1), (`2, z2)

)
in the

graph Ap. For a contradiction, assume that A admits a synchronizing strategy σ. When σ is
applied to initial states (`1, z1) and (`2, z2), we obtain two paths π1 and π2, inducing two
sequences of observations γ(π1) and γ(π2). Comparing the respective elements in the two
sequences, there are two cases.

In the first case, observations will never differ. Since σ is synchronizing, it brings both
states (`1, z1) and (`2, z2) eventually into the same state, in particular to the same location,
witnessing Property 3 and contradicting to our assumption.

In the second case, after a certain number of steps, the observations of the current states
(`′1, z′1) and (`′2, z′2) of the two path will differ, w.l.o.g. z′1 < 0 ≤ z′2. Since Property 4 is not
satisfied, by Lemma 7 there are cycles increasing and decreasing weight in both `1 and `2
by p. The two paths π1, π2 produced by the strategy σ in A induce two sequences π̂1, π̂2
where the ith elements are both increased/decreased by αi · p for some αi ∈ Z so that the
larger one is in [0, p− 1]. These sequences straightforwardly induce a path in AS , where S
is the strongly connected component of init. Since separated cannot be reached from init,
the smaller weight is always in [0, p− 1], too. Let ẑ′1, ẑ′2 denote the weights in AS when σ
achieves z′1, z′2. Since z′2 ≥ 0, ẑ′2 < p, and ẑ′2 ≡ z′2 (mod p), we obtain ẑ′2 ≤ z′2. Therefore, by
ẑ′2 − ẑ′1 = z′2 − z′1 we also get ẑ′1 ≤ z′1. Since z′1 < 0, we obtain ẑ′1 < 0, a contradiction. J

4 Complexity

We can now state our main theorem:

I Theorem 9. The synchronizability problem for deterministic weighted automata is decidable
in polynomial time.
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Proof. Properties 1-5 form sufficient and necessary conditions for the existence of a synchron-
izing strategy for A by Lemma 5 and Lemma 8. Moreover, all properties can be verified in
polynomial time. Indeed, the size of GA is polynomial in |A| and p necessary for constructing
AS is computable in polynomial time by Lemma 5, and the presence of ±1 cycles is decided
in polynomial time by Theorem 11 as discussed in the rest of this section. J

We now prove that the presence of ±1 cycles can be decided in polynomial time. We
assume a weighted graph G = (V,E) where V is a finite set of nodes and E ⊆ V × Z× V
are the edges written as u w−→ v whenever (u,w, v) ∈ E. A path in G is a sequence of edges
v0

w0−−→ v1
w1−−→ . . .

wn−1−−−→ vn. A weight of a path π is defined as |π| =
∑n−1

i=0 wi. A k-cycle is a
path π where v0 = vn such that k = |π|.

I Remark. We first briefly discuss related problems and point to severe differences, preventing
us from adapting the existing results. On the one hand, we note that the problem whether
there is a k-cycle, where k is a part of the input, is NP-hard (see full version of the paper). On
the other hand, it is a classical result [11] that existence of 0-cycles is decidable in polynomial
time. The result can be proven by a reduction to linear programming. The idea is the
following. For each transition, there is a variable encoding the frequency of the transition
on the desired cycle. Encoding of Kirchhoff’s flow-preservation laws then ensures that the
frequencies indeed induce a cycle. Finally, the sum of transition weights multiplied by the
frequencies is required to be 0. From every rational solution, we can by multiplication obtain
an integer solution, and thus a realizable cycle. Since 0 multiplied by any number remains
0, we thus obtain a 0-cycle. In contrast, in our setting, this idea cannot be used. Indeed,
suppose we require the frequency-weighted sum of edge-weights to be 1. Since the frequencies
and thus also the number 1 must be multiplied by an a priori unknown integer, in order
to obtain an integer solution, the resulting total weight is not 1. Asking instead directly
for an integer solution to the system is an instance of integer linear programming, which
is an NP-hard problem. Instead of using linear programming, we employ (as shown in the
full version of the paper) a number theoretic arguments and exploit Dijkstra’s shortest path
algorithm on graphs where weights are counted modulo various numbers. Finally, note that
although we can decide the existence of ±1-cycles in polynomial time, the length (number of
edges) of the shortest one may still be exponential. For instance, consider a single vertex
with two self-loops labelled by 2n + 1 and −2.

The discussion suggests that number theoretic techniques have to be applied. We
reduce our problem to the problem whether the greatest common divisor of all cycles in
a graph is 1. Formally, for a weighted graph G, let the period gcd(G) denote gcd{k | k ∈
Z, G has a k-cycle}.

I Proposition 10. For every strongly connected weighted graph G, there is a 1-cycle and a
−1-cycle in G if and only if there is a positive and a negative cycle in G and gcd(G) = 1.

Proof. The ‘Only-if’ direction is trivial. For the ‘If’ direction, gcd(G) = 1 yields by Bézout’s
identity an equality

1 = α1 · k1 + · · ·+ αn · km (1)

for some m ∈ N, αi ∈ Z, and ki being the weight of some cycle ci in G, and where, moreover,
some kp > 0 and some kn < 0. Note that these numbers can be extracted using the extended
Euclidean algorithm. First, we argue, we can choose all αi ≥ 0 so that Equation (1) still
holds.
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Whenever αi < 0 with ki positive, we increase αi by x · (−kn) for some x ∈ N so that
it becomes positive. Further, we increase αn by x · ki, thus preserving Equation (1). For
negative ki, we proceed similarly, using kp and αp instead. Since this procedure only increases
α’s, they all eventually become positive.

Nonnegative coefficients αi determine the number of repetitions of each cycle ci. Since
these cycles may be disconnected, this does not yield a single 1-cycle yet. To this end, we
consider a negative cycle visiting each vertex of G, guaranteed by assumptions. Let −ω
denote its weight. We construct a 1-cycle by executing this cycle and on the way, whenever
reaching a vertex where the cycle ci originates, we execute ci for (ω+1) ·αi times. A −1-cycle
is constructed similarly. J

I Theorem 11. The presence of both a 1-cycle and at the same time a −1-cycle in a weighted
graph G is decidable in polynomial time. Moreover, such cycles can be effectively constructed.

Proof. Deciding presence of a negative cycle and producing a witness can be done in
polynomial time using, for instance, Bellman-Ford algorithm (see e.g. [3]); the same holds
for positive cycles by swapping the signs.

The period of a graph can be computed in polynomial time, too. Indeed, the result for
unweighted graphs (all weights are one) was proven in [10]. Further, [1] suggests an extension
of the technique to weighted graphs. Since [10] is to the best of our knowledge not accessible
electronically (the only hardcopy of the report is located at library of Stanford University)
and the correctness of the extension to weighted graphs is not proven in [1], we also provide
our own proof, using supposedly different techniques. Full version of the paper gives the
details. J

I Remark. The polynomial time algorithm for deciding synchronizability is relying only a
single observation, testing whether the accumulated weight is negative or nonnegative. In
a more general setting, we may consider a richer set of observations checking whether the
weights are less-than/greater-or-equal to a given number of integer values. The techniques
in this paper can be directly reused to handle this more generation situation and the only
check that must be modified is Property 5. Here, if some observations are far away from
each other (the integers that they test have distance more than p) then it is sufficient to
check if at least of them succeeds, otherwise the graph AS is extended to include weights in
the range [0, kp− 1] where k is the number of observations that are close to each other so
that all of them are considered in the check for distinguishability of a given pair of locations.
As the observations are part of the input (of the problem description), this still creates a
graph with only polynomially many nodes.

5 Conclusion

We have shown that the synchronization problem for deterministic WA under (minimal)
partial observability is decidable in polynomial time. This result is based on a polynomial
time algorithm for deciding the existence of +1 and −1 cycles in a weighted graph and states
five necessary and sufficient conditions for synchronizability. All conditions are verifiable in
polynomial time, despite the fact that the length of the resulting synchronization strategy is
unbounded (as it depends on the initial weight values). The presented techniques are general
and allow for a straightforward adaptation to the situation when more observations become
available. Future research will include nontrivial extensions to nondeterministic WA and
synchronization under safety constraints, e.g. constraints on the weight-levels encountered
during the synchronization.
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