
Reactive Synthesis Without Regret
Paul Hunter∗, Guillermo A. Pérez†, and Jean-François Raskin∗

Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium
{phunter,gperezme,jraskin}@ulb.ac.be

Abstract
Two-player zero-sum games of infinite duration and their quantitative versions are used in veri-
fication to model the interaction between a controller (Eve) and its environment (Adam). The
question usually addressed is that of the existence (and computability) of a strategy for Eve
that can maximize her payoff against any strategy of Adam. In this work, we are interested in
strategies of Eve that minimize her regret, i.e. strategies that minimize the difference between
her actual payoff and the payoff she could have achieved if she had known the strategy of Adam in
advance. We give algorithms to compute the strategies of Eve that ensure minimal regret against
an adversary whose choice of strategy is (i) unrestricted, (ii) limited to positional strategies, or
(iii) limited to word strategies, and show that the two last cases have natural modelling applic-
ations. We also show that our notion of regret minimization in which Adam is limited to word
strategies generalizes the notion of good for games introduced by Henzinger and Piterman, and
is related to the notion of determinization by pruning due to Aminof, Kupferman and Lampert.

1998 ACM Subject Classification F.1.1 Automata, D.2.4 Formal methods

Keywords and phrases Quantitative games, Regret, Verification, Synthesis, Game theory

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.114

1 Introduction

The model of two player games played on graphs is an adequate mathematical tool to solve
important problems in computer science, and in particular the reactive system synthesis
problem [20]. In that context, the game models the non-terminating interaction between the
system to synthesize and its environment. Games with quantitative objectives are useful to
formalize important quantitative aspects such as mean-response time or energy consumption.
They have attracted large attention recently, see e.g. [7, 3]. Most of the contributions in
this context are for zero-sum games: the objective of Eve (that models the system) is to
maximize the value of the game while the objective of Adam (that models the environment)
is to minimize this value. This is a worst-case assumption: because the cooperation of the
environment cannot be assumed, we postulate that it is antagonistic.

In this antagonistic approach, the main solution concept is that of a winning strategy.
Given a threshold value, a winning strategy for Eve ensures a minimal value greater than
the threshold against any strategy of Adam. However, sometimes there are no winning
strategies. What should the behaviour of the system be in such cases? There are several
possible answers to this question. One is to consider non-zero sum extensions of those games:
the environment (Adam) is not completely antagonistic, rather it has its own specification.
In such games, a strategy for Eve must be winning only when the outcome satisfies the
objectives of Adam, see e.g. [5]. Another option for Eve is to play a strategy which minimizes

∗ Authors supported by the ERC inVEST (279499) project.
† Author supported by F.R.S.-FNRS fellowship.

© Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 114–127

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.114
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Hunter, G. A. Pérez, and J.-F. Raskin 115

her regret. The regret is informally defined as the difference between what a player actually
wins and what she could have won if she had known the strategy chosen by the other player.
Minimization of regret is a central concept in decision theory [2]. This notion is important
because it usually leads to solutions that agree with common sense.

Let us illustrate the notion of regret minimization on the example of Fig. 1. In this
example, Eve owns the squares and Adam owns the circles (we do not use the letters labelling
edges for the moment). The game is played for infinitely many rounds and the value of a play
for Eve is the long run average of the values of edges traversed during the play (the so-called
mean-payoff). In this game, Eve is only able to secure a mean-payoff of 1

2 when Adam is fully
antagonistic. Indeed, if Eve (from v1) plays to v2 then Adam can force a mean-payoff value
of 0, and if she plays to v3 then the mean-payoff value is at least 1

2 . Note also that if Adam
is not fully antagonistic, then the mean-payoff could be as high as 2. Now, assume that Eve
does not try to force the highest value in the worst-case but tries to minimize her regret. If
she plays v1 7→ v2 then the regret is equal to 1. This is because Adam can play the following
strategy: if Eve plays to v2 (from v1) then he plays v2 7→ v1 (giving a mean-payoff of 0), and
if Eve plays to v3 then he plays to v5 (giving a mean-payoff of 1). If she plays v1 7→ v3 then
her regret is 1 1

2 since Adam can play the symmetric strategy. It should thus be clear that
the strategy of Eve which always chooses v1 7→ v2 is indeed minimizing her regret.

In this paper, we will study three variants of regret minimization, each corresponding
to a different set of strategies we allow Adam to choose from. The first variant is when
Adam can play any possible strategy (as in the example above), the second variant is when
Adam is restricted to playing memoryless strategies, and the third variant is when Adam is
restricted to playing word strategies. To illustrate the last two variants, let us consider again
the example of Fig. 1. Assume now that Adam is playing memoryless strategies only. Then
in this case, we claim that there is a strategy of Eve that ensures regret 0. The strategy is as
follows: first play to v2, if Adam chooses to go back to v1, then Eve should henceforth play
v1 7→ v3. We claim that this strategy has regret 0. Indeed, when v2 is visited, either Adam
chooses v2 7→ v4, and then Eve secures a mean-payoff of 2 (which is the maximal possible
value), or Adam chooses v2 7→ v1 and then we know that v1 7→ v2 is not a good option for
Eve as cycling between v1 and v2 yields a payoff of only 0. In this case, the mean-payoff is
either 1, if Adam plays v3 7→ v5, or a payoff of 1

2 , if he plays v3 7→ v1. In all the cases, the
regret is 0. Let us now turn to the restriction to word strategies for Adam. When considering
this restriction, we use the letters that label the edges of the graph. A word strategy for
Adam is a function w : N → {a, b}. In this setting Adam plays a sequence of letters and
this sequence is independent of the current state of the game. When Adam plays word
strategies, the strategy that minimizes regret for Eve is to always play v1 7→ v2. Indeed, for
any word in which the letter a appears, the mean-payoff is equal to 2, and the regret is 0,
and for any word in which the letter a does not appear, the mean-payoff is 0 while it would
have been equal to 1

2 when playing v1 7→ v3. So the regret of this strategy is 1
2 and it is

the minimal regret that Eve can secure. Note that the three different strategies give three
different values in our example. This is in contrast with the worst-case analysis of the same
problem (memoryless strategies suffice for both players).

We claim that at least the two last variants are useful for modelling purposes. For
example, the memoryless restriction is useful when designing a system that needs to perform
well in an environment which is only partially known. In practical situations, a controller
may discover the environment with which it is interacting at run time. Such a situation can
be modelled by an arena in which choices in nodes of the environment model an entire family
of environments and each memoryless strategy models a specific environment of the family.

CONCUR’15

116 Reactive Synthesis Without Regret

Table 1 Complexity of deciding the regret threshold problem.

Payoff type Any strategy Memoryless strategies Word strategies

Sup, Inf, PTIME-c coNP-h (Lem. 8) EXPTIME-c
and LimSup (Thm. 1) and in PSPACE (Lem. 6) (Thm. 10)
LimInf PTIME-c (Thm. 1) PSPACE-c (Thm. 5) EXPTIME-c (Thm. 10)
MP, MP MP equivalent (Thm. 1) PSPACE-c (Thm. 5) Undecidable (Lem. 13)

In such cases, if we want to design a controller that performs reasonably well against all
the possible environments, we can consider a controller that minimizes regret: the strategy
of the controller will be as close as possible to an optimal strategy if we had known the
environment beforehand. This is, for example, the modelling choice done in the famous
Canadian traveller’s problem [19]: a driver is attempting to reach a specific location while
ensuring the traversed distance is not too far from the shortest feasible path. The partial
knowledge is due to some roads being closed because of snow. The Canadian traveller,
when planning his itinerary, is in fact searching for a strategy to minimize his regret for
the shortest path measure against a memoryless adversary who determines the roads that
are closed. Similar situations naturally arise when synthesizing controllers for robot motion
planning [21]. We now illustrate the usefulness of the variant in which Adam is restricted to
play word strategies. Assume that we need to design a system embedded into an environment
that produces disturbances: if the sequence of disturbances produced by the environment is
independent of the behavior of the system, then it is natural to model this sequence not as a
function of the state of the system but as a temporal sequence of events, i.e. a word on the
alphabet of the disturbances. Clearly, if the sequences are not the result of an antagonistic
process, then minimizing the regret against all disturbance sequences is an adequate solution
concept to obtain a reasonable system and may be preferable to a system obtained from a
strategy that is optimal under the antagonistic hypothesis.

Contributions. In this paper, we provide algorithms to solve the regret threshold problem
(strict and non-strict) in the three variants explained above, i.e. given a game and a threshold,
does there exist a strategy for Eve with a regret that is (strictly) less than the threshold
against all (resp. all memoryless, resp. all word) strategies for Adam. Almost all of our
algorithms are reductions to well-known games, therefore synthesizing the corresponding
controller amounts to computing the strategy of Eve in the resulting game. We study this
problem for six common quantitative measures: Inf, Sup, LimInf, LimSup, MP, MP. For all
measures, but MP, the strict and non-strict threshold problems are equivalent. We state our
results for both cases for consistency. In almost all the cases, we provide matching lower
bounds showing the worst-case optimality of our algorithms. Our results are summarized in
Table 1.

For the variant in which Adam plays word strategies only, we show that we can recover
decidability of mean-payoff objectives when the memory of Eve is fixed in advance: in this
case, the problem is NP-complete (Theorems 14 and 15).

Related works. The notion of regret minimization is a central one in game theory, see
e.g. [22] and references therein. Also, iterated regret minimization has been recently proposed
by Halpern et al. as a concept for non-zero sum games [13]. There, it is applied to matrix
games and not to game graphs. In a previous contribution, we have applied the iterated regret

P. Hunter, G. A. Pérez, and J.-F. Raskin 117

v1

v2

v3

v4

v5

Σ, 1
Σ1

b,−1

b, 0

a, 2

a, 1

Σ, 2

Σ, 1

Figure 1 Example weighted arena G0.

u

v x

1

00

0

0

6

Figure 2 Example weighted arena G1.

minimization concept to non-zero sum games played on weighted graphs for the shortest
path problem [12]. Restrictions on how Adam is allowed to play were not considered there.
As we do not consider an explicit objective for Adam, we do not consider iteration of the
regret minimization here.

The disturbance-handling embedded system example was first given in [8]. In that work,
the authors introduce remorsefree strategies, which correspond to strategies which minimize
regret in games with ω-regular objectives. They do not establish lower bounds on the
complexity of realizability or synthesis of remorsefree strategies and they focus on word
strategies of Adam only.

In [14], Henzinger and Piterman introduce the notion of good for games automata. A
non-deterministic automaton is good for solving games if it fairly simulates the equivalent
deterministic automaton. We show that our notion of regret minimization for word strategies
extends this notion to the quantitative setting (Proposition 17). Our definitions give rise to
a natural notion of approximate determinisation for weighted automata on infinite words.

In [1], Aminof et al. introduce the notion of approximate determinisation by pruning
for weighted sum automata over finite words. For α ∈ (0, 1], a weighted sum automaton is
α-determinisable by pruning if there exists a finite state strategy to resolve non-determinism
and that constructs a run whose value is at least α times the value of the maximal run of
the given word. So, they consider a notion of approximation which is a ratio. We will show
that our concept of regret, when Adam plays word strategies only, defines instead a notion of
approximation with respect to the difference metric for weighted automata (Proposition 16).
There are other differences with their work. First, we consider infinite words while they
consider finite words. Second, we study a general notion of regret minimization problem in
which Eve can use any strategy while they restrict their study to fixed memory strategies
only and leave the problem open when the memory is not fixed a priori.

Finally, the main difference between these related works and this paper is that we study
the Inf, Sup, LimInf, LimSup, MP, MP measures while they consider the total sum measure
or qualitative objectives.

2 Preliminaries

A weighted arena is a tuple G = (V, V∃, E, w, vI) where (V,E,w) is a finite edge-weighted
graph1 with integer weights, V∃ ⊆ V , and vI ∈ V is the initial vertex. In the sequel we depict
vertices owned by Eve (i.e. V∃) with squares and vertices owned by Adam (i.e. V \ V∃) with
circles. We denote the maximum absolute value of a weight in a weighted arena by W .

A play in a weighted arena is an infinite sequence of vertices π = v0v1 . . . where v0 = vI
and (vi, vi+1) ∈ E for all i. We extend the weight function to partial plays by setting
w(〈vi〉li=k) =

∑l−1
i=k w(vi, vi+1).

1 W.l.o.g. G is assumed to be total: for each v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E.

CONCUR’15

118 Reactive Synthesis Without Regret

A strategy for Eve (Adam) is a function σ that maps partial plays ending with a vertex
v in V∃ (V \ V∃) to a successor of v. A strategy has memory m if it can be realized as
the output of a finite state machine with m states (see e.g. [15] for a formal definition). A
memoryless (or positional) strategy is a strategy with memory 1, that is, a function that only
depends on the last element of the given partial play. A play π = v0v1 . . . is consistent with a
strategy σ for Eve (Adam) if whenever vi ∈ V∃ (vi ∈ V \ V∃), σ(〈vj〉j≤i) = vi+1. We denote
by S∃(G) (S∀(G)) the set of all strategies for Eve (Adam) and by Σm∃ (G) (Σm∀ (G)) the set
of all strategies for Eve (Adam) in G that require memory of size at most m, in particular
Σ1
∃(G) (Σ1

∀(G)) is the set of all memoryless strategies of Eve (Adam) in G. We omit G if the
context is clear.

Payoff functions. A play in a weighted arena defines an infinite sequence of weights. We
define below several classical payoff functions that map such sequences to real numbers.2
Formally, for a play π = v0v1 . . . we define:

the Inf (Sup) payoff, is the minimum (maximum) weight seen along a play: Inf(π) =
inf{w(vi, vi+1) : i ≥ 0} and Sup(π) = sup{w(vi, vi+1) : i ≥ 0};
the LimInf (LimSup) payoff, is the minimum (maximum) weight seen infinitely often:
LimInf(π) = lim infi→∞ w(vi, vi+1) and LimSup(π) = lim supi→∞ w(vi, vi+1);
the mean-payoff value of a play, i.e. the limiting average weight, defined using lim inf or
lim sup since the running averages might not converge: MP(π) = lim infk→∞ 1

kw(〈vi〉i<k)
and MP(π) = lim supk→∞ 1

kw(〈vi〉i<k).

A payoff function Val is prefix-independent if for all plays π = v0v1 . . ., for all j ≥ 0,
Val(π) = Val(〈vj〉j≥i). It is well-known that LimInf, LimSup, MP, and MP are prefix-
independent. Often, the arguments that we develop work uniformly for these four measures
because of their prefix-independent property. Inf and Sup are not prefix-independent but
often in the sequel we apply a simple transformation to the game and encode Inf into a
LimInf objective, and Sup into a LimSup objective. The transformation consists of encoding
in the vertices of the arena the minimal (maximal) weight that has been witnessed by a play,
and label the edges of the new graph with this same recorded weight. When this simple
transformation does not suffice, we mention it explicitly.

Regret. Consider a fixed weighted arena G, and payoff function Val. Given strategies σ, τ ,
for Eve and Adam respectively, and v ∈ V , we denote by πvστ the unique play starting from
v that is consistent with σ and τ and denote its value by: ValvG(σ, τ) := Val(πvστ). We omit
G if it is clear from the context. If v is omitted, it is assumed to be vI .

Let Σ∃ ⊆ S∃ and Σ∀ ⊆ S∀ be sets of strategies for Eve and Adam respectively. Given
σ ∈ Σ∃ we define the regret of σ in G w.r.t. Σ∃ and Σ∀ as:

regσΣ∃,Σ∀
(G) := supτ∈Σ∀

(supσ′∈Σ∃
Val(σ′, τ)−Val(σ, τ)).

We define the regret of G w.r.t. Σ∃ and Σ∀ as:

RegΣ∃,Σ∀
(G) := infσ∈Σ∃ regσΣ∃,Σ∀

(G).

When Σ∃ or Σ∀ are omitted from reg(·) and Reg(·) they are assumed to be the set of all
strategies for Eve and Adam.

2 The values of all functions are not infinite, and therefore in R since we deal with finite graphs only.

P. Hunter, G. A. Pérez, and J.-F. Raskin 119

We will make use of two other values associated with the vertices of an arena: the
antagonistic and cooperative values, defined for plays from a vertex v ∈ V as

aValv(G) := supσ∈S∃
infτ∈S∀ Valv(σ, τ) cValv(G) := supσ∈S∃

supτ∈S∀
Valv(σ, τ).

When clear from context G will be omitted, and if v is omitted it is assumed to be vI .
I Remark. It is well-known that cVal and aVal can be computed in polynomial time, w.r.t.
the underlying graph of the given arena, for all payoff functions but MP [4, 6]. For MP, cVal
is known to be computable in polynomial time for aVal it can be done in UP ∩ coUP [17]
and in pseudo-polynomial time [23, 3].

3 Variant I: Adam plays any strategy

For this variant, we establish that for all the payoff functions that we consider, the problem
of computing the antagonistic value and the problem of computing the regret value are
inter-reducible in polynomial time. As a direct consequence, we obtain the following theorem:

I Theorem 1. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) is PTIME-complete (under log-space reductions) for Inf, Sup, LimInf, and LimSup,
and equivalent to mean-payoff games (under polynomial-time reductions) for MP and MP.

Upper bounds. We now describe an algorithm to compute regret for all payoff functions.

I Lemma 2. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the
regret of a game is at most as hard as computing the antagonistic value of a (polynomial-size)
game with the same payoff function.

Sketch. We describe how the algorithm works for the MP function, the algorithm is similar
for all other payoff functions and details are given in the technical report [16]. Let us fix a
weighted arena G. We define a new weight function w′ as follows. For any edge e = (u, v)
let w′(e) = −∞ if u ∈ V \ V∃, and if u ∈ V∃ then w′(e) = max{cValv

′
: (u, v′) ∈ E \ {e}}.

Intuitively, w′ represents the best value obtainable for a strategy of Eve that differs at
the given edge. It is not difficult to see that in order to minimize regret, Eve is trying to
simultaneously maximize the value given by the original weight function w, and minimize the
maximum w′-weighted edge seen. For b ∈ Range(w′) we define Gb to be the graph obtained
by restricting G to edges e with w′(e) ≤ b.

Next, we will construct a new weighted arena Ĝ such that the regret of G is a function
of the antagonistic value of Ĝ. Figure 3 depicts the general form of the arena we construct.
We have three vertices v0 ∈ V̂ \ V̂∃ and v1, v⊥ ∈ V̂∃ and a “copy” of G as Gb for each
b ∈ Range(w′) \ {−∞}. We have a self-loop of weight 0 on v0 which is the initial vertex of
Ĝ, a self-loop of weight −2W − 1 on v⊥, and weight 0 edges from v0 to v1 and from v1 to
the initial vertices of Gb for all b. Recall that Gb might not be total. To fix this we add, for
all vertices without a successor, a weight 0 edge to v⊥. The remainder of the weight function
ŵ, is defined for each edge eb in Gb as ŵ(eb) = w(e)− b.

Intuitively, in Ĝ Adam first decides whether he can ensure a non-zero regret. If this is the
case, then he moves to v1. Next, Eve chooses a maximal value she will allow for strategies
which differ from the one she will play (this is the choice of b). The play then moves to the
corresponding copy of G, i.e. Gb. She can now play to maximize her mean-payoff value.
However, if her choice of b was not correct then the play will end in v⊥. We claim this
construction ensures that Reg(G) = −aVal(Ĝ). J

CONCUR’15

120 Reactive Synthesis Without Regret

Lower bounds. For all the payoff functions, from G we can construct in logarithmic space
G′ such that the antagonistic value of G is equal to the regret value of G′, and so we have:

I Lemma 3. For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the
regret of a game is at least as hard as computing the antagonistic value of a (polynomial-size)
game with the same payoff function.

Sketch. Suppose G is a weighted arena with initial vertex vI . Consider the weighted arena
G′ obtained by adding to G the gadget of Figure 5. The initial vertex of G′ is set to be v′I .
We claim that the right choice of values for the parameters L,M1,M2, N1, N2 makes it so
that the antagonistic value of G is a function of the regret of the game G′.

For concreteness, let us consider the payoff function MP, and let L = M1 = M2 = 0,
N1 = W + 1, and N2 = −3W − 2. At v′I , Eve has a choice: she can choose to remain in
the gadget or she can move to the original game G. If she chooses to remain in the gadget,
her payoff will be −3W − 2, meanwhile Adam could choose a strategy that would have
achieved a payoff of cVal(G) if she had chosen to play to G. Hence her regret in this case
is cVal(G) + 3W + 2 ≥ 2W + 2. Otherwise, if she chooses to play to G, she can achieve a
payoff of at most aVal(G) if Adam is adversarial. As cVal(G) ≤W and W is the maximum
possible payoff achievable in G, the strategy of Adam which now maximizes Eve’s regret is
the one which remains in the gadget – giving a payoff of W + 1. Her regret in this case is
K + 1− aVal(G) ≤ 2W + 1. Therefore, to minimize her regret she will play this strategy.
It follows that Reg(G′) = W + 1 − aVal(G), and thus the adversarial value of G can be
deduced from the regret value of G′. J

Memory requirements for Eve and Adam. It follows from the reductions underlying the
proof of Lemma 2 that Eve only requires positional strategies to minimize regret when there
is no restriction on Adam’s strategies. On the other hand, Adam’s strategy for maximizing
regret consists of a combination of three positional strategies: first he moves to the optimal
vertex for deviating, then he plays his optimal (positional) strategy in the antagonistic game.
His strategy for the alternative scenario, assuming Eve had deviated, is his optimal strategy
in the co-operative game which is also positional. This combined strategy is clearly realizable
as a strategy with three memory states, giving us:

I Corollary 4. For payoff functions LimInf, LimSup, MP and MP: Reg(G) = RegΣ1
∃,Σ

3
∀
(G).

The algorithm we give relies on the prefix-independence of the payoff function. As the
transformation from Inf and Sup to equivalent prefix-independent ones is polynomial it
follows that polynomial memory (w.r.t. the size of the underlying graph of the arena) suffices
for both players.

4 Variant II: Adam plays memoryless strategies

For this variant, we provide a polynomial space algorithm to solve the problem for all the
payoff functions, we then provide lower bounds.

I Theorem 5. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) playing against memoryless strategies of Adam is PSPACE-complete for LimInf, MP
and MP; in PSPACE and coNP-hard for Inf, Sup and LimSup.

P. Hunter, G. A. Pérez, and J.-F. Raskin 121

v0

v1 v⊥

vb1
I

· · ·

vbn

I
· · ·

Gb1

...

Gbn

0

0

−2W − 1

0

0

w(e)− b1

w(e)− bn

if w′(e) > b1

if w′(e) > bn

Figure 3 Weighted arena Ĝ, constructed from
G. Dotted lines represent several edges added
when the condition labelling it is met.

u, {xv, xu}

v, {xv, xu}

x, {xv, xu}

u, {xu} v, {xu}

x, {xu}

u, {xv}v, {xv}

x, {xv}

−1

−2−2

−2

4

−1

−1

−2

−2

−2

4

−1

−1

−1−1 0

Figure 4 Weighted arena Ĝ1, constructed
from G1. In the edge set component only edges
leaving Adam nodes are depicted.

Upper bounds. Let us now show how to compute regret against positional adversaries.

I Lemma 6. For payoff functions Inf, Sup, LimInf, LimSup, MP and MP, the regret of a
game played against a positional adversary can be computed in polynomial space.

Sketch. Once again, we describe how the algorithm works for the MP. Given a weighted
arena G, we construct a new weighted arena Ĝ such that we have that −aVal(Ĝ) is equivalent
to the regret of G. The argument works for all prefix independent payoff functions and the
details are given in the technical report [16] for Inf, Sup.

The vertices of Ĝ encode the choices made by Adam. For a subset of edges D ⊆ E, let
G�D denote the weighted arena (V, V∃, E ∩D,w, vI). The new weighted arena Ĝ is the tuple
(V̂, V̂∃, Ê, ŵ, v̂I) where
(i) V̂ = V × P(E);
(ii) V̂∃ = {(v, e) ∈ V̂ : v ∈ V∃};
(iii) v̂I = (vI , E);
(iv) Ê contains the edge

(
(u,C), (v,D)

)
if and only if (u, v) ∈ C and, either u ∈ V∃ and

D = C, or u ∈ V \ V∃ and D = C \ {(u, x) ∈ E : x 6= v};
(v) ŵ

(
(u,C), (v,D)

)
= w(u, v)− cVal(G�D).

The application of this transformation for the graph of Fig. 2 is given in Fig. 4.
Finally, we recall that the value of a mean-payoff game is equivalent to the value of its

cycle forming game [10]. This finite cycle forming game is identical to the mean-payoff game
except that it is stopped as soon as a cycle is formed and the value of the game is given
by the mean-payoff value of the cycle. It follows that one can use an Alternating Turing
Machine to compute the value of Ĝ in time bounded by the length of the longest simple path
in Ĝ: |V |(|E|+ 1). Since APTIME = PSPACE, the result follows. J

Lower bounds. We give a reduction from the QSAT Problem to the problem of determin-
ing whether, given r ∈ Q, RegS∃,Σ1

∀
(G)C r for the payoff functions LimInf, MP, and MP (for

C ∈ {<,≤}). Then we provide a reduction from the complement of the 2-disjoint-paths
Problem for LimSup, Sup, and Inf.

I Lemma 7. For r ∈ Q, weighted arena G and payoff function LimInf, MP, or MP, determ-
ining whether RegS∃,Σ1

∀
(G)C r, for C ∈ {<,≤}, is PSPACE-hard.

Sketch. The crux of the reduction from QSAT is a gadget for each clause of the QSAT
formula. Visiting this gadget allows Eve to gain information about the highest payoff
obtainable in the gadget, each entry point corresponds to a literal from the clause, and the

CONCUR’15

122 Reactive Synthesis Without Regret

v′I

vI

L

L
M1

M2

N1

N2

Figure 5 Gadget to reduce a game to its
regret game.

xi

xjxk

00

30

4

4

4

0

3

4

4

4

4

4

0

3

4

Figure 6 Clause gadget for the QBF reduc-
tion for clause xi ∨ ¬xj ∨ xk.

x0

x0

x1

x1

· · ·
xn

xn

Φ

Ci

· · ·

Cj

2

Figure 7 Depiction of the reduction from QBF.

v t1

s2

Figure 8 Regret gadget for
2-disjoint-paths reduction.

literal is visited when it is made true by the valuation of variables chosen by Eve and Adam
in the reduction described below. Figure 6 depicts an instance of the gadget for a particular
clause. Let us focus on the mean-payoff function. Note that staying in the inner 6-vertex
triangle would yield a mean-payoff value of 4. However, in order to do so, Adam needs to
cooperate with Eve at all three corner vertices. Also note that if he does cooperate in at
least one of these vertices then Eve can secure a payoff value of at least 11

3 .
The complete reduction for MP consists in describing how to construct, from an input

QBF Φ, a weighted arena G of linear size w.r.t. Φ. In G, Eve can ensure RegS∃,Σ1
∀
(G) < 2

if and only if the QBF true. We assume Φ is in 3-CNF and w.l.o.g. we assume that each
clause contains at least one existentially quantified variable.

It is common to consider a QBF as a game between an existential and a universal player.
The game we construct mimics the choices of the existential and universal player and makes
sure that the regret of the game is smaller than 2 if and only if Φ is true. Figure 7 depicts the
general structure of the game. Eve and Adam choose valuations for the variables. Depending
on these choices, clause gadgets and literals that are made true by the constructed valuation
can be visited by Eve.

Assume the QBF is true, then Eve has a value-choosing strategy s.t. for any strategy of
Adam, all clauses have at least one literal which holds. Hence, Eve can ensure to visit every
clause gadget. If Adam helps Eve in any of these gadgets then she can ensure a payoff of 11

3
as explained above. Otherwise, she arrives at Φ, gets mean-payoff 2 and, since Adam did not
help her in any of the clause gadgets, she is sure that no alternative strategy can achieve a
payoff value of 4. Hence, the regret of the game is less than 2.

Conversely, if the QBF is false then Adam can make sure Eve does not visit at least
one clause gadget that corresponds to a clause that is false in the constructed valuation.
Additionally, in every clause gadget she does visit, he does not help her. She can now ensure
a mean-payoff value of 2 by going to Φ but an alternative strategy of Eve can force a visit to
the gadget not visited (as each clause contains at least one existentially quantified variable)
and there Adam can now fully cooperate and ensures a payoff of 4 to Eve. J

P. Hunter, G. A. Pérez, and J.-F. Raskin 123

I Lemma 8. For r ∈ Q, weighted arena G and payoff function Inf, Sup, or LimSup, determ-
ining whether RegS∃,Σ1

∀
(G)C r, for C ∈ {<,≤}, is coNP-hard.

Proof. We provide a reduction from the complement of the 2-disjoint-paths Problem
on directed graphs [11]. As the problem is known to be NP-complete, the result follows. In
other words, we sketch how to translate a given instance of the 2-disjoint-paths Problem
into a weighted arena in which Eve can ensure regret value strictly less than 1 if and only if
the answer to the 2-disjoint-paths Problem is negative.

Consider a directed graph G and distinct vertex pairs (s1, t1) and (s2, t2). W.l.o.g. we
assume that for all i ∈ {1, 2}:
(i) ti is reachable from si, and
(ii) ti is a sink (i.e. has no outgoing edges)
in G. We now describe the changes we apply to G in order to get the underlying graph
structure of the weighted arena and then comment on the weight function. Let all vertices
from G be Adam vertices and s1 be the initial vertex. We replace all edges (v, t1) incident
on t1 by a copy of the gadget shown in Figure 8. Next, we add self-loops on t1 and t2 with
weights 1 and 2, respectively. Finally, the weights of all remaining edges are 0.

We claim that, in this weighted arena, Eve can ensure regret strictly less than 1 – for
payoff functions Sup and LimSup – if and only if in G the vertex pairs (s1, t1) and (s2, t2)
cannot be joined by vertex-disjoint paths. Indeed, we claim that the strategy that minimizes
the regret of Eve is the strategy that, in states where she has a choice, tells her to go to t1.

First, let us prove that this strategy has regret strictly less than 1 if and only if no two
disjoint paths in the graph exist between the pairs of states (s1, t1) and (s2, t2). Assume the
latter is the case. Then if Adam chooses to always avoid t1, then clearly the regret is 0. If t1
is eventually reached, then the choice of Eve secures a value of 1 (for all payoff functions).
Note that if she had chosen to go towards s2 instead, as there are no two disjoint paths, we
know that either the path constructed from s2 by Adam never reaches t2, and then the value
of the path is 0 – and the regret is 0 for Eve– or the path constructed from s2 reaches t1
again – and, again, the regret is 0 for Eve. Now assume that two disjoint paths between the
source-target pairs exist. If Eve changed her strategy to go towards s2 (instead of choosing
t1) then Adam has a strategy to reach t2 and achieve a payoff of 2. Thus, her regret would
be equal to 1.

Second, we claim that any other strategy of Eve has a regret greater than or equal to
1. Indeed, if Eve decides to go towards s2 (instead of choosing to go to t1) then Adam can
choose to loop on the state before s2 and the payoff in this case is 0. Hence, the regret of
Eve is at least 1.

Note that minimal changes are required for the same construction to imply the result for
Inf. Further, the weight function and threshold r can be accommodated so that Eve wins for
the non-strict regret threshold. Hence, the general result follows. J

Memory requirements for Eve. It follows from our algorithms for computing regret in
this variant that Eve only requires strategies with exponential memory. Examples where
exponential memory is necessary can be easily constructed.

I Corollary 9. For all payoff functions Sup, Inf, LimSup, LimInf, MP and MP, for all game
graphs G, there exists m which is 2O(|G|) such that: RegS∃,Σ1

∀
(G) = RegΣm

∃ ,Σ
1
∀
(G).

CONCUR’15

124 Reactive Synthesis Without Regret

5 Variant III: Adam plays word strategies

For this variant, we provide tight upper and lower bounds for all the payoff functions:
the regret threshold problem is EXPTIME-complete for Sup, Inf, LimSup, and LimInf, and
undecidable for MP and MP. For the later case, the decidability can be recovered when we
fix a priori the size of the memory that Eve can use to play, the decision problem is then
NP-complete. Finally, we show that our notion of regret minimization for word strategies
generalizes the notion of good for games introduced by Henzinger and Piterman in [14], and
we also formalize the relation that exists with the notion of determinisation by pruning for
weighted automata introduced by Aminof et al. in [1].

Additional definitions. We say that a strategy of Adam is a word strategy if his strategy
can be expressed as a function τ : N→ [max{deg+(v) : v ∈ V }], where [n] = {i : 1 ≤ i ≤ n}.
Intuitively, we consider an order on the successors of each Adam vertex. On every turn, the
strategy τ of Adam will tell him to move to the i-th successor of the vertex according to the
fixed order. We denote by W∀ the set of all such strategies for Adam. When considering
word strategies, it is more natural to see the arena as a (weighted) automaton.

A weighted automaton is a tuple Γ = (Q, qI , A,∆, w) where A is a finite alphabet, Q
is a finite set of states, qI is the initial state, ∆ ⊆ Q × A × Q is the transition relation,
w : ∆→ Z assigns weights to transitions. A run of Γ on a word a0a1 . . . ∈ Aω is a sequence
ρ = q0a0q1a1 . . . ∈ (Q×A)ω such that (qi, ai, qi+1) ∈ ∆, for all i ≥ 0, and has value Val(ρ)
determined by the sequence of weights of the transitions of the run and the payoff function.
The value Γ assigns to a word is the supremum of the values of all its runs on the word. We
say the automaton is deterministic if ∆ is functional.

A game in which Adam plays word strategies can be reformulated as a game played on a
weighted automaton Γ = (Q, qI , A,∆, w) and strategies of Adam – of the form τ : N→ A –
determine a sequence of input symbols to which Eve has to react by choosing ∆-successor
states starting from qI . In this setting a strategy of Eve which minimizes regret defines a
run by resolving the non-determinism of ∆ in Γ, and ensures the difference of value given by
the constructed run is minimal w.r.t. the value of the best run on the word spelled out by
Adam. The following result summarizes the results of this section:

I Theorem 10. Deciding if the regret value is less than a given threshold (strictly or non-
strictly) playing against word strategies of Adam is EXPTIME-complete for Inf, Sup, LimInf,
and LimSup; it is undecidable for MP and MP.

Upper bounds. There is an EXPTIME algorithm for solving the regret threshold problem
for Inf, Sup, LimInf, and LimSup. This algorithm is obtained by a reduction to parity games.

I Lemma 11. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or
LimSup, determining whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, can be done in exponential
time.

Sketch. We focus, for this sketch, on the LimInf payoff function. Our decision algorithm
consists in first building a deterministic automaton for Γ = (Q1, qI , A,∆1, w1) using the
construction provided in [6]. We denote by DΓ = (Q2, sI , A,∆2, w2) this deterministic
automaton and we know that it is at most exponentially larger than Γ. Then we shift
the weights of the automaton DΓ by −r, and we denote it by D−rΓ . Finally, we need to
decide if Eve is able to simulate D−rΓ on Γ in the sense of [6]: she must be able to resolve
non-determinism in Γ on letters given by Adam in a way that the run constructed in Γ has a

P. Hunter, G. A. Pérez, and J.-F. Raskin 125

⊥0 ⊥2

A, 0 A, 2

A, 0bail, 0 A, 0 bail, 0

A \ {bail}, 0 A \ {bail}, 0

Figure 9 Initial gadget used in reduction from countdown games.

value greater than or equal to the value of the unique run of D−rΓ on the word constructed
by Adam. This simulation problem can be reduced to determining the winner in a parity
game. In our case, the parity game that we need is linear in the size of the product between
D−rΓ and Γ, and so exponential in the size of Γ, but uses a polynomial number of priorities.
Solving this parity game can be done in exponential time in the size of Γ, giving us the
required upper bound for the regret threshold problem. Details for LimInf and the other
measures are given in the technical report [16]. J

Lower bounds. We first establish EXPTIME-hardness for the payoff functions Inf, Sup,
LimInf, and LimSup by giving a reduction from countdown games [18]. That is, we show that
given a countdown game, we can construct a game where Eve ensures regret less than 2 if
and only if Counter wins in the original countdown game.

I Lemma 12. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or
LimSup, determining whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, is EXPTIME-hard.

To show undecidability of the problem for the mean-payoff function we give a reduction
from the threshold problem in mean-payoff games with partial-observation. This problem
was shown to be undecidable in [9, 15].

I Lemma 13. For r ∈ Q, weighted automaton Γ and payoff function MP or MP, determining
whether RegS∃,W∀

(Γ)C r, for C ∈ {<,≤}, is undecidable even if Eve is only allowed to play
finite memory strategies.

Fixed memory for Eve. Since the problem is EXPTIME-hard for most payoff functions and
already undecidable for MP and MP, we now fix the memory Eve can use.

I Theorem 14. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,
LimSup, MP, or MP, determining whether RegΣm

∃ ,W∀
(Γ)C r, for C ∈ {<,≤}, can be done

in NTIME(m2|Γ|2).

Sketch. Guess the strategy σ of Eve. Consider the non-deterministic automaton constructed
from the synchronous product of the original machine and the deterministic automaton
defined by the automaton restricted to transitions allowed by σ, this clearly has size at most
m|Γ|. The weights of the transitions of the new automaton are set to the difference of the
values of the functions of the two original automata. The language of the new machine is
empty (for accepting threshold r) if and only if the desired property holds. As emptiness of
a weighted automaton A can be decided in O(|A|2) time [6], the result follows. J

We provide a matching lower bound. The proof is an adaptation of the NP-hardness proof
from [1] (all the details are provided in the technical report [16]).

I Theorem 15. For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,
LimSup, MP, or MP, determining whether RegΣ1

∃,W∀
(Γ)C r, for C ∈ {<,≤}, is NP-hard.

CONCUR’15

126 Reactive Synthesis Without Regret

Relation to other works. Let us first extend the definitions of approximation, embodiment
and refinement from [1] to the setting of ω-words. Consider two weighted automata A =
(QA, qI , A,∆A, wA) and B = (QB, qI , A,∆B, wB) and let d : R × R → R be a metric.3
We say B (strictly) α-approximates A (with respect to d) if d(B(w),A(w)) ≤ α (resp.
d(B(w),A(w)) < α) for all words w ∈ Σω. We say B embodies A if QA ⊆ QB, ∆A ⊆ ∆B and
wA agrees with wB on ∆A. For an automaton A = (Q, qI , A,∆, w) and an integer k ≥ 0, the
k-refinement of A is the automaton obtained by refining the state space of A using k boolean
variables. The automaton A is said to be (strictly) (α, k)-determinisable by pruning if the
k-refinement of A embodies a deterministic automaton which (strictly) α-approximates A.
The next result follows directly from the above definitions.

I Proposition 16. For non-negative α ∈ Q, k ∈ N, a weighted automaton Γ is (strictly)
(α, k)-DBP (w.r.t. the difference metric) iff RegΣ2k

∃ ,W∀
(Γ) ≤ α (resp. RegΣ2k

∃ ,W∀
(Γ) < α).

In [14] the authors define good for games automata. Their definition is based on a game
which is played on an ω-automaton by Spoiler and Simulator. We propose the following
generalization of the notion of good for games automata for weighted automata. A weighted
automaton A is (strictly) α-good for games if Simulator, against any word w ∈ Aω spelled
by Spoiler, can resolve non-determinism in A so that the resulting run has value v and
d(v,A(w)) ≤ α (resp. d(v,A(w)) < α), for some metric d. We summarize the relationship
that follows from the definition in the following result:

I Proposition 17. For non-negative α ∈ Q, a weighted automaton Γ is (strictly) α-good for
games (w.r.t. the difference metric) iff RegS∃,W∀

(Γ) ≤ α (resp. RegS∃,W∀
(Γ) < α).

Acknowledgements. We thank Udi Boker for his comments on how to determinise LimSup
automata.

References
1 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online al-

gorithms with weighted automata. ACM Transactions on Algorithms, 2010.
2 David E. Bell. Regret in decision making under uncertainty. Operations Research, 30(5):961–

981, 1982.
3 Lubos Brim, Jakub Chaloupka, Laurent Doyen, Raffaella Gentilini, and Jean-François

Raskin. Faster algorithms for mean-payoff games. Formal Methods in System Design,
38(2):97–118, 2011.

4 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Re-
source interfaces. In EMSOFT, volume 2855 of LNCS, pages 117–133. Springer, 2003.

5 Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, and Jean-François Raskin.
Doomsday equilibria for omega-regular games. In VMCAI, volume 8318, pages 78–97.
Springer, 2014.

6 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4), 2010.

7 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Generalized mean-payoff and energy games. In FSTTCS, pages 505–516, 2010.

8 Werner Damm and Bernd Finkbeiner. Does it pay to extend the perimeter of a world
model? In FM, volume 6664 of LNCS, pages 12–26. Springer, 2011.

3 The metric used in [1] is the ratio measure.

P. Hunter, G. A. Pérez, and J.-F. Raskin 127

9 Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and Szymon
Toruńczyk. Energy and mean-payoff games with imperfect information. In CSL, pages
260–274, 2010.

10 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979.

11 Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathematics,
85(2):113–138, 1998.

12 Emmanuel Filiot, Tristan Le Gall, and Jean-François Raskin. Iterated regret minimization
in game graphs. In MFCS, volume 6281 of LNCS, pages 342–354. Springer, 2010.

13 Joseph Y. Halpern and Rafael Pass. Iterated regret minimization: A new solution concept.
Games and Economic Behavior, 74(1):184–207, 2012.

14 Thomas A. Henzinger and Nir Piterman. Solving games without determinization. In CSL,
pages 395–410, 2006.

15 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Mean-payoff games with
partial-observation (extended abstract). In Reachability Problems, pages 163–175, 2014.

16 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Reactive synthesis without
regret. CoRR, abs/1504.01708, 2015.

17 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ coUP. Information
Processing Letters, 68(3):119–124, 1998.

18 Marcin Jurdzinski, Jeremy Sproston, and François Laroussinie. Model checking probabil-
istic timed automata with one or two clocks. LMCS, 4(3), 2008.

19 Christos H. Papadimitriou and Mihalis Yannakakis. Shortest paths without a map. The-
oretical Computer Science, 84(1):127–150, 1991.

20 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190.
ACM, ACM Press, 1989.

21 Min Wen, Ruediger Ehlers, and Ufuk Topcu. Correct-by-synthesis reinforcement learning
with temporal logic constraints. arXiv preprint arXiv:1503.01793, 2015.

22 Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In NIPS, pages 905–912, 2008.

23 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. TCS,
158(1):343–359, 1996.

CONCUR’15

	Introduction
	Preliminaries
	Variant I: Adam plays any strategy
	Variant II: Adam plays memoryless strategies
	Variant III: Adam plays word strategies

