
On the Value Problem in Weighted Timed Games∗

Patricia Bouyer, Samy Jaziri, and Nicolas Markey

LSV – CNRS & ENS Cachan, France

Abstract
A weighted timed game is a timed game with extra quantitative information representing e.g.
energy consumption. Optimizing the weight for reaching a target is a natural question, which
has already been investigated for ten years. Existence of optimal strategies is known to be
undecidable in general, and only very restricted classes of games have been identified for which
optimal weight and almost-optimal strategies can be computed. In this paper, we show that
the value problem is undecidable in weighted timed games. We then introduce a large subclass
of weighted timed games (for which the undecidability proof above applies), and provide an
algorithm to compute arbitrary approximations of the value in such games. To the best of our
knowledge, this is the first approximation scheme for an undecidable class of weighted timed
games.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Timed games, undecidability, approximation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.311

1 Introduction

Timed automata [3] have been introduced in the early 1990’s as a powerful model to reason
about (the correctness of) real-time computerized systems. Timed automata extend finite-
state automata with several clocks, which can be used to enforce timing constraints between
various events in the system. They provide a convenient formalism and enjoy reasonably-
efficient algorithms (e.g. reachability can be decided using polynomial space), which explains
the enormous interest that they provoked in the community of formal methods. Timed
games [5] extend timed automata with a way of modeling systems interacting with external,
uncontrollable components: some transitions of the automaton cannot be forced or prevented
to happen. The reachability problem then asks whether there is a strategy to reach a
given state, whatever the uncontrollable components do. This problem is also decidable, in
exponential time.

Hybrid automata [2] are another extension of timed automata, involving hybrid variables:
those variables can be used to measure other quantities than time (e.g. temperature, energy
consumption, ...). Their evolution may follow differential equations, depending on the state
of the system. Those variables unfortunately make the reachability problem undecidable [18],
even in the restricted case of stopwatches, which are clocks that can be stopped and restarted.
Weighted (or priced) timed automata [4, 6] and games [19, 1, 11] have been proposed in
the early 2000’s as an intermediary model for modelling resource consumption or allocation
problems in real-time systems (e.g. optimal scheduling [7]). As opposed to (linear) hybrid
systems, an execution in a weighted timed model is simply one in the underlying timed
model: the extra quantitative information is just an observer of the system, and it does not

∗ This work has been partially supported by the EU under ERC project EQualIS (FP7-308087) and FET
project Cassting (FP7-601148).

© Patricia Bouyer, Samy Jaziri, and Nicolas Markey;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 311–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.311
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

312 On the Value Problem in Weighted Timed Games

5
`0

0 `1

10
`2

1
`3

0`4
x≤2

y:=0

y=0

y=0

x=2

+1

x=2

+7

Figure 1 A two-clock weighted timed game.

1 0
x>1

x:=0

Figure 2 A weighted timed game with
value 1 where Player 1 has no optimal strategy.

1 1 0
0<x<1

x:=0

x>0

Figure 3 A weighted timed game with
value 1 where Player 1 has a strategy to se-
cure weight strictly less than 1.

modify the possible behaviors of the system. Figure 1 displays an example of a weighted
timed game: each location carries an integer, which is the rate by which the weight increases
when time elapses in that location. Some edges also carry a weight, which indicates how
much the weight increases when crossing this edge. Dashed edges are uncontrollable, and
cannot be forced or prevented to occur. Notice that the constraints on edges never depend
on the value of the weight, but only on the values of the clocks.

While optimal weight and almost-optimal schedules can be computed in weighted timed
automata [4, 6, 8], the situation is less appealing in the context of weighted timed games:
indeed, it is in general undecidable whether a player has a strategy to reach a target with
total weight no more than a given value [14], even for timed games with only three clocks [9].
Optimal weight and almost-optimal winning strategies can be computed in restricted classes of
weighted timed games, such as games with strong divergence properties on the weight [1, 11],
or one-clock turn-based games [13, 22, 17, 15].

We point out a discrepancy in the set of results mentioned above: decidability results
concern the value problem (is the infimum, over all strategies of Player 1, of the accumulated
weight, less than or equal to some constant?), whereas undecidability results deal with the
existence problem (is there a strategy for Player 1 under which the accumulated weight is less
than or equal to some constant?). Both problems are obviously related, but the undecidability
of the existence problem does not entail the undecidability of the value problem: indeed,
there are obvious examples (see Fig. 2) – and more complex ones (see [12]) – where Player 1
has no optimal strategy for securing the exact value of the game. More surprisingly, there
also exist games where Player 1 has super-optimal strategies, which when combined with any
strategy of Player 2, achieves final weight strictly better than the value of the game. The
value of the game of Fig. 3 is 1, but if Player 1 plays a delay ε/2 when Player 2 (controlling
the dashed edge) played a delay of 1− ε in the first location, she gets final weight strictly
less than 1 against any Player-2 strategy.

Our contributions in this paper are the following:
We show that the value problem is undecidable: given a game and a rational c, no algorithm
can decide whether the value of the game is less than or equal to c. The proof of this
result shares similarities with the undecidability proof for the existence problem, but
requires a more careful analysis of the strategies of the players.
We exhibit a subclass of timed games for which arbitrary precise approximations of
the value of a game can be computed. This subclass is large enough to include the

P. Bouyer, S. Jaziri, and N. Markey 313

games that are used in the undecidability proof mentioned above. We believe that this
approximability result is an important result, since getting the exact value is rarely needed
in practice, and optimal strategies need not exist anyway. We notice that in all cases we
know of where the optimal weight can be computed (namely [4, 6, 8, 1, 11, 13, 22, 17, 15]),
only almost-optimal strategies are actually synthesized; hence it is not really meaningful
to know the precise value, and an approximation thereof is sufficient. As a side-result,
we get that the optimal weight is co-recursively enumerable in this subclass.

For lack of space, detailed proofs are deferred to the research report [12].

2 Definitions

2.1 Weighted timed games
Let X be a finite set of variables (called clocks in our context). A clock valuation for X is
a mapping X → R≥0. Given such a clock valuation v, d ∈ R≥0 and Y ⊆ X, we define the
valuations v + d and v[Y ← 0] respectively by (v + d)(x) = v(x) + d for every x ∈ X, and by
(v[Y ← 0])(x) = 0 if x ∈ Y and (v[Y ← 0])(x) = v(x) otherwise.

A clock constraint over a finite set of clocks X is a conjunction of atomic constraints of
the form x ./ c, where ./ ∈ {<,≤,=,≥, >} and c ∈ N. We say that a valuation v : X 7→ R≥0
satisfies a constraint x ./ c whenever v(x) ./ c; the semantics of conjunction is natural.
We also allow > and ⊥ as trivial clock constraints (which always evaluate to true and false,
respectively).

I Definition 1. A weighted timed game is a tuple G = 〈L, `0, Lf, X,E,E1, E2,wt〉 where L is
a finite set of locations; `0 ∈ L is the initial location; Lf ⊆ L is the subset of target locations;
X is a finite set of clocks; E ⊆ L×C(X)× 2X ×L is a finite set of edges, partitioned into the
edges E1 of Player 1, and the edges E2 of Player 2; and wt : L ∪E → Q≥0 assigns a value to
every location and to every edge. We assume that for any ` ∈ L and any v ∈ RX≥0, there is a
transition (`, g, r, `′) ∈ E such that v |= g.

The game is turn-based whenever L can be partitioned into L1 and L2 such that all the
edges in E1 (resp. E2) have their sources in L1 (resp. L2).

The semantics of such a weighted timed game is defined as a game on an infinite
graph: a configuration of G is a pair (`, v) consisting of a location and a clock valuation
of X. The configuration (`0,0), where valuation 0 assigns 0 to every clock, is the initial
configuration. A target configuration is a configuration (`, v) where ` ∈ Lf and v is any
clock valuation. For any e = (`, g, Y, `′) ∈ E and d ≥ 0, there is a transition (`, v) d,e−−→(`′, v′)
whenever v + d |= g and v′ = v[Y ← 0]. In that case, we say that action (d, e) is enabled
at (`, v). The weight of such a transition is wtG

(
(`, v) d,e−−→(`′, v′)

)
= d · wt(`) + wt(e).

A run (or path) in G is a finite or infinite sequence of consecutive transitions. A run is
initial whenever it starts in (`0,0). If ρ is finite, we write last(ρ) for its last configuration.
We write FPathG(`, v) for the set of finite runs in G starting in configuration (`, v). We write
FPathG for the set of all finite runs in G. Given a run ρ, we write ρ|f for the prefix of ρ ending
in the first target configuration it reaches (or ρ|f = ρ if no target location is visited along ρ).
If ρ is a finite run, its weight, written wtG(ρ), is defined as the sum of the weights of all its
intermediary transitions. If ρ is an infinite run, its weight is +∞ if it does not visit a target
configuration, and it is wt(ρ|f) otherwise.

We now explain how the game is played between Player 1 and Player 2. Let p ∈ {1, 2}.
A strategy for Player p is a mapping σp : FPathG → (R+ ×Ep)∪ {⊥} such that for every run

CONCUR’15

314 On the Value Problem in Weighted Timed Games

ρ ∈ FPathG , the action σp(ρ) is enabled at last(ρ). The special value ⊥ is used in case no
action is enabled for Player p (and only in this case). We write StratGp for the set of strategies of
Player p in G. The (unique) outcome of a pair of strategies (σ1, σ2) ∈ StratG1×StratG2 from some
configuration s, denoted OutG((σ1, σ2), s), is the unique infinite run ρ = s0

d1,e1−−−→s1
d2,e2−−−→ . . .

such that s0 = s and for every n ∈ N, writing ρ≤n for s0
d1,e1−−−→s1

d2,e2−−−→ . . . sn, it holds:
if for some p ∈ {1, 2}, σp(ρ≤n) = ⊥ , then necessarily σ3−p(ρ≤n) = (d, e) (it cannot be ⊥,
according to our definitions), and (dn+1, en+1) = (d, e);
if σ1(ρ≤n) = (d1, e1) and σ2(ρ≤n) = (d2, e2), then dn+1 = min(d1, d2). Then the action
of the player with the smallest delay is selected: if dp < d3−p with p ∈ {1, 2}, then
en+1 = ep, whereas if d1 = d2 then en+1 = e2. This last condition expresses a priority
given to Player 2 (this choice is arbitrary; other variants, e.g. with non-determinism [16],
could be handled similarly).

Given two strategies (σ1, σ2) ∈ StratG1 × StratG2 , their joint weight from configuration s is
defined as the weight of their outcome from s. We write wtG((σ1, σ2), s) = wt(OutG((σ1, σ2), s).
If σ1 (resp. σ2) is a Player-1 (resp. Player-2) strategy, we define its weight from s as:

wtG(σ1, s) = sup
σ′

2∈StratG
2

wtG((σ1, σ
′
2), s) wtG(σ2, s) = inf

σ′
1∈StratG

1

wtG((σ′1, σ2), s)

We then define the optimal weight for Player 1 (resp. Player 2) in s as follows:

optwt1
G(s) = inf

σ1∈StratG
1

wtG(σ1, s) optwt2
G(s) = sup

σ2∈StratG
2

wtG(σ2, s)

One easily notices that optwt1
G(s) ≥ optwt2

G(s) for any s. The converse does not hold in
general, but it holds for the class of turn-based games, thanks to Martin’s theorem [20].
In the sequel, we call optwt1

G(s) the value of the game from s (even in the case where
optwt1

G(s) 6= optwt2
G(s)), and write it valG(s). In the sequel, for all the notations introduced

in this paragraph, we may omit to mention the configuration s in case we mean the initial
configuration (`0,0). A strategy σ1 of Player 1 is said optimal whenever wtG(σ1) = valG .
Given ε > 0, σ1 is said ε-optimal whenever wtG(σ1) ≤ valG + ε. Optimal strategies need not
exist, first due to strict clock constraints, or due to more complex convergence phenomena
that may happen.

I Example 2. Consider the weighted timed automaton Gex of Fig. 1, and initial configuration
s0 = (`0,0). Locations of Player 1 (resp. Player 2) are depicted with circles (resp. squares),
and target location is marked with a double circle. Weight information labels the locations
and the transitions (if the weight is 0, then it is omitted on the picture). In this game,
Player 1 always reaches the target state. For minimizing the weight, the only choice she
has is the time at which she takes the transition leaving `0. Then Player 2 decides either to
switch to location `2 or to location `3. We can write the following equation:

optwt1
Gex

= inf
0≤t≤2

max(5t+ 10(2− t) + 1, 5t+ (2− t) + 7) = 14 + 1
3 .

The optimal strategy for Player 1 is to fire the first transition when x = 4
3 .

2.2 Decision problems
In the following, a threshold is a pair (./, c) (which we more often write ./ c) with ./ ∈
{<,≤,=,≥, >} and c ∈ Q.

P. Bouyer, S. Jaziri, and N. Markey 315

I Definition 3 (existence problem). Given a weighted timed game G and a threshold ./ c, the
existence problem asks whether there is a strategy σ1 for Player 1 s.t. for every strategy σ2
for Player 2, it holds wtG(σ1, σ2) ./ c.

I Definition 4 (value problem). Given a weighted timed game G and a threshold ./ c, the
value problem asks whether optwt1

G ./ c.

The existence problem has been shown undecidable (for threshold ≤ c) 10 years ago [14, 9].
In the present paper, we extend this undecidability result to the value problem. We then
introduce a large subclass of weighted timed games (imposing a technical condition on the
accumulated weight along cycles), and propose an algorithm for computing an approximation
(up to any ε > 0) of any game in this subclass, together with almost-optimal strategies.
Based on this approximation algorithm, we prove that the value problem for threshold ≤ c is
co-recursively enumerable on our subclass.

3 Undecidability of the value problem

In this section we show that the value problem in weighted timed games is undecidable. More
precisely, we reduce the non-halting problem for a two-counter machine to the value problem
of weighted timed games with threshold ≤ c. Our reduction adapts an earlier reduction
of the halting problem for a two-counter machine to the existence problem for weighted
timed games [9]. The correctness proof makes use of more refined arguments developed in
Section 3.2.

3.1 Reduction
We assume the reader is familiar with the model of counter machines, whose (non-)halting
problem is known to be undecidable [21]. We fix a deterministic two-counter machineM, and
we define a three-counter machineM?, which is obtained by adding toM a third counter,
and by inserting an incrementing instruction for this counter after each transition of the
original machineM. In particular,M halts if and only ifM? halts.

Our reduction consists in mimicking the behaviour of the deterministic three-counter
machine M? using a (turn-based) weighted timed game GM? : the role of Player 1 is to
simulate the execution ofM?, resetting the clocks at well-chosen times so that the counter
values ci are encoded as clock values 1/2ci when entering selected locations. The role of
Player 2 is to check that Player 1 simulates the run of the two-counter machine correctly,
and in particular that she accurately updates the values of the clocks. At any time, Player 2
can decide to stop simulating the counter machine and leave the game, resulting in a final
weight 3 + ε, where ε is positive if Player 1 did not simulate the run ofM? correctly. Player 1
in turn can decide to stop the simulation and to leave the game at any time, securing a final
weight 3 + αN , where αN > 0 tends to zero when the length N of the execution simulated so
far tends to +∞.

If the machine does not halt, Player 1 can accurately simulate the machine for a large
number of steps, before leaving the game when αN < ε. Hence for any ε > 0, Player 1 can
secure final weight at most 3 + ε, and the value of the game is 3. Conversely, if the machine
does halt, its unique computation has finite length N ; our construction enforces that Player 1
will not be able to secure final accumulated weight better than 3 + βN for some βN > 0
(which only depends on N), yielding value 3 for the game.

We now explain this construction in more details. The construction is based on a few
simple modules that we then plug together. Those modules explicitly use some clocks,

CONCUR’15

316 On the Value Problem in Weighted Timed Games

0 1

Y=1,Y :=0 Y=1,Y :=0

x=1,x:=0t:=0 t=1

module Add+(x)

1 0

Y=1,Y :=0 Y=1,Y :=0

x=1,x:=0t:=0 t=1

module Add−(x)

0 1 1 0
Add+(z) Add+(z) Add−(x)

Add−(z) Add−(z) Add+(x)

t:=0
t=1t=1

t:=0

module Test(x = 2z)

t:=0

Figure 4 Modules Add+ and Add−: the weight is increased by x0, resp. 1−x0 (x0: initial value of
x when entering the module). Module Test(x = 2z): Player 2 can increase the cost by 3 + |x0− 2z0|.

0
q, α

t:=0

Y=1,Y :=0

0

Y=1,Y :=0

0

Y=1,Y :=0

0 0
q′, α′

x=1,x:=0 z:=0 t=1 t=1
t:=0

Test(x = 2z)
t=1

module instr(q, α)

Figure 5 Module instr(q, α) encoding an incrementing transition (q, i, q′).

while some other clocks are only useful for the global reduction; the values of the latter are
then preserved by each module, thanks to self-loops on all locations (we symbolically write
Y = 1, Y := 0 to indicate that each other clock is reset when it reaches value 1) and to an
(implicit) global invariant requiring that no clock may exceed 1.

3.1.1 Comparing clock values
As sketched above, Player 2 is in charge of checking that Player 1 updates the clocks so as
to preserve the encoding x = 1/2c (c is a counter value). When incrementing this counter,
this amounts to checking that clock z (after the increment) equals x/2. Following the ideas
of [9], we build a module Test(x = 2z) in which Player 2 can achieve final accumulated
weight 3 + |x− 2z|. In other words, the final weight is 3 if x = 2z when entering this module,
and it is strictly more otherwise. Technically, as shown on Fig. 4, this is achieved by offering
two branches to Player 2: one in which the final weight is 3 + x − 2z and one where it is
3 + 2z− x. Hence Player 2 can enforce cost 2 + |x− 2z|. Accumulating these weights is easily
achieved by elapsing delays x, z, 1− z and 1− x in locations with local weights 0 and 1.

3.1.2 Incrementing and decrementing counters
Incrementing counter c is achieved by asking Player 1 to reset some clock z at a well-chosen
time, in such a way that z = x/2 when Player 2 is given the opportunity to enter the Test
module. The new value of the counter is then encoded by clock z.

Figure 5 displays the module used for encoding increments: clock t serves as a tick (t = 0
when entering the module, and t = 1 at the end); clock x encodes the value of the counter
initially (that is, x = 1/2c when entering the module), while clock z is used to encode the
value of the same counter after the increment (hence z = x/2 at the end of the module).

P. Bouyer, S. Jaziri, and N. Markey 317

q′, α′

Add+(α′(3)) 1 0t=0 t:=0 t=3

module Term(q′, α′)

t:=0

Figure 6 Module Term(q′, α′): α′(3) is the clock encoding the third counter, which counts the
number of steps simulated so far.

Finally, notice that the module depends on a function α, which is used to keep track of which
clock encodes which counter.

Decrementing counter c follows the same idea, but it first performs a zero-test at entrance.
Counter c = 0 if, and only if, the corresponding clock x = 1 when entering the module
(i.e., when clock t = 0).

3.1.3 Leaving the game
In the game built so far, Player 1 does not have a way to leave for sure to a final location
(e.g. when the counter machine does not halt). We give her the opportunity to do so right
after incrementing the third counter (which is done every two instructions), by plugging a
copy of module Term of Fig. 6 in the corresponding locations.

Notice that this transition is the only possible transition in the locations corresponding
to qhalt.

3.2 Analysis of the construction
Our construction does not check that the values of the clocks are of the form 1/2c. Hence
we don’t have a correspondence between configurations of GM? and configurations ofM?.
We define pseudo-configurations ofM? to tackle this problem: a pseudo-configuration ofM?

is a pair γ = (q, v), where q is a discrete state of M? and v : {1, 2, 3} → R≥0 assigns a
non-negative real number to every counter. A pseudo-run inM? is a sequence of pseudo-
configurations. Let ρ? = γ?0 → γ?1 → . . . be the unique maximal (finite or infinite) execution
ofM?. Consider a (finite or infinite) pseudo-run ρ = γ0 → γ1 → If there is some k ≥ 0
such that the discrete states of γk and γ?k do not coincide, we say that ρ is strongly-invalid,
which means that compared to the valid run ρ?, some discrete transition has not been
taken appropriately. Writing k0 for the first position where this occurs, the consecution
γk0−1 → γk0 is said to be strongly-invalid. If all discrete states coincide, but ρ is not a prefix
of ρ?, we say that ρ (and its erroneous consecutions) are weakly-invalid (in that case, some
counter values may not be correctly encoded, but this has no impact on the sequence of
visited states, hence on the nature – halting, non-halting – of the path).

Let σ⊥2 be the strategy of Player 2 that consists in never switching to a Test module
(i.e., it remains in the main part of the game). With any strategy σ1 ∈ Strat1(GM?),
we associate the unique maximal outcome in OutGM? (σ1, σ

⊥
2) (it can either end at a target

location of a terminating module, or be infinite). When entering the modules of the
instructions, it is clear from the syntax which clock encodes which counter, hence we can
extract from that path the sequence of configurations (qk, αk, νk) when entering (or leaving)
an instruction module, where qk is the discrete state, αk is the encoding mapping, and
νk is the clock valuation. The corresponding counter values can be recovered by defining
vk(i) = − log2(νk(αk(i))), and we thus have that γk = (qk, vk) is a pseudo-configuration
ofM?. We then write ρσ1 for the pseudo-run γ0 → γ1 → . . . associated with σ1.

CONCUR’15

318 On the Value Problem in Weighted Timed Games

The following lemma is the crux of our proof: it states that the earlier an occurrence of a
strongly-invalid transition, the larger the penalty that can be inflicted to Player 1.

I Lemma 5. Let σ1 ∈ StratGM?

1 be a strategy such that ρσ1 is a strongly-invalid pseudo-run
of M?. Let γk −→ γk+1 be the first strongly-invalid consecution of ρσ1 . Then k > 0, and
there is a strategy σ2 ∈ StratGM?

2 such that wtGM? (σ1, σ2) ≥ 3 + 1
4k·2k .

Using this lemma, we can prove:

I Proposition 1. The counter machine M? does not halt if, and only if, the value of
game GM? is (at most) 3.

Sketch of proof. Assume M? halts, and let N be the length of the halting computation.
We argue that the value of the game is lower-bounded by 3 + εN , where εN is a positive
number that depends only on N . Then, either Player 1 decides to leave the game at some
point before having simulated the N steps of the counter machine, or Player 1 cheats so that
the simulation goes for longer than N steps. In the former case, the weight will be given by
gadget Term; it will be 3+αN , where αN is the value of the clock encoding third counter; it is
lower-bounded, since the third counter is upper-bounded by N . In the latter case, there must
be a strongly-invalid consecution before N steps have been simulated; applying Lemma 5
with k ≤ N , we again get a lower-bound of the form 3 + βN for some positive βN . In both
cases, the weight of the strategy is lower-bounded by a constant that only depends on N .

IfM? does not halt, then Player 1 can correctly mimic the counter machine, and leave
the game after an arbitrary long simulation, yielding a weight arbitrary close to 3. Hence
the value of the game is 3. J

This reduction proves undecidability of the value problem for thresholds = c and ≤ c.
By swapping the roles of Players 1 and 2 and slightly modifying the construction, we can
prove that the value problem is also undecidable for threshold ≥ c.

4 Computing an approximation of the value

In this section, we introduce a subclass of weighted timed games, and explain how to
approximate the values of games in this class. Our subclass is the set of games G for which
there exists κ > 0 such that for any finite run in the game that follows a region cycle of the
region automaton1 of G, either the weight is 0, or it is larger than or equal to κ;2 We call such
games almost strongly non-Zeno weighted timed games. It is decidable whether a weighted
timed game is almost strongly non-Zeno or not (by enumerating all simple cycles of the
region abstraction of G). Notice that the undecidability proof for the existence problem [9],
as well as our undecidability proof for the value problem in Section 3, is valid for this subclass
of weighted timed games. Finally note that if we strengthen the first condition above by
assuming that all cyclic runs have weight at least κ (forbidding zero cycles), then we get
the class of strongly non-Zeno weighted timed games, for which the value can be computed
exactly [1, 11].

In the sequel, we prove the approximability of the optimal weight:

I Theorem 6. Given an almost strongly non-Zeno weighted timed game G and a positive
real ε, we can compute a rational v, and a strategy σ1 for Player 1, such that |v − valG | ≤ ε
and |wtG(σ1)− v| ≤ ε.

1 We assume familiarity with region equivalence, and refer to [3] for details.
2 Applying results for weighted timed automata [10], we may assume κ = 1.

P. Bouyer, S. Jaziri, and N. Markey 319

4.1 A basic characterization of the value.
The following fixpoint characterization was given in [11]:

I Proposition 2 ([11]). Optimal weight for Player 1 is the largest fixpoint of the following
equation. For every state s of G:

valG(s) = inf
d≥0,e∈E1

s
d,e−−→s′

max


(1) d · wt(`) + wt(e) + valG(s′),
(2) sup

d′≤d,e′∈E2

s
d′,e′
−−−→s′′

(
d′ · wt(`) + wt(e′)+valG(s′′)

) 
However there is no obvious good property of this functional (that we know of) that could be
useful for designing an approximation algorithm. Instead, we will partially unfold the game
in a careful way in order to preserve the optimal weight, and prove that we can approximate
the value of the resulting game.

4.2 The semi-unfolded game
In order to approximate the value of the game, we first build a tree-shaped weighted timed
game G̃, with the same value as G. Then we explain how to approximate the value of G̃.

Let W be an upper bound on the optimal weight from every winning state of G; such a
bound is easy to compute, e.g. by picking a memoryless and region-uniform winning strategy
for Player 1 (in the underlying timed game) [5], and computing a bound on its weight from
all configurations.

We write R(G) for the timed game obtained from G by splitting its state space into
regions (that is, we apply the standard region-automaton construction [3] and interpret
it as a timed game). The weighted timed game R(G) is called the region game of G.
In R(G), we additionally assume – for technical reasons – that for every state (`, r) with
wt(`) > 0, for every v ∈ r, there is no transition (`, v) 0,e−−→. This can be achieved by a simple
transformation (at the expense of an extra clock to isolate the case where no time is elapsed
in (`, r)), hence it causes no loss of generality.

The values valG and valR(G) obviously coincide, as there is a tight correspondence between
the runs in both games. Now, in game R(G), we mark in green all locations with weight 0,
as well as all edges with discrete weight 0. All other locations and edges are marked in red.
Fully green cycles in R(G) (involving only green locations and edges) then characterize cycles
with weight 0. We define the kernel K of G as the restriction of R(G) to fully-green strongly
connected components. Edges that leave K are called the output edges of K. Notice that any
segment of a run from an output edge back to the kernel must visit a red state or a red edge.

The idea is to partially unfold the game R(G), to obtain a finite tree-like structure (see
the left part of Fig. 7). Before formally describing the construction, we begin by informally
explaining how it is obtained: we first unfold the game R(G), and along a branch, as soon
as we enter the kernel, we put a copy of K (removing all states that are not reachable,
but without unfolding K); we restart unfolding again from the output edges of that copy
of K. We stop this process when along any branch, a red state or edge of R(G) is visited at
least W + 2 times.

We now formalize this construction. We first build a tree T , which carries labels both
on its nodes and on the edges between nodes. The root n0 of T is labelled with the initial
location (`0, r0) of R(G). The tree is then built inductively, starting from the root:

If a node n is labelled with (`, r), then, for every transition (`, r) g,Y−−→ (`′, r′) in R(G),
we consider two cases:

CONCUR’15

320 On the Value Problem in Weighted Timed Games

K

K

K

K

Exact computation
Lemma 8

Approximation
Lemma 7

Figure 7 Approximation scheme: in the tree-shaped parts of the semi-unfolding, an exact
computation can be performed; in the kernels, we apply under- and over-approximation algorithms.

if (`′, r′) belongs to the kernel K, then node n has a son n′ labelled with K(`′,r′);
Otherwise, n has a son n′ labelled with (`′, r′).

In both cases, the edge between n and n′ is labelled with (g, Y).
If n is labelled with K(`,r), then, for every output edge e = (`′′, r′′) g,Y−−→ (`′, r′) of K that
is reachable from (`, r), we add a son ne labelled with (`′, r′). We label the corresponding
edge with (g, Y).

We stop this construction as soon as all the branches of this tree contain either W + 2
occurrences of the same pair (`, r), or W + 2 occurrences of a red transition. We require all
the branches to end with some non-kernel node. One quickly realizes that tree T is finite.

From this tree T , we define a weighted timed game G̃, by replacing the kernel nodes with
copies of the kernel. More formally, pick a node n labelled with K(`,r), and write n1 to nk for
its sons. These sons originate from output edges e1 to ek of the kernel, which leave some
locations s1 to sk of the kernel. We then replace node n with a set of locations (n, s), one
for each location s ∈ K(`,r). The edge entering n is now directed to (n, (`, r)). Each edge
(s, g, Y, s′) in the kernel gives rise to an edge ((n, s), g, Y, (n, s′)). And finally, each son ni of
the former node n has an incoming edge from location (n, si), labelled in the same way as
the former edge ei.

After adding self loops on the leaves with weight 0, and importing the weights on locations
and edges and the partition of edges between both players, we end up with a weighted timed
game G̃, which we can prove satisfies the following:

I Proposition 3. The values of games G and G̃ coincide.

I Remark. It is worth noticing that the tree built from a game used in the undecidability
reduction (Section 3) is one single kernel with finite trees from the output edges (corresponding
to the (acyclic) test or leaving modules). Any outcome visits only once the kernel.

4.3 Approximation algorithm
The approximation algorithm is made of two distinct sub-algorithms (see Fig. 7):

the tree-shaped part analysis: an exact computation of the optimal weight can be
achieved in each tree-shaped part [19, 1];
the kernel analysis: this is the difficult part of the algorithm. The idea is to under- and
over-approximate the optimal weight computed so far from the output edges by piecewise-
constant functions, that are constant over subregions with a known small granularity.

P. Bouyer, S. Jaziri, and N. Markey 321

After this transformation, the game played within a kernel is a (non-weighted) timed game
with an extended reachability condition over output edges, which can be solved with basic
techniques. Each kernel analysis induces a bounded imprecision in the computation.

The algorithm then proceeds upwards from the leaves to the root of the built tree, alternatively
applying the analysis of the tree-shaped parts and of the kernel.

In order to describe the approximation algorithm, we consider an extension of the model
of weighted timed games with outside weight functions associated to target locations [13].
A generalized weighted timed game is now a tuple 〈L, `0, Lf, X,E,E1, E2,wt, outwt〉, where
the first eight components form a weighted timed game as of Def. 1, and outwt : Lf →
(RX+ → (R+ ∪ {+∞})) assigns a weight function with every target location. Compared to
classical weighted timed games, the weight of a run ρ reaching a target state is augmented by
outwt(`)(v), assuming last(ρ) = (`, v) with ` ∈ Lf. All notations are extended to this model
in a straightforward way. From a given configuration (`init, v), the aim of Player 1 now is to
reach the target states while minimizing this modified weight. Following [13], we use this
natural extension of the original model to iteratively compute the value in G̃.

The main idea of our algorithm is to approximate the value of outside weight functions by
piecewise-constant functions. For this, we split regions into smaller sets that we call regions
of granularity 1/2N , or simply 1/2N -regions, hereafter. Formally, a set R is a 1/2N -region
for a maximal constant M if, and only if, the set 2N ·R (obtained by scaling R by 2N in all
dimensions) is a region for maximal constant 2N ·M . In order to be able approximate outside
weight functions with piecewise-constant functions, we have to restrict them: an outside
weight function outwt is said smooth whenever there exists an integer M and a granularity
1/2N such that for every ` ∈ Lf, the function outwt(`) is uniformly continuous (or constantly
equal to +∞) over 1/2N -regions for maximal constantM . We additionally require that within
any 1/2N -region, the function outwt(`) does not depend on the exact values of the clocks
whose value is larger than M : for any two clock valuations v and v′ in the same 1/2N -region
such that v(x) = v′(x) whenever v(x) ≤M or v′(x) ≤M , it holds outwt(`)(v) = outwt(`)(v′).
Notice that contrary to [13], we impose no other conditions (affineness, monotonicity) on
outside weight functions.

Computing the value in the kernel. We now explain how we compute an approximation
of the value in the kernel, assuming that we have smooth outside weight functions in the
locations reached by output edges.

I Lemma 7. Consider a maximal strongly connected component K of the kernel K of some
region game R(G), and pick a state (`, r) of K. Let SO = {(`e, re) | e output edge of K} be
the set of target locations in R(G) of the output edges of K. Define a game H = 〈K∪SO, (`, r),
SO, X,E|K∪S0 , E1∩E|K∪S0 , E2∩E|K∪S0 ,wt|H, outwt〉, where outwt is a smooth outside weight
function with maximal partial derivative P .

Then, for every ε > 0, we can compute ε-over-approximations and ε-under-approximations
of the value of the game H at any configuration (`, v) with v ∈ r, and (2ε)-optimal strategies
from all those configurations. Additionally, the computed approximations are constant on
each 1/2N -subregion of r, as soon as 1/2N ≤ ε/P . Finally, the computation can be achieved
in time O(|R(G)| · (P/ε)|X|).

The key idea behind that lemma is to under- and over-approximate smooth outside
weight functions by constant functions over refined (1/2N -grained) regions, which then
reduces the game to some extended reachability timed game: each output edge is assigned
a single value by the computed constant outside weight function (the constant under- or

CONCUR’15

322 On the Value Problem in Weighted Timed Games

over-approximation), and this value is the weight for leaving via this edge (there is no weight
involved elsewhere in the kernel); hence this defines a preference order over output edges,
and the aim of Player 1 now is to enforce the ‘less expensive’ edge; this game is timed, but
with a (qualitative) extended-reachability condition over output edges; it can be solved using
standard attractor techniques over timed games.

Computing the value in a finite tree. The computation of the optimal weight in tree-
shaped parts of the weighted timed games G̃ is known to be computable [19, 1] using an
iterative backward algorithm (which can also compute almost-optimal strategies) based on
equations given in Prop. 2. In our setting, the techniques developed in [1] entail the following
lemma:

I Lemma 8. Let S be a finite unfolding of a region game R(G) from some region (`0, r0).
We equip S with an outside weight function outwt associating with every leaf (`, r) of S a
function from r to R≥0. We require that there exists an integer N such that for any terminal
node (`, r), outwt(`, r) is constant over 1/2N -subregions of r.

Then we can compute the function v ∈ r0 7→ valS(`0, v) in time 2O(N ·|X|2+|S|2). Moreover,
those functions are piecewise-affine, with partial derivatives in {0} ∪ {wt(`) | ` ∈ L}.

Global algorithm. Our general algorithm consists in iteratively applying the two lemmas
above, hence computing approximation functions from the leaves to the root of the tree T .
More precisely, fix ε > 0, and pick a node n of T . This node is labelled either with (`, r), or
with K(`,r). Our algorithm computes two functions f+

ε (n) : r → R and f−ε (n) : r → R that
are smooth and respectively ε-over-approximate and ε-under-approximate the value of the
game G̃ from all configurations in the region (`, r) corresponding to node n.

Write ε′ = ε/(|R(G)| · (W + 2) + 1). We begin with initializing the computation at the
leaves of T . Let n be a leaf. By construction, it must be labelled with some (`, r). We define
f+
ε′ (n) and f−ε′ (n) as follows:

if ` ∈ Lf, we let f+
ε′ (n)(v) = f−ε′ (n)(v) = 0 for every v ∈ r;

otherwise, we let f+
ε′ (n)(v) = f−ε′ (n)(v) = +∞ for every v ∈ r.

These functions obviously correspond to the exact value. Moreover, they fulfill the hypothesis
of both Lemmas 7 and 8.

Now pick a node n of T , assuming that each son n′ of n has been assigned approximation
functions f+

kε′(n) and f−kε′(n). We consider two cases:
if n is labelled with (`, r) and is the son of a kernel node, then we apply Lemma 8 to
compute f+

kε′(n) and f−kε′(n);
if n is labelled with K(`,r), then we apply Lemma 7 with approximation value ε′ and
smooth outside weight function f+

kε′(n’) (resp. f−kε′(n’)), and get piecewise-constant weight
functions f+

(k+1)ε′(n) (resp. f−(k+1)ε′(n)).

The correctness of the algorithm is stated as follows:

I Lemma 9. Pick a node n of T labelled by (`, r) or K(`,r). Assume node n has been assigned
a value by f+

kε′ and f−kε′ . Then for every v ∈ r,

f−kε′(n)(v) ≤ valG̃(`, v) ≤ f+
kε′(n)(v).

Furthermore, for any node n where f−kε′(n) and f+
kε′(n) are defined, it holds∣∣f+

kε′(n)(v)− f−kε′(n)(v)
∣∣ ≤ k · ε′.

Additionally, we can compute (2kε′)-optimal winning strategies.

P. Bouyer, S. Jaziri, and N. Markey 323

The maximal number of kernels along any branch of T being bounded by (W+2)·|R(G)|+1,
there exists k ≤ (W + 2) · |R(G)| + 1 for which f−kε′ and f+

kε′ are defined at the root of T .
Those functions ε-under-approximate and ε-overapproximate the value of G, as required.

Complexity of the algorithm. Our algorithm inductively applies Lemma 7 on each copy
of the kernel, and Lemma 8 on each intermediary tree between kernels. This may result
in |R(G)|(W+2)·|R(G)|+1 applications of both lemmas. As W can be bounded by |R(G)| · P
where P is the maximal rate appearing in the automaton, the time-complexity is bounded
by
(1
ε

)|X|2 · 2O(|R(G)|4) (hence doubly-exponential in the size of the original timed game).

4.4 The value problem is (co-)recursively enumerable
Using our approximation algorithm, we immediately get the following result:

I Theorem 10. Over the class of almost strongly non-Zeno weighted timed games, the value
problem is co-recursively enumerable for thresholds ≤ c, = c and ≥ c (for c ∈ Q). It is
recursively enumerable for thresholds < c and > c (with c ∈ Q).

Proof. We prove this result using the approximation algorithm above. We consider the case
of threshold ≤ c, but the other cases are similar. Given a game G, we build a Turing machine
that halts if, and only if, the value of G is not less than or equal to c.

The machine runs as follows: it first sets the tolerance ε to 1, and the approximation v
to −∞. Then, as long as c ≥ v − ε, it divides ε by 2, and computes an ε-approximation v of
the value of G using the approximation algorithm above.

One easily sees that if the value of G is indeed larger than c, then eventually ε will be
less than valG − c, and the machine will halt. Conversely, if the value of G is larger than or
equal to c, the machine will run forever. J

5 Conclusion

We proved in this paper that for weighted timed games, no algorithm can compute the
value of the game. On the other hand, we developed an approximation algorithm for a large
subclass of weighted timed games, for which the undecidability proof already applies.

We have two natural ways for continuing this work: the first one is to extend the
algorithm to handle the full class of weighted timed automata; the second one is to improve
the complexity of our approximation algorithm, which currently is doubly-exponential.

References
1 Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability in weighted

timed games. In ICALP’04, volume 3142 of LNCS, pages 122–133. Springer, 2004.
2 Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid auto-

mata: an algorithmic approach to specification and verification of hybrid systems. In
HSCC’91-’92, volume 736 of LNCS, pages 209–229. Springer, 1993.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4 Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. In HSCC’01, volume 2034 of LNCS, pages 49–62. Springer, 2001.

5 Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symp. System Structure & Control, pages 469–474. Elsevier, 1998.

CONCUR’15

324 On the Value Problem in Weighted Timed Games

6 Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata. In
HSCC’01, volume 2034 of LNCS, pages 147–161. Springer, 2001.

7 Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Optimal scheduling using priced
timed automata. ACM Sigmetrics Performance Eval. Review, 32(4):34–40, 2005.

8 Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the
optimal reachability problem. Formal Methods in System Design, 31(2):135–175, 2007.

9 Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194, 2006.

10 Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design, 32(1):2–23, 2008.

11 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies
in priced timed game automata. In FSTTCS’04, volume 3328 of LNCS, pages 148–160.
Springer, 2004.

12 Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed
games. Research Report LSV-14-12, Laboratoire Spécification et Vérification, ENS Cachan,
France, October 2014. 24 pages.

13 Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob I. Rasmussen. Almost optimal
strategies in one-clock priced timed automata. In FSTTCS’06, volume 4337 of LNCS, pages
345–356. Springer, 2006.

14 Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In FORMATS’05, volume 3821 of LNCS, pages 49–64. Springer, 2005.

15 Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Ben-
jamin Monmege, and Ashutosh Trivedi. Adding negative prices to priced timed games. In
CONCUR’14, volume 8704 of LNCS, pages 560–575. Springer, 2014.

16 Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar, and Mariëlle
Stoelinga. The element of surprise in timed games. In Roberto Amadio and Denis Lugiez,
editors, CONCUR’03, volume 2761 of LNCS, pages 142–156. Springer, 2003.

17 Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster al-
gorithm for solving one-clock priced timed games. In CONCUR’13, volume 8052 of LNCS,
pages 531–545. Springer, 2013.

18 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

19 Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-reachability
and control for acyclic weighted timed automata. In TCS’02, volume 223 of IFIP Conf.
Proc., pages 485–497. Kluwer, 2002.

20 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.
21 Marvin Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.
22 Michał Rutkowski. Two-player reachability-price games on single-clock timed automata. In

QAPL’11, volume 57 of ENTCS, pages 31–46, 2011.

	Introduction
	Definitions
	Weighted timed games
	Decision problems

	Undecidability of the value problem
	Reduction
	Comparing clock values
	Incrementing and decrementing counters
	Leaving the game

	Analysis of the construction

	Computing an approximation of the value
	A basic characterization of the value.
	The semi-unfolded game
	Approximation algorithm
	The value problem is (co-)recursively enumerable

	Conclusion

