
On the Succinctness of Idioms for Concurrent
Programming
David Harel1, Guy Katz1, Robby Lampert2, Assaf Marron1, and
Gera Weiss3

1 Weizmann Institute of Science, Rehovot, Israel
2 Mobileye Vision Technologies Ltd., Jerusalem, Israel
3 Ben Gurion University, Beer-Sheva, Israel

Abstract
The ability to create succinct programs is a central criterion for comparing programming and
specification methods. Specifically, approaches to concurrent programming can often be thought
of as idioms for the composition of automata, and as such they can then be compared using the
standard and natural measure for the complexity of automata, descriptive succinctness. This
measure captures the size of the automata that the evaluated approach needs for expressing the
languages under discussion. The significance of this metric lies, among other things, in its impact
on software reliability, maintainability, reusability and simplicity, and on software analysis and
verification. Here, we focus on the succinctness afforded by three basic concurrent programming
idioms: requesting events, blocking events and waiting for events. We show that a programming
model containing all three idioms is exponentially more succinct than non-parallel automata,
and that its succinctness is additive to that of classical nondeterministic and “and” automata.
We also show that our model is strictly contained in the model of cooperating automata à la
statecharts, but that it may provide similar exponential succinctness over non-parallel automata
as the more general model – while affording increased encapsulation. We then investigate the
contribution of each of the three idioms to the descriptive succinctness of the model as a whole,
and show that they each have their unique succinctness advantages that are not subsumed by
their counterparts. Our results contribute to a rigorous basis for assessing the complexity of
specifying, developing and maintaining complex concurrent software.
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1 Introduction

As is well known, many measures of computational complexity are used to compare solutions
to algorithmic and software development problems. However, when it comes to comparing
the methods, languages and tools that are used to construct those solutions, one needs
quite different criteria for comparison. One of the main approaches to this, which has been
used ever since the Rabin-Scott work on nondeterministic automata [22], is the size of the
description. Size comparisons are usually carried out on the finite automata level of detail,
and the most common metric, often called descriptive succinctness or state complexity, is the
total number of states needed by the automata to express certain languages.

A large amount of work has been dedicated to descriptive succinctness in recent decades.
A few notable models whose succinctness has been studied in detail are nondeterministic
and universal automata, alternating automata, reverse automata, unary automata, and also
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various kinds of grammars and language formalisms (see, e.g., [15] for a survey). These
studies have been motivated by the strong connection between succinctness and software
reliability [20], indicating that succinct software is easier to develop, maintain and reuse.
Further, the descriptive succinctness of a model is often connected to the complexity of
various decision problems in it [15], and hence can be relevant also to verification problems.

In this paper, we set out to analyze the descriptive succinctness of various idioms used in
concurrent programming, seeking, as in most previous studies, exponential gaps in descriptive
power. In particular, we study whether the addition of certain idioms to a programming
model exponentially improves that model’s succinctness, and in what cases. In addition to
the considerations mentioned above and to our desire to better understand the fundamental
nature of these concurrency idioms, our motivation has another aspect: a careful selection of
concurrency idioms may make resulting programs more amenable to formal analysis. Thus,
a better characterization of concurrency idioms and of the types of problems which they
are suitable for solving could allow programmers to more carefully tailor the programming
model used to the problem at hand – on the one hand retaining “just enough” concurrency
to efficiently solve the problem, while on the other hand keeping the model simple and
amenable to analysis. However, these topics are beyond the scope of this paper; for a broader
discussion of the usefulness of keeping concurrency idioms simple in tasks like program repair
and compositional verification we refer the interested reader to [9, 11, 12].

Here, we focus on three fundamental concurrency idioms: requesting, blocking and
waiting for events (defined formally in Section 2). The requesting and waiting-for idioms are
fairly common in discrete-event programming languages, with versions thereof appearing as
first-class citizens in, e.g., publish-subscribe architectures [6]; whereas the blocking idiom is
somewhat less common, appearing, e.g., in the live sequence charts (LSCs) formalism [4].
All three idioms can, of course, be implemented in any high level language. Combined, they
also form the behavioral programming (BP) model [13]. Research suggests that using these
idioms may lead to simple code modules that are aligned with the specification [13].

Following the required definitions presented in Section 2, the paper’s contributions appear
in Sections 3 and 4. In Section 3 we study a model containing the requesting, waiting-for
and blocking idioms (which we call the RWB model), and position it in comparison to
other well known models. Specifically, we show that RWB is polynomially expressible as
automata with cooperative concurrency a la statecharts [5], but that cooperative concurrency
can be exponentially more succinct than RWB. We then show that despite this gap, the
RWB model, which affords greater encapsulation, shares some of the cooperative model’s
strength and offers considerable advantages when compared to non-parallel automata. Next,
we show that the succinctness of RWB is additive to that of classical nondeterminism and
universal (“and”) nondeterminism, and that a combination of all three features yields a
triple-exponential improvement in succinctness. This last result establishes a hierarchy of
succinctness relations indicating, e.g., that the (more practical) nondeterministic or universal
RWB models are double-exponentially more succinct than non-parallel automata.

Next, in Section 4, we study the separate contribution of each of RWB’s idioms to the
model’s descriptive succinctness. We define variants of RWB in which each of these idioms
is omitted, and show that the full RWB model has exponential succinctness advantages over
each of the variants. We also show that each of these downgraded versions has succinctness
advantages over one or both of the other downgraded versions and over non-parallel models.
This establishes the fact that each of the idioms makes its own unique contribution to
succinctness, and is not subsumed by its counterparts. Notable among these results is the
fact that event blocking, which is less common as a first-class concurrency idiom, provides
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exponential savings in succinctness. Further, we show that the succinctness afforded by each
of these three idioms is not of equal power: for instance, the waiting-for idiom is weaker than
the requesting one. Related work appears in Section 5, and we conclude with Section 6.

2 Definitions

2.1 The Request-Wait-Block Model
In this work we focus on the Request-Wait-Block (RWB) model for concurrent programs.
As we mentioned before, the requesting, waiting-for and blocking idioms are common and
appear in various models such as publish-subscribe architectures [6], live sequence charts [4]
and behavioral programming [13]. Further, research has shown that these idioms often enable
programmers to specify and develop systems naturally and incrementally, with components
that are aligned with how humans often describe behavior [7, 13]. Still, the RWB model is
not intended to be programmed in directly – rather, it is intended as a formal representation
of programs written in higher level languages, for the sake of rigorous analysis.

The formal definitions of the RWB model are as follows. An RWB-automaton consists
of orthogonal components called RWB-threads:

I Definition 1. A Request-Wait-Block-thread (RWB-thread) is a tuple 〈Q,Σ, δ, q0, R,B〉,
where Q is a finite set of states, Σ is a finite set of events, δ ⊆ Q×Σ×Q is a transition relation
and q0 is an initial state. We require that δ be deterministic, i.e. 〈q, e, q1〉 ∈ δ ∧ 〈q, e, q2〉 ∈
δ =⇒ q1 = q2. For simplicity of notation, we use δ̄ to indicate the effect event e has in state
q (or its absence):

δ̄(q, e) =
{
q′ ; if exists q′ ∈ Q such that 〈q, e, q′〉 ∈ δ
q ; otherwise .

The mapping functions R,B : Q→ 2Σ associate a state with the set of events requested and
blocked, respectively, by the RWB-thread in that state.

Observe that there is no labeling function for waited-for events: the notion of waiting is
expressed via the transitions between states. If state q has a transition labeled with event e
that was not requested at q, the thread is considered to be waiting for event e in state q.

A composition of RWB-threads yields an RWB-automaton, defined as follows:

I Definition 2. An RWB-automaton (RWBA) A over a finite event set Σ is a finite tuple
of RWB-threads 〈T1, . . . , Tn〉, denoted Ti = 〈Qi,Σi, δi, qi0, Ri, Bi〉, such that Σi ⊆ Σ for all
i, and the Qi state sets are pairwise disjoint.

A configuration of an RWBA is the state of its threads, i.e. an element of Q1 × . . .×Qn.
A configuration ĉ = 〈q̂1, . . . , q̂n〉 is a successor of configuration c = 〈q1, . . . , qn〉 with respect
to an event e ∈ Σ, denoted c e−→ ĉ, whenever

e ∈
n⋃
i=1

Ri(qi)︸ ︷︷ ︸
e is requested

∧
e /∈

n⋃
i=1

Bi(qi)︸ ︷︷ ︸
e is not blocked

n∧
i=1

(
(e ∈ Σi =⇒ q̂i = δ̄i(qi, e))︸ ︷︷ ︸
affected threads read the event

and change state if needed

∧ (e /∈ Σi =⇒ q̂i = qi)︸ ︷︷ ︸
unaffected threads

stay in the same state

)
.

Observe that, since the threads have deterministic transition functions, each configuration
can have at most one successor with respect to a specific event. It may, however, have
multiple successors, each with respect to a different event.
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A run of A is a sequence of configurations c0c1c2 . . . such that, for all i, ci+1 is a successor
(with respect to some event) of ci and c0 = 〈q1

0 , . . . , q
n
0 〉 is the initial configuration. A run

may be an infinite sequence of successive configurations, or a finite sequence that ends in
a terminal configuration, i.e., a configuration with no successors. Every run r = c0c1c2 . . .

of an RWBA induces a set words(r) = {σ ∈ Σ∗ ∪ Σω : ∀0≤i<|r|, ci
σ[i]−−→ ci+1 }. Note that

words(r) ⊆ Σ∗ or words(r) ⊆ Σω, depending on r being finite or infinite, respectively. We
say that a word σ ∈ Σ∗ ∪ Σω is accepted by an RWBA A if there is a run r of A such that
σ ∈ words(r). The language of A, denoted L(A), is the set of all words accepted by A.

The acceptance condition in this definition is simple – all valid runs are accepted. Of
course, the formalism can be modified to cater for more elaborate acceptance conditions,
such as conventional accepting states or the various acceptance conditions for ω-automata.
The motivation for the present choice is that we regard RWB as representing the underlying
models of programming approaches. As such, languages are seen as generated by, rather
than accepted by, a program; indeed, we use these two terms interchangeably.

Next, we define our notion of size, to be used in the analysis of the descriptive succinctness
of various variants of RWBAs and other models.

I Definition 3. The size of an RWB-automaton A with threads {〈Qi,Σi, δi, qi0, Ri, Bi〉}ni=1
is |A| =

∑n
i=1 |Qi|+ |{〈q, e, q̂〉 ∈ δi}|, namely the total number of states and transitions in

the threads. For simplicity, the requested and blocked events in every state are omitted from
the calculation. They contribute no more than |Σ| · |Qi| to the size of each thread, and have
no effect on the size’s order of magnitude as |Σ| is considered constant.

2.2 Finite Parallel Automata
In order to measure the advantages of RWB and of other parallel models, we define the
following non-parallel model to serve as a reference point:

I Definition 4. A deterministic looping automaton (DLA) A is a tuple 〈Q,Σ, δ, q0〉, where
Q is a set of states, Σ is an alphabet, δ ⊆ Q× Σ×Q is a deterministic transition relation
and q0 ∈ Q is an initial state. As it reads an input word, A traverses its states according to
δ, in the usual manner. A accepts infinite words, as well as finite words that end in terminal
states (states with no successors). A word is rejected if it contains a letter for which there is
no matching transition, or if it ends in a non-terminal state. The language L(A) is the set of
words accepted by A, and the size of A is |A| = |Q|+ |{〈q, e, q̂〉 ∈ δ}|, namely the number of
states plus the number of transitions in A.

We now discuss other parallel models, focusing on the three fundamental notions: non-
determinism [22] (E-automata) and its dual, pure parallelism (A-automata), which when
combined yield alternating automata [3], and cooperative concurrency (C-automata) [5]. The
first two notions take the form of ∃- and ∀-states in alternating automata, whereas cooperative
automata play a role in formalisms and languages such as statecharts [8].

All three features – E , A and C – may co-exist. Further, it is shown in [5] that each feature
contributes exponentially to the succinctness of the model, independently and additively, so
that, e.g., (E ,A, C)-automata allow for triple-exponentially more succinct representations
than is possible without these features. Below we give the definition of (E ,A, C)-automata;
the other models are regarded as restrictions thereof.

I Definition 5. An alternating cooperative automaton (an (E ,A, C)-automaton) over a finite
alphabet Σ is a tuple M = 〈M1,M2, . . . ,Mn,Φ〉 where each M i is a triple 〈Qi, δi, qi0〉. Qi
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are pairwise-disjoint state sets and qi0 are the initial states. δi ⊆ Qi×Σ×Γ×Qi are transition
relations, where Γ is the set of propositional formulas over the states of all components,⋃n
i=1Q

i. Elements from Γ serve as guards: a transition can be applied only if its guard
evaluates to true. For example, for q1 ∈ Q1 and q2 ∈ Q2, the guard q1 ∧¬q2 evaluates to true
precisely when component M1 is in state q1 and component M2 is not in state q2. Finally,
Φ ∈ Γ is the E-condition – a condition that, when true, implies that the configuration is
existential (an E-configuration); otherwise, the configuration is universal (an A-configuration).
In [5], these automata include a termination condition as well, but as we deal with the simple
variant of looping automata, we may omit it.

A configuration of M is an element of Q1 ×Q2 × . . .×Qn × (Σ∗ ∪ Σω)× N, indicating
the state of each component, the (finite or infinite) input word, and the position of M in
that word. A configuration c satisfies a guard condition γ ∈ Γ if γ evaluates to true when
assigned the states of c. Let σ = σ0σ1 . . . ∈ Σ∗ ∪ Σω and let t = 〈q, a, γ, p〉 be a transition
in δi. We say that t is applicable to a configuration c = 〈q1, . . . , qn, σ, j〉 if σj = a, qi = q

and c satisfies γ. A configuration 〈p1, . . . , pn, σ,m〉 is a successor of c if for each i there is a
transition 〈qi, σj , γi, pi〉 ∈ δi that is applicable to c, and m = j + 1.

A computation of M on input word σ can be described as a tree. It starts at the initial
configuration 〈q1

0 , q
2
0 , . . . , q

n
0 , σ, 1〉, and reads a letter. If the state has multiple successors,

the computation “splits”, and progresses in parallel for all possible successor states. The
process then continues. Any infinite path in this tree is said to be accepting. A finite path
is accepting iff it ends in a terminal configuration (a configuration with no successors). An
E-configuration is accepting iff there exists an accepting path starting at that state, whereas
an A-configuration is said to be accepting iff every path starting at that state is accepting.
Word σ is accepted by M iff the root of its computation tree is accepting.

If each configuration of M has a single successor (i.e., all transitions are deterministic),
we have a C-automaton, which we might call a cooperative automaton. When n = 1 it is in
fact an (E ,A)-automaton: an alternating looping automaton. When n = 1 and Φ = true, M
is a nondeterministic looping automaton; and when n = 1 and Φ = false it is a universal
looping automaton. Finally, when both n = 1 and every configuration has a single successor,
M is simply a deterministic looping automaton – a DLA.

I Definition 6. The size of an (E ,A, C)-automaton M is defined to be the sum of the
sizes of its condition and components; i.e. |M | = |Φ| +

∑n
i=1 |M i|, where |M i| = |Qi| +∑

〈q,a,γ,p〉∈δi |γ|. A condition’s size is defined as the length of the formula that represents it.

2.3 Succinctness Gaps
We next lay out the method of comparing the succinctness of two models. Informally, we say
that a computational modelM1 is more succinct than modelM2 if there are programs that
have descriptions inM1 that are significantly smaller than the smallest possible descriptions
for those programs inM2. In this paper we consider a gap to be significant if it is at least
exponential. Following [5], we define upper and lower bounds on gaps in succinctness:

I Definition 7. LetM1,M2 denote two computational models. We writeM1
p→M2 (resp.,

M1
·→ M2) if there is a polynomial p (resp., a polynomial p and a constant k > 1) such

that for any automaton M1 ∈ M1 of size m there is an automaton M2 ∈ M2 such that
L(M1) = L(M2), and M2 is of size no more than p(m) (resp., kp(m)). In this case, we say
thatM1 is at most polynomially (resp., exponentially) more succinct than M2.

CONCUR’15
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We writeM1 →· M2 if there is a family of ω-regular languages Ln, a polynomial p and
a constant k > 1, such that Ln is accepted by an automaton M1 ∈ M1 of size p(f(n)) for
some monotonically-increasing function f , but the smallest M2 ∈M2 accepting it is at least
of size kf(n). In this case, we say thatM1 is at least exponentially more succinct than M2.

3 RWBRWBRWB and Parallel Automata

In this section, we investigate how RWB-automata fare when considered in the context of
E-, A- and C-automata; that is, how the special RWB idioms relate to the conventional
idioms of and- and or-nondeterminism and bounded concurrency. We observe that, of the
three models, RWB seems most closely related to C – as the threads of an RWBA constitute
cooperating components running in parallel – although this cooperation is more limited than
in the C model. The first part of this section validates this observation, by proving that
RWB p→ C, but that C →· RWB. This establishes a firm succinctness relationship between
C and RWB: the former is strictly stronger.

The proof that C →· RWB revolves around counting – a task for which the C model is
particularly suited, as it allows one to count to n using automata of size only O(log2 n) [5].
As we prove, in the general case of counting, RWB-automata must be of size n, which is
exponentially worse. This result gives rise to the question: does RWB retain any of C’s
power, i.e. is it succinctness-wise better than non-parallel automata?

We answer the question in the affirmative, in two parts. First, we show that RWB shares
some of the power of C automata; e.g., in certain cases it is possible to count to n with
RWB-automata of size O(log2 n · log logn), and so RWB →· DLA. Second, we study the
relationship between RWB and the E and A models, and show that RWB can sometimes
replace C in (E ,A, C)-automata, while preserving that model’s descriptive succinctness.

The relationship between E ,A and C has been extensively studied in [5], where it is
shown that they are orthogonal, i.e. that their descriptive succinctness is independent and
additive. In particular, [5] shows that the (E ,A, C) model offers a tight triple-exponential
gap in succinctness compared to non-parallel automata. Our proof that the (E ,A,RWB)
model affords the same triple-exponential gap thus strengthens the original result of [5], as it
shows that a model in which components cannot freely observe other components’ states,
and is thus more encapsulated than C, suffices for obtaining the triple exponential gap.

3.1 RWBRWBRWB-Automata and CCC-Automata
Of the three models E ,A and C, it is natural to define RWB programs in terms of C-
automata, as the underlying parallel components of both make transitions that depend on
other components. C-automata take the most general form, allowing components to query
the internal states of other components. This is established in the following proposition,
proven in Appendix A of the supplementary material [10]:

I Proposition 1. RWB p→ C

We next show that the converse does not hold; i.e., that there exists a family of languages
that can be expressed succinctly using C-automata, but that the smallest RWBAs that can
express them are exponentially larger.

I Proposition 2. C →· RWB
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Proof. For n ∈ N, consider the language Ln = (0 + 1)n0ω. For every n, there exists a
C-automaton of size O(log2 n) that accepts Ln, as follows. The automaton consists of logn
components, each representing a single bit of a (logn)-bit counter that counts to n. Carries
are performed using the guards: bit number i + 1 moves from state 0 to 1 if and only if
all previous bits 1 . . . i are in state 1. A final transition occurs when the counter reaches n,
into a state that only allows 0s. As the logn components can have size logn because of the
transition guards, the automaton is of size O(log2 n). See [5] for details.

Now, let us consider the same language in the RWB model. Suppose that an RWB-
automaton A with threads T1, . . . , Tk accepts Ln. We show that at least one of these threads
has to have Ω(n) states, thus proving the claim. Intuitively, the proof relies on the fact that
while A reads the n-bit prefix of the word the threads cannot use events to communicate
between themselves, and so a single thread has to handle the counting up to n.

Suppose, contrary-wise, that all threads have fewer than n states, and consider the word
σ = 0n−1 · 1 · 0ω ∈ Ln. Examine an arbitrary thread Ti as it reads the ρ = 0n−1 prefix of
σ. By our assumption, thread Ti has fewer than n states. Consequently, by the pigeonhole
principle, it has a state s1 that it will visit at least twice as it reads ρ. The portion of the
path of states that it traverses between these two visits, denoted s1

0−→ s2
0−→ . . .

0−→ sαi

0−→ s1,
constitutes a cycle of length αi in the thread’s state graph. This holds for every thread Ti,
and so all the threads must traverse cycles of lengths α1, . . . , αn as they read ρ.

We now use a pumping argument to show that A accepts a word that is not in Ln. Let
β =

∏n
i=1 αi. Consider the word σ′ = 0n−1 · 0β · 1 · 0ω, and its prefix ρ′ = 0n−1 · 0β . The

word 0ω is in Ln, and ρ′ is a prefix of this word; hence, the automaton cannot reject the
input word after reading ρ′. However, as the threads are traversing cycles of lengths that
divide β, they will each be in the same state after reading ρ′ as they would be after reading
ρ. Thus, as they read the 1 · 0ω suffix of σ′, they would accept the word – just as they would
accept σ. Since σ′ /∈ Ln, this is a contradiction. J

We note that the gap shown by Proposition 2 is tight, in the sense that C-automata are
at most (single) exponentially more succinct than RWB-automata. See Appendix B of the
supplementary material [10] for the proof.

3.2 Counting with Succinct RWBRWBRWB-Automata
Proposition 2 implies that perhaps the RWB model is not much stronger than non-parallel
automata; indeed, for the task of counting, an RWBA requires as many states as a DLA
– exponentially many more than a C-automaton requires. However, the main difference in
power between C and RWB is in the ability of one component in a C-automaton to observe
the state of another without any restrictions, whereas in RWB a marker event (a sentinel)
must be triggered for such an observation to be made. Thus, when a sentinel is present, the
difference in succinctness between C-automata and RWB-automata diminishes greatly:

I Proposition 3. For every n ∈ N, there exists an RWB-automaton An that accepts the
language Ln = 0n1ω, such that An is of size O(log2 n · log logn).

Proof. We use the first appearance of 1 to mark the end of the counting phase. Let k ∈ N be
the smallest number such that the first k prime numbers p1, . . . , pk satisfy

∏k
i=1 pi > n, and

let 〈α1, . . . , αk〉 be defined by αi = n mod pi for all 1 ≤ i ≤ k. By the Chinese Remainder
Theorem, n is the only integer in the range [1..

∏k
i=1 pi] that has these remainders. Consider

the RWB-automaton An that has k threads T1, . . . , Tk, where thread Ti is given by:
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0
0

· · · αi
0 0

· · · pi − 1
0

0

1

R={0},B={1} R={0},B={1}R={1},B=∅

The sets of events requested (R) and blocked (B) in each state are listed by that state.
In state αi the thread requests 1 and blocks nothing, and in the other states it requests 0
and blocks 1. To see that this automaton accepts Ln, note that if even one of the threads is
not in its respective αi state, the next event in any accepted word has to be 0, because that
thread requests 0 and blocks 1 and no thread ever blocks 0. On the other hand, once all
threads are in their αi states the only requested event is 1, resulting in a 1ω suffix. Finally,
The Chinese Remainder Theorem guarantees us that the first time the threads are all in
their αi states is precisely at the nth step, as required.

Since we chose the smallest k for which
∏k
i=1 pi > n, it follows that k = O(logn). By the

Prime Number Theorem we have pi = O(i log i). Combining the two, we get that the total
size of An is indeed O(log2 n · log logn). J

From Proposition 3 it follows that RWB →· DLA. Further, because RWB p→ C and

C ·→ DLA [5], we get that RWB ·→ DLA, i.e. that the bound is tight.

3.3 Combining RWBRWBRWB with EEE- and AAA-Automata
One of the main results of [5] establishes a tight triple-exponential gap in succinctness between
(E ,A, C)-automata and DLA. Specifically, there exists a family of languages Ln expressible
by (E ,A, C)-automata of size O(log2 n), but that require at least 22n states when expressed
by a DLA. In this section we quantify the succinctness gap between the (E ,A,RWB) model
– where C is replaced by RWB – and the DLA model.

The semantics of an (E ,A,RWB)-automaton is as follows: as before, the threads run
in parallel, and a transition may occur if the event is requested by at least one thread and
is blocked by none. In this model, unlike in RWB, we allow nondeterministic transitions
in threads, and so a state may have multiple outgoing transitions labeled with the same
event. We also adapt the E-condition to operate in an RWB-like fashion, by allowing threads
to request/block that a configuration be universal. Thus, a configuration is existential by
default, but becomes universal if this was requested by at least one thread and blocked
by none (this E-condition is somewhat arbitrary – other definitions could be used as well).
Observe that this form of E-condition is a restriction (i.e., a special case) of the E-condition
of [5]. The acceptance criteria is the same as for (E ,A, C) (see Definition 5).

Having shown in Proposition 1 that RWB p→ C, it follows that the upper bound of [5]
holds; that is, a program in the (E ,A,RWB) model will incur at most a triple-exponential
blowup when transformed appropriately into a DLA. Next, we show that this bound is tight,
by establishing a corresponding lower bound. The family of languages that we use is an
adaptation of a similar family from [5]:

Ln = {(0 + 1 + #)∗#w#(0 + 1 + #)∗#$w⊥0ω | w ∈ {0, 1}n} ∪ {(0 + 1 + #)ω}

over the alphabet of {0, 1,#, $,⊥}. Intuitively, an automaton that accepts Ln encounters
a sequence of words, separated by #s. Then, it encounters a $, followed by a word w,
terminated by ⊥. The automaton must then decide if this w is of size n, and whether it was
encountered before, in the initial sequence of words. If the answer is yes, the automaton
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accepts the word if it ends in an infinite sequence of 0s; otherwise, it rejects the word. The
automaton also accepts all words in which the $ and ⊥ signs never appear.

Pigeonhole and pumping arguments show that a non-parallel automaton that recognizes
the language has to remember, by the time it reaches the $ sign, all the words of length n
that it has encountered previously. Thus, it must have at least 22n states [3, 19]. However,
an (E ,A,RWB)-automaton for Ln may be triple-exponentially smaller, as we now show:

I Proposition 4. Ln is recognizable by an (E ,A,RWB)-automaton of size O(log2 n·log logn).

Proof. Due to space considerations, we provide here only the core of the proof. Our strategy,
inspired by [5], is as follows: in words where the $ and ⊥ signs appear, the automaton’s
nondeterminism is used to “guess” when the first instance of w is encountered. Then,
universality is used to compare all n bits of the two occurrences of w simultaneously. Finally,
ensuring that both copies of w are of length n, and performing the necessary counting to
compare each pair of bits, is performed efficiently by the automaton’s RWB-threads.

More explicitly, the RWB idioms are used for 3 tasks: (1) verifying that the first
occurrence of w is of size n; (2) verifying that the second occurrence of w is of size n; and (3)
comparing a single pair of bits in the two occurrences of w. Because task (3) is performed
universally for all n bits, it ensures that the two occurences of w are equal. For task (3) the
automaton counts to n, but is suspended on # and resumed on $. Thus, when the counting
is finished, the next symbol should match the symbol on which the counting was started.

Tasks (1) and (2) can be performed succinctly by an RWBA, as both occurrences of w in
Ln are terminated by a sentinel – # or ⊥. Thus, the construction from Section 3.2 suffices.
The automaton size these tasks require is O(log2 n · log logn). Task (3), however, requires
counting without a sentinel, which – according to the proof of Proposition 2 – requires an
RWB-automaton of size Ω(n). However, we now show that in an (E ,A,RWB)-automaton
such counting can actually be performed succinctly, by leveraging the E and A idioms.

Let k ∈ N be the smallest number such that the first k prime numbers, p1, . . . , pk, satisfy∏k
i=1 pi > n. Let 〈α1, . . . , αk〉 be the tuple of remainders, i.e., αi = n mod pi for all 1 ≤ i ≤ k.

By the Chinese Remainder Theorem, these remainders uniquely determine n in the range
[1..
∏k
i=1 pi]. Suppose, without loss of generality, that the symbol in the first occurrence of

w was 0. Then, our goal is to count to n and verify that we reach another 0. Consider an
RWB-automaton with k threads T1, . . . , Tk, where Ti is given by:

0
0, 1

· · · αi

0, 1 0, 1
· · · pi − 1

0, 1

0, 1

xi

0

0, 1,⊥

R={0, 1},B={⊥} R={0, 1},B={⊥} R={0, 1},B={⊥}

R={0, 1,⊥},B=∅

All states 0, . . . , pi − 1 request both 0 and 1 and block ⊥; state xi requests 0, 1 and ⊥.
Finally, thread Ti requests that the global configuration be universal if and only if it is at
state xi. The details of suspending the count on # and resuming it on $ are omitted from
the figure, to reduce clutter; this can be performed by associating each state s ∈ {1, . . . , pi}
with an auxiliary state s′, and having the appearance of # send the thread to s′, where it
loops, until a later appearance of $ sends it back to s. If the $ and ⊥ signs do not appear,
then the word is accepted, as it has the form (0 + 1 + #)ω, which we included in Ln.

Intuitively, the automaton works as follows. All threads traverse their loops, counting to
n. While in these loops, a ⊥ symbol causes the word to be rejected. Hence, the only way a
word that has a ⊥ sign can be accepted is if all threads escape their loops before reaching ⊥.

CONCUR’15



94 On the Succinctness of Idioms for Concurrent Programming

E ,RWB RWB

E DLA

E ,A,RWB A,RWB

E ,A A

Figure 1 The succinctness hierarchy involving the E , A and RWB models, and their combinations.
Arrows indicate tight exponential gaps in succinctness. By Proposition 4, the (E , A, RWB) model is
at least triple exponentially more succinct than the DLA model; and, applying Proposition 1, it is
also at most as succinct as the (E , A, C) model. Combining this with the fact that (E , A, C) is triple
exponentially more succinct than DLA [5], we get that the same holds for (E , A, RWB). Thus, any
path along the edges of the depicted cube, starting at (E , A, RWB) and ending at DLA, must include
precisely 3 exponential gaps. The tight exponential gaps depicted in the figure then follow from
known results regarding alternating automata and C-automata [5], combined with Proposition 1.

The only way to escape the counting loops is through the α states. If thread Ti reaches state
αi and reads a 0 symbol, it may escape its loop, assuming the transition is existential; if it is
universal, one branch of the thread will remain in the loop, and will reject the word.

The escape transition remains existential until some thread has used it to escape. After-
wards, that thread will remain in its xi state, requesting that all successive configurations be
universal. Hence, all threads must traverse the transition from αi to xi simultaneously in
order for the word to be accepted. This can only happen if all threads are in their respective
α states – which, by the Chinese Remainder Theorem, only occurs at index n – and if the
next symbol is the required 0. Hence, since this testing is performed universally for all
symbols in w, the word is rejected if even one pair of matching symbols differs.

We stress that this solution is in line with our previous observations that RWB is weaker
than C, in that RWB cannot succinctly count without a sentinel. In this construction, the
behavior threads use the ability of the E-condition semantics to peek into the states of other
threads, thus achieving some of the power of the C-automaton guards, and enabling it to
count succinctly, even without a sentinel.

As in Proposition 3, analysis shows that the automaton is of size O(log2 n · log logn). J

We have thus established the triple-exponential succinctness gap between (E ,A,RWB)
and DLA. While (E ,A,RWB) is not a practical programming model, we observe that,
combined with the results of [5] and Proposition 1, this result immediately establishes a
succinctness hierarchy concerning other, more practical models, such as (E ,RWB) and
(A,RWB). These corollaries are depicted and explained in Figure 1. In particular, these
results indicate that the RWB idioms of requesting, blocking and waiting for events provide
a succinctness advantage that is additive and independent of the succinctness provided by
the E and A idioms – and that the RWB idioms are not just those of E- or A-automata in
disguise. While similar results were previously shown for the C model [5], our results are
stronger as they show that a limited version of C already suffices to uphold the hierarchy.

From a software-engineering point of view, C-automata afford their succinctness by
allowing each component to be aware of the internal state of each of the other components;
this liberal awareness is not provided in the RWB model, resulting in increased module
encapsulation, which is usually considered desirable (see, e.g., [21]).
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RWB

WB

RW RB

Figure 2 The descriptive succinctness of the RWB, WB, RW and RB models, compared to each
other. A bi-directional arrow indicates a tight exponential gap in succinctness in both directions –
either model may be more succinct than the other. A directed arrow indicates a tight exponential
succinctness advantage of the source over the destination, but no such advantage in the reverse
direction, i.e., a reverse translation is always possible with only a polynomial blowup.

4 Contributions of the Request, Wait, and Block Idioms

Whereas Section 3 was dedicated to comparing RWB to other parallel models succinctness-
wise, in this section we focus on its internal structure. We study each of its main idioms
of requesting, waiting-for, and blocking events, and quantify their contribution to the
succinctness afforded by RWB as a whole. Towards this end, we define the following
sub-models:
1. The WB model: Requesting is omitted. Any event that is not blocked can be triggered.

Waiting-for and blocking are allowed. This model can be viewed as having all threads
request all events in each state, which, in the notation of Definitions 1 and 2, corresponds
to Ri(qi) = Σi for every state qi ∈ Qi of thread Ti, for every i.

2. The RB model: Waiting is omitted; requesting and blocking are allowed. Threads are
not informed of events they did not request, and cannot change states when such events
are triggered. Formally, for every Ti, if e /∈ Ri(q) then δi(q, e) = q.

3. The RW model: Blocking is omitted. Requesting and waiting-for are allowed, and any
requested event may be triggered. Formally, Bi(q) = ∅ for every state q and Ti.

We begin by establishing a simple upper bound, proven in Appendix B of the supple-
mentary material [10]:

I Proposition 5. For anyM1,M2 ∈ {RWB,WB,RB,RW},M1
·→ M2

Next, we establish tight bounds on the difference in succinctness of every pair of these models,
as depicted in Figure 2.

We begin by proving that the RWB model is exponentially more succinct than the WB
variant, i.e., that the event requesting idiom exponentially improves the succinctness of the
model.

I Proposition 6. RWB →· WB

Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy

∏k
i=1 pi > n. Define the family of languages Ln = {`1`2 . . .} by:

`j =
{

0 or 1 ; ∃i such that pi | #0(`1 . . . `j−1)
0 ; otherwise

Here #0(`1, . . . , `j−1) is the number of 0s that have appeared in the word so far. The jth
event can be either 0 or 1 if there is a pi which divides this number. In the RWB model, this
language can be accepted by an automaton of size O(log2 n · log logn), whereas the smallest
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WB-automaton that accepts it is of size at least n (for more details, see Appendix C of the
supplementary material [10]). J

This proof affords some insight into the power of the requesting idiom. Particularly,
requesting allows us to succinctly express or conditions – i.e., that an event only be triggered
if a disjunction of conditions holds.

We now prove that the waiting idiom also affords exponential succinctness:

I Proposition 7. RWB →· RB

Proof. Let n ∈ N, and consider the family of singleton languages Ln = 0n1ω. Section 3.2
shows an RWB-automaton of size O(log2 n · log logn) that accepts Ln. However, the smallest
RB-automaton that accepts Ln must have a thread of size n; see Appendix D of the
supplementary material [10] for details. J

The language used for this proof illustrates the power of the waiting idiom. In the basic
construction of Section 3.2, each thread would count modulo some prime number, and would,
upon the correct remainder, request 1. However, that thread would also wait for a 0 event,
thus letting other threads supersede it; if one of them determined that it was not yet time to
trigger a 1, they would block 1 and request 0. Without the wait-for idiom, however, a thread
cannot observe events it did not request, preventing this sort of inter-thread cooperation.

We now show that RWB is exponentially more succinct than the RW variant, i.e. event
blocking also yields exponential succinctness. We consider this result to be particularly
interesting, as blocking is perhaps the least common, or most special, idiom of RWB.

I Proposition 8. RWB →· RW

Proof. Let n ∈ N, and let k ∈ N be the smallest number such that the first k prime numbers,
p1, . . . , pk, satisfy

∏k
i=1 pi > n. Observe the languages Ln = (0N−1(0+1))ω, for N =

∏k
i=1 pi.

In RWB, this language is accepted by an automaton of size O(log2 n · log logn). In the
RW model, however, an automaton accepting this language must be of size at least n (see
Appendix E of the supplementary material [10] for precise details). J

The language used for the proof gives some intuition as to the power of the blocking
idiom. Particularly, it shows that blocking can succinctly enforce and conditions – e.g., that
an event is not blocked iff it gives the correct remainder for all the primes.

We conclude by examining how the RWB idioms fare with respect to each other. For
example, can requesting be replaced by blocking without having to pay with an exponential
decrease in succinctness? Our results, illustrated in Figure 2, show that the WB and RW
models, and also the RB and RW models, are incomparable – i.e., there can be exponential
gains in both directions. Also, we prove that the WB model is weaker than the RB model,
and so, in a way, requesting outpowers waiting. We also show that each of the WB, RB and
RW models is exponentially more succinct than DLA. For more details, see Appendix F of
the supplementary material [10].

5 Related Work

In this paper we focused on studying the RWB concurrency idioms from a succinctness point
of view. For a software-engineering oriented comparison between these RWB idioms (in the
context of Behavioral Programming) and other programming models, see [13] and references
therein. Below we discuss some notable related work on descriptive succinctness.
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Starting with [22], extensive comparative analysis of expressiveness and succinctness in
various models of computations has been carried out. Examples include Büchi, Streett, and
Emerson and Lei automata [23], two-way finite automata [24, 2], sweeping automata [16],
and – most relevant to the present paper – cooperative automata [5, 14]. Expressiveness and
succinctness in timed automata are studied in [1].

The issue of counting to n using unary automata, which played a central role in Section 3,
was raised in [19] and has been studied extensively. It is well known that counting requires
Θ(n) states in deterministic and nondeterministic finite automata. As any deterministic unary
automaton with n states has an equivalent alternating automaton with O(logn) states [18],
it follows that alternating automata can count with size O(logn). [17] shows a Θ(

√
n) bound

for counting with universal automata, whereas cooperating automata can count to n with
size O(log2 n) [5]. Counting in other automata types has also been studied: one-switch
alternating automata, for instance, count to n with O(log2 n · log logn) states [2].

6 Conclusion and Future Work

In this work we set out to analyze the descriptive succinctness afforded by various concurrent
programming idioms. Our motivation was the strong connections between the succinctness
of the software’s description and its simplicity, maintainability, reliability, analysis and
verification. We focused on three basic and common idioms – requesting, blocking and
waiting for events. We began by analyzing the succinctness of the three idioms taken
together, showing that the RWB model can be translated into cooperating automata with
only a polynomial increase in size, but that the converse translation might incur an exponential
blowup. Hence, the RWB model, in which components cannot directly query the state of
other components, is strictly less succinct than the C model. We continued by showing
that RWB can nevertheless succinctly perform non-trivial tasks, that its succinctness is
independent and additive to that of the E- and A-automata, and that (E ,A,RWB)-automata
are triple-exponentially more succinct than DLA – making them in some cases as strong as
the more general (E ,A, C)-automata of [5]. This result established a succinctness hierarchy,
indicating the succinctness advantages of models like (E ,RWB) and (A,RWB). These
findings show that the RWB model, which offers stronger encapsulation and has additional
software-engineering advantages over C-automata [13], can sometimes retain the succinctness
of the more general model.

We then quantified the contribution of the requesting, waiting-for and blocking idioms to
the succinctness of RWB as a whole. We proved that they are each vital to the succinctness
of RWB, as the removal of either may cause an exponential blowup in size, and hence that
they do not subsume one another.

The contribution of the present work is thus in substantiating formally the advantages for
software engineering that the RWB idioms, in a variety of programming languages, appear
to have; and also in gaining insights into the particular tasks for which each of the idioms is
particularly useful. One natural future research direction is to study the succinctness afforded
by additional idioms for concurrent programming, such as the lock-step progression idiom,
by which all components process a triggered event simultaneously. Another direction is to
further study the gap in succinctness between RWB and C-automata; e.g., to characterize
additional tasks, besides counting, in which C’s superiority is manifested.
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