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Abstract
Pushdown systems with transductions (TrPDSs) are an extension of pushdown systems (PDSs)
by associating each transition rule with a transduction, which allows to inspect and modify
the stack content at each step of a transition rule. It was shown by Uezato and Minamide
that TrPDSs can model PDSs with checkpoint and discrete-timed PDSs. Moreover, TrPDSs
can be simulated by PDSs and the predecessor configurations pre∗(C) of a regular set C of
configurations can be computed by a saturation procedure when the closure of the transductions
in TrPDSs is finite. In this work, we comprehensively investigate the reachability problem of finite
TrPDSs. We propose a novel saturation procedure to compute pre∗(C) for finite TrPDSs. Also,
we introduce a saturation procedure to compute the successor configurations post∗(C) of a regular
set C of configurations for finite TrPDSs. From these two saturation procedures, we present two
efficient implementation algorithms to compute pre∗(C) and post∗(C). Finally, we show how
the presence of transductions enables the modeling of Boolean programs with call-by-reference
parameter passing. The TrPDS model has finite closure of transductions which results in model-
checking approach for Boolean programs with call-by-reference parameter passing against safety
properties.
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1 Introduction

A pushdown system (PDS) consists of a finite set of states and a finite stack alphabet, where
stack can store context. PDS is one of the most widely used models for sequential programs
with recursion [13, 25, 28]. Thanks to the efficient algorithms for the reachability problem
of PDSs [6, 13], several software model-checking tools such as Moped [16], PDSolver [17],
PuMoC [26] are implemented based the theory of PDSs for C/C++, Java and Boolean
program verification. Several extensions of PDSs are proposed to model more complex
behaviors.
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Various classes of pushdown automata such as multi-stack PDSs [9], pushdown networks
[7, 18, 27, 29] and well-structure PDSs [10] have been proposed for modeling concurrent
(thread-creation) programs with recursion. In order to model timed (resp. probabilistic)
behavior, models that combine timed (resp. probabilistic) automata and PDSs are investigated
in the literature, e.g., discrete/dense-timed pushdown systems [1, 2], nested timed automata
[20] (resp. probabilistic PDSs [14, 8]). For dataflow analysis purpose, weighted PDSs [23] and
extended weighted PDSs [19] are proposed, where transitions are associated with values from
semirings. For stack manipulation of PDSs, Esparza et al. introduced PDSs with checkpoint
[15] that can check the full stack content against a regular language (recognized by a finite
state automaton) over the stack alphabet. This model is called conditional PDSs in [21]
and transformable PDSs in [30]. Uezato and Minamide extended PDSs with transductions
(TrPDSs) which associate each transition with a transduction. The associated transductions
can check the stack content and modify the whole stack content. TrPDSs are a generalization
of PDSs with checkpoint and discrete-timed PDSs. In general, TrPDSs are Turing complete.
To achieve decidability result, Uezato and Minamide considered finite TrPDSs which restrict
the closure of transductions appearing in the transitions of a TrPDS to be finite. They
showed that a finite TrPDS can be simulated by a PDS. Therefore, the reachability problem
of finite TrPDSs is decidable. Moreover, the saturation procedure that calculates the set
pre∗(C) of predecessor configurations for a given regular set of configurations C can be
directly extended from PDSs to finite TrPDSs.

In this work, we follow the direction of [30] and make a comprehensive study of the
reachability problem of TrPDSs. The main contributions of this paper can be summarized as
follows:

A novel saturation procedure is proposed that computes the set pre∗(C) of predecessor
configurations for a given regular set of configurations C of TrPDSs (cf. Section 3.1). This
saturation procedure avoids pseudo formal power series semiring that was introduced in
[30] to compute pre∗(C).
A saturation procedure is introduced to compute the set post∗(C) of successor configur-
ations for a given regular set of configurations C of TrPDSs (cf. Section 4.1). TrPDSs
can be simulated by PDSs as shown in [30]. Therefore, post∗(C) could be computed
by applying the saturation procedure of PDSs [13]. Our saturation procedure directly
computes a kind of finite state automaton that exactly recognizes post∗(C). We believe
our direct approach is more convenient for studying optimal algorithm or BDD-based
symbolic techniques.
Efficient implementation algorithms of the saturation procedures for computing pre∗(C)
and post∗(C) are presented (cf. Section 3.2 and Section 4.2). We show that the computa-
tions of both pre∗(C) and post∗(C) are fixed-parameter tractable with the fixed-parameter
of transductions.
We show that TrPDSs are powerful enough to model Boolean programs with call-by-
reference parameter passing. Boolean programs in the literature [3] only consider call-
by-value parameter passing which can be modeled by PDSs. Using our approach, safety
properties of Boolean programs with mixed call-by-reference and call-by-value parameter
passing can be directly verified (cf. Section 5).

Section 2 presents basic definitions. Section 3 (resp. Section 4) introduce the saturation
procedure and its efficient implementation algorithm for computing pre∗(C) (resp. post∗(C)).
In Section 5, we present a potential application of TrPDSs for modeling and verifying
Boolean programs with call-by-reference parameter passing. Section 6 discusses related work.
Section 7 concludes and discusses future work. Due to space limitation, proofs and details of
Examples (9 and 13) are omitted and will appear in the journal version of this paper.
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2 Preliminaries

2.1 Finite-State Transducers and Transduction
I Definition 1. A finite-state transducer (FST) T is a tuple (Q,Γ, δ, I, F ), where Q is a
finite set of states, Γ is a finite alphabet, δ ⊆ Q× Γ∗ × Γ∗ ×Q is a finite set of transition
rules, I ⊆ Q (resp. F ⊆ Q) is a finite set of initial (resp. final) states. The transducer is
letter-to-letter if δ ⊆ Q× Γ× Γ×Q.

We will write q ω1/ω2−−−−−→ q′ if (q, ω1, ω2, q
′) ∈ δ. Let −→∗ be the smallest relation such

that q ε/ε−−−−→∗ q for every q ∈ Q; if q ω1/ω2−−−−−−→∗ q′ and q′ ω3/ω4−−−−−→ q′′, then q ω1ω3/ω2ω4−−−−−−−−−→∗ q′′.
A FST T transduces a string ω1 ∈ Γ∗ into a string ω2 ∈ Γ∗ if there exist states q0 ∈ I and
qf ∈ F such that q0

ω1/ω2−−−−−−→∗ qf . The language L(T) of a FST T is the set of pairs (ω1, ω2)
such that T can transduce ω1 into ω2.

A transduction τ ⊆ Γ∗ × Γ∗ is a relation over Γ∗. A transduction τ is rational (regular)
and length-preserving if there is a letter-to-letter transducer T such that τ = L(T). Let
τid denote the identity transduction, i.e., τid = {(ω, ω) | ∀ω ∈ Γ∗}. In the rest of this
paper, we assume that transductions (resp. transducers) are length-preserving rational (resp.
letter-to-letter) unless stated explicitly, and we do not differentiate the terms transduction
and transducer. Given a transduction τ , let τ(ω) = {ω′ | (ω, ω′) ∈ τ} for ω ∈ Γ∗.

The composition ◦ of two transductions τ1, τ2 is defined as

τ1 ◦ τ2 = {(ω1, ω3) | ∃ω2 ∈ Γ∗, (ω1, ω2) ∈ τ1 and (ω2, ω3) ∈ τ2}.

I Proposition 2. For every transduction τ , τ ◦ τid = τ = τid ◦ τ .

The left quotient d·, ·c−1 over transductions is defined as follows: ∀ω1, ω2 ∈ Γ∗ with
|ω1| = |ω2|, dω1, ω2c−1τ = {(ω, ω′) | (ω1ω, ω2ω

′) ∈ τ}.

I Proposition 3. [30] For every ω1, ω2 ∈ Γn, for every transduction τ1, τ2,

dω1, ω2c−1(τ1 ◦ τ2) =
⋃

ω3∈Γ|ω1|

(
(dω1, ω3c−1τ1) ◦ (dω3, ω2c−1τ2)

)
.

Let T be a set of transductions, the closure 〈T 〉∪ of T over the composition ◦, left quotient
d·, ·c−1 and union ∪ is defined as follows:
T ⊆ 〈T 〉∪, ∅ ∈ 〈T 〉∪ and τid ∈ 〈T 〉∪;
if τ1, τ2 ∈ 〈T 〉∪, then τ1 ◦ τ2 ∈ 〈T 〉∪ and τ1 ∪ τ2 ∈ 〈T 〉∪;
if τ ∈ 〈T 〉∪, then dγ, γ′c−1τ ∈ 〈T 〉∪ for all γ, γ′ ∈ Γ.

Similarly, let 〈T 〉 denote the closure of T over the composition ◦ and left quotient d·, ·c−1.

I Proposition 4. (a) The set 〈T 〉 is finite iff the set 〈T 〉∪ is finite.
(b) The set 〈T 〉∪ is the semigroup generated by (〈T 〉,∪), that is, ∀τ ∈ 〈T 〉∪, ∃τ1, ..., τm ∈

〈T 〉 for m ≥ 1 such that τ =
⋃m
i=1 τi.

2.2 Pushdown Systems with Transductions
Pushdown systems with transductions (TrPDSs) [30] are an extension of pushdown systems
by associating each transition with a transduction which modifies the stack content by
applying the transduction. This extension allows TrPDSs to model sequential programs that
manipulate the stack content rather than only the top of the stack.

CONCUR’15
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I Definition 5. A pushdown system with transductions (TrPDS) P is a tuple (P,Γ, T ,∆),
where P is a finite set of control states, Γ is a finite alphabet, T is a finite set of transductions
over Γ∗, ∆ ⊆ P × Γ× T × P × Γ∗ is a finite set of transition rules. A TrPDS is a pushdown
system (PDS) if T = {τid}.

We will write 〈p, γ〉 τ
↪→ 〈p′, ω〉 instead, if (p, γ, τ, p′, ω) ∈ ∆. A configuration of a TrPDS P

is a pair 〈p, ω〉 ∈ P × Γ∗ where p is the control state and ω is the stack content. Let CP
denote the set of all the configurations P × Γ∗ of the TrPDS P. The TrPDS P is called
finite if the set 〈T 〉 (i.e.,〈T 〉∪) is finite. If 〈p, γ〉 τ

↪→ 〈p′, ω〉, then for every ω′ ∈ Γ∗, the
configuration 〈p, γω′〉 is an immediate predecessor of the configuration 〈p′, ωu〉 for every
u ∈ τ(ω′), and the configuration 〈p′, ωu〉 for every u ∈ τ(ω′) is an immediate successor of the
configuration 〈p, γω′〉. Let =⇒⊆ CP × CP be the immediate successor relation, i.e., for every
ω′, u ∈ Γ∗, 〈p, γω′〉 =⇒ 〈p′, ωu〉 if 〈p, γ〉 τ

↪→ 〈p′, ω〉 and u ∈ τ(ω′). A run of P is a sequence
of configurations c1c2 · · · such that for every i ≥ 1, ci+1 is an immediate successor of ci.

Let =⇒n⊆ CP × CP be the successor relation over configurations of P defined as follows:
c =⇒0 c for every c ∈ CP ;
c =⇒n c′′ if there exists c′ ∈ CP such that c =⇒ c′ and c′ =⇒n−1 c′′.

Let =⇒∗⊆ CP ×CP denote the reflexive transitive closure of the immediate successor relation
=⇒, i.e., =⇒∗=

⋃
i≥0 =⇒i . Let =⇒+⊆ CP × CP denote the transitive closure of the

immediate successor relation =⇒, i.e., =⇒+=
⋃
i≥1 =⇒i .

The predecessor function pre : 2CP −→ 2CP of P is defined as follows: pre(C) = {c ∈
CP | ∃c′ ∈ C : c =⇒ c′}. The reflexive transitive closure of pre is denoted by pre∗. Formally,
pre∗(C) = {c ∈ CP | ∃c′ ∈ C : c =⇒∗ c′}. Similarly, the successor function post : 2CP −→ 2CP
of P is defined as follows: post(C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒ c}. The reflexive transitive
closure post∗ of post is defined as post∗(C) = {c ∈ CP | ∃c′ ∈ C : c′ =⇒∗ c}.

2.3 Finite Automata with Transductions
To finitely represent regular sets of configurations of TrPDSs, we use finite automata with
transductions.

I Definition 6 ([30]). Given a TrPDS P = (P,Γ, T ,∆), a finite automaton with transduction
and ε-moves (ε-TrNFA) A is a tuple (S,Γ,Λ, T , S0, Sf ), where S is a finite set of states,
Λ ⊆ S × (Γ ∪ {ε}) × 〈T 〉∪ × S is a finite set of transition rules, S0, Sf ⊆ S are initial and
final states. An ε-TrNFA A is TrNFA if Λ ⊆ S × Γ× 〈T 〉∪ × S.

We write s γ|τ7−→ s′ if (s, γ, τ, s′) ∈ Λ (note that γ ∈ Γ∪ {ε}). Let 7−→n: S ×Γ∗× 〈T 〉∪×S
be a relation over states of A defined as follows:

s
ε|τid7−−−→ 0s, for every s ∈ S;

s
γγ1···γn|

(
dγ1···γn,γ

′
1···γ

′
nc
−1τ
)
◦τ1

7−−−−−−−−−−−−−−−−−−−−−−→ n+1 s2 for all γ1, ..., γn ∈ Γ, if ∃s1 ∈ S such that s γ|τ7−−→ s1

and s1
γ′1···γ

′
n|τ17−−−−−→ ns2.

TrNFA is the standard finite state automata if T = {τid}, a.k.a. P-automata [6] if S
corresponds to the control states of P.

Let 7−→∗=
⋃
i≥0 7−→i. A configuration 〈p, ω〉 ∈ P × Γ∗ of a TrPDS P is recognized

(accepted) by an ε-TrNFA A iff s ω|τ7−→ ∗s′ such that s = p ∈ S0, s′ ∈ Sf and (ε, ε) ∈ τ . A set
C of configurations is rational (regular) if there exists an ε-TrPDS A such that L(A) = C .
From now on, we omit the paths of the form s1

ω|τ7−→ ns2 such that τ = ∅, as these paths do
not allow the ε-TrNFA to accept a configuration.
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I Theorem 7 ([30]). Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configura-
tions C of P, both post∗(C) and pre∗(C) are rational and effectively computable.

3 Computing pre∗

In this section, we present a saturation procedure to compute pre∗ which is different from
the way presented in [30] and an efficient implementation for pre∗.

3.1 Saturation Procedure for Computing pre∗

Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) that recognizes
a rational set of configurations of P, w.l.o.g., we assume P = S0 and there is no transition
rule in A leading to an initial state and A uses only the identity transduction τid (cf. Section
6.4 of [30]), we construct a new TrNFA Apre∗ = (S,Γ,Λpre∗ , T , S0, Sf ) such that Apre∗

recognizes pre∗(L(A)), i.e., L(Apre∗) = pre∗(L(A)). The construction of Apre∗ is based on
a kind of saturation procedure which extends the saturation procedure to compute pre∗ of
PDSs [6]. Initially, Apre∗ = A, then we iteratively apply the following saturation procedure
until no new transition rule can be added into Apre∗ .

If 〈p, γ〉 τ1
↪→ 〈q, ω〉 ∈ ∆ and q ω|τ27−−→ ∗q′ in the current automaton Apre∗ ,

add a transition rule p γ|τ1◦τ27−−−−−→ q′ into Λpre∗ .

Since the set of states of Apre∗ and the set 〈T 〉 of transductions are finite, the set of
transition rules in Apre∗ is finite. Thus, the above saturation will eventually reach a fixpoint.
Intuitively, if there is a transition rule 〈p, γ〉 τ

↪→ 〈q, γ1
1 · · · γ1

n〉 ∈ ∆, then 〈p, γγn+1 · · · γm〉 =⇒
〈q, γ1

1 · · · γ1
nγ

1
n+1 · · · γ1

m〉 for all γ1
n+1 · · · γ1

m ∈ τ(γn+1 · · · γm). If the automaton Apre∗ recog-

nizes the configuration 〈q, γ1
1 · · · γ1

m〉 by a path q γ
1
1 ···γ

1
m|τ
′

7−−−−−−→ m g for some final state g of Apre∗

and (ε, ε) ∈ τ ′, then, we can decompose this path to q γ
1
1 ···γ

1
n|τ
′′

7−−−−−−→ nq′ and q′
γn+1

n+1 ···γ
n+1
m |τ ′′′

7−−−−−−−−−−→ m−ng

such that if τ ′ = (dγ1
2 · · · γ1

m, γ
2
2 · · · γ2

mc−1τ1) ◦ · · · ◦ (dγm−1
m , γmmc−1τm−1) ◦ τm, then

τ ′′ = (dγ1
2 · · · γ1

n, γ
2
2 · · · γ2

nc−1τ1) ◦ · · · ◦ (dγn−1
n , γnnc−1τn−1) ◦ τn,

τ ′′′ = (dγn+1
n+2 · · · γn+1

m , γn+2
n+2 · · · γn+2

m c−1τn+1) ◦ · · · ◦ (dγm−1
m , γmmc−1τm−1) ◦ τm.

Moreover, since (ε, ε) ∈ τ ′, we get that (γ1
n+1 · · · γ1

m, γ
n+1
n+1 · · · γn+1

m ) ∈ τ ′′ and (ε, ε) ∈ τ ′′′.

Applying the saturation procedure, the transition rule p γ|τ◦τ ′′7−−−−→ q′ is added into Apre∗ .
Therefore, Apre∗ recognizes the configuration 〈p, γγn+1 · · · γm〉 by composing p γ|τ◦τ ′′7−−−−→ q′ and

q′
γn+1

n+1 ···γ
n+1
m |τ ′′′

7−−−−−−−−−−→ m−ng into p
γγn+1···γm|

(
dγn+1···γm,γ

n+1
n+1 ···γ

n+1
m c−1(τ◦τ ′′)

)
◦τ ′′′

7−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ m−n+1g (note that
(γn+1 · · · γm, γn+1

n+1 · · · γn+1
m ) ∈ τ ◦ τ ′′ implies that (ε, ε) ∈

(
dγn+1 · · · γm, γn+1

n+1 · · · γn+1
m c−1(τ ◦

τ ′′)
)
◦ τ ′′′. Thus, we get the following theorem.

I Theorem 8. Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configurations C
of P recognized a TrNFA A = (S,Γ,Λ, T , S0, Sf ), we can construct a TrNFA A′ such that
L(A′) = pre∗(C) in time O(|∆|3 · |S|3 · |Λ| · f(|T |)) and in space O(|∆| · |S| · |〈T 〉|), where f
is some computable function.

We notice that the number |Λpre∗ | of transition rules of Apre∗ is at most O(|Λ|+ |∆| · |S| ·
|〈T 〉|). For each transition rule 〈p, γ〉 τ1

↪→ 〈q, γ1γ2〉 ∈ ∆, paths q γ1γ2|τ27−−−−−→ ∗ g can be computed
in time O(f(|T |) · (|S|+ |P |) · |Λpre∗ |) for some computable function f . Thus, we get that
the saturation procedure executes at most in time O(|∆|3 · |S|3 · |Λ| · f(|T |)). Memory is
needed for storing the new transition rules which is bounded by O(|∆| · |S| · |〈T 〉|).

CONCUR’15
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∆ =





r1 = 〈p1, γ1〉
τ1
↪→ 〈p2, γ2γ1〉,

r2 = 〈p2, γ2〉
τ2
↪→ 〈p3, γ3γ1〉,

r3 = 〈p3, γ3〉
τ3
↪→ 〈p1, γ2〉,

r4 = 〈p1, γ2〉
τ4
↪→ 〈p1, ε〉





, where

τ1 = {(γ2γ3ω, γ1γ2ω) | ω ∈ Γ∗},
τ2 = {(γγ1γ2ω, γγ3γ3ω) | ω ∈ Γ∗, γ ∈ Γ},
τ3 = {(γγ1γ3ω, γγ1γ2ω) | ω ∈ Γ∗, γ ∈ Γ},
τ4 = {(γγ1γ2ω, γγ2γ3ω) | ω ∈ Γ∗, γ ∈ Γ)}.

(a)

p1

p2

p3

(b) (c)

p1

p2

p3

s1 s0
γ2|τ4s1 s0

γ1|τid γ2|τid
γ3|τid

γ3|τ5

τ5 = {(γγ1γ3ω, γγ2γ3ω) | ω ∈ Γ∗, γ ∈ Γ}
τ6 = {(γ1γ1γ2ω, γ2γ3γ3ω) | ω ∈ Γ∗}
τ7 = {(γ2γ3ω, γ3γ3ω) | ω ∈ Γ∗}
τ8 = {(γ1γ1γ2ω, γ3γ3γ3ω) | ω ∈ Γ∗}

γ2|τ6

γ1|τ7

(d)

γ2|τ10

γ1|τid γ2|τid
γ3|τid

Figure 1 (a) The set of transition rules ∆, (b) the TrNFA A, (c) the TrNFA Apre∗ and (d)
consists of related transductions.

I Remark. In [30], the authors introduce TrNFA and present a saturation procedure to
compute pre∗ without its complexity. They define the relation 7−→∗ by introducing a
pseudo formal power series semiring to solve the associativity problem of the composition of
transitions of TrNFAs. Their saturation procedure is proceeded based on this semiring. Our
approach is proceeded based on TrNFAs and we show that this problem is fixed-parameter
tractable (FPT). We believe our direct approach is more convenient for studying optimal
algorithm or BDD-based symbolic techniques.

I Example 9. Consider the TrPDS with control states {p1, p2, p3} and ∆ as shown in
Figure 1(a). Let A be the TrNFA as shown in Figure 1(b). The result of applying the
saturation procedure is shown in Figure 1(c). .

3.2 An Efficient Algorithm for Computing pre∗

In this section, we present an efficient implementation of the saturation procedure given in
Section 3.1. W.l.o.g., we suppose in this section that for every TrPDS P = (P,Γ, T ,∆), |ω| ≤ 2
for every transition rule 〈p, γ〉 τ

↪→ 〈q, ω〉 ∈ ∆. Let ∆i denote {〈p, γ〉
τ
↪→ 〈g, ω〉 ∈ ∆ | |ω| = i},

for every i ∈ {0, 1, 2}.
Algorithm 1 computes the transition rules of Apre∗ by implementing the saturation

procedure from Section 3.1. The basic idea follows from the efficient algorithm for computing
pre∗ of PDSs [13] which avoids unnecessary operations. Intuitively, for the transition rules of
the form 〈p, γ〉 τ

↪→ 〈p′, ε〉 or 〈p, γ1〉
τ ′

↪→ 〈q, γ〉 in ∆, the algorithm proceeds exactly the same as
the saturation procedure given in Section 3.1. Whenever P has a transition rule in the form
of 〈p, γ1〉

τ ′

↪→ 〈q, γγ2〉, we look out for every q′, q′′ ∈ S and γ′2 ∈ Γ, the pairs of transition rules
q

γ|τ7−→ q′ and q′
γ′2|τ27−→ q′′ such that dγ2, γ

′
2c−1τ 6= ∅, so that we can add the transition rule

p
γ1|τ ′◦(dγ2,γ

′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′. However, the order of such transitions added into the automaton

Apre∗ can be arbitrary. Whenever a transition rule like q′ γ
′
2|τ27−→ q′′ is found, we have to check

whether q γ|τ7−→ q′ exists or not. Then, this checking may be negative, and wastes time to no
avail. However, once a transition rule q γ|τ7−→ q′ is seen, we know that all subsequent transitions
like q′ γ

′
2|τ27−→ q′′ must lead to the addition of the transition rule p γ1|τ ′◦(dγ2,γ

′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′. That’s

why we introduce a new transition rule 〈p, γ1〉
τ ′◦(dγ2,γ

′
2c
−1τ)

↪−−−−−−−−−−−→〈q′, γ′2〉 into ∆′ which allows
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Input : A finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) such
that A uses only τid and Λ has no transition rule leading to a state in P

Output : The set of transition rules of Apre∗

1 Λ′ := Λ; trans := Λ; ∆′ := ∅;

2 foreach 〈p, γ〉 τ
↪→ 〈p′, ε〉 ∈ ∆ do Update(p γ|τ7−→ p′);

3 ;
4 while trans 6= ∅ do
5 remove t = q

γ|τ7−→ q′ from trans;

6 foreach 〈p, γ1〉
τ ′

↪→ 〈q, γ〉 ∈ ∆ ∪∆′ do Update(p γ1|τ ′◦τ7−−−→ q′);
7 ;

8 foreach 〈p, γ1〉
τ ′

↪→ 〈q, γγ2〉 ∈ ∆ and γ′2 ∈ Γ do
9 if dγ2, γ

′
2c−1τ 6= ∅ then

10 ∆′ := ∆′ ∪ {〈p, γ1〉
τ ′◦(dγ2,γ

′
2c
−1τ)

↪−−−−−−−−−−−→〈q′, γ′2〉};

11 foreach q′
γ′2|τ27−→ q′′ ∈ Λ′ do

12 Update(p γ1|τ ′◦(dγ2,γ
′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′);

13 return Λ′;

14 Procedure Update(q
γ|τ7−→ q′)

15 if t = q
γ|τ ′7−→ q′ ∈ Λ′ then

16 t′ := q
γ|τ ′∪τ7−−−→ q′;

17 Λ′ := Λ′ ∪ {t′} \ {t} ;
18 if τ ′ 6= τ ′ ∪ τ then trans := trans ∪ {t′} \ {t};
19 ;
20 else if τ 6= ∅ then
21 Λ′ := Λ′ ∪ {q γ|τ7−→ q′};

22 tran := tran ∪ {q γ|τ7−→ q′′};

Algorithm 1. An efficient algorithm for computing pre∗.

us to add the transition rule p γ1|τ ′◦(dγ2,γ
′
2c
−1τ)◦τ27−−−−−−−−−−−−−→ q′′ once q′ γ

′
2|τ27−→ q′′ occurs. Let us explain

Algorithm 1 line by line as follows.
Line 1 initializes the algorithm by assigning Λ to Λ′ and trans, ∅ to ∆′. Line 2 handles

normal transition rules of the form 〈p, γ〉 τ
↪→ 〈p′, ε〉, where new transitions p γ|τ7−→ p′ can be

immediately added. Once a new transition rule is created, we call the procedure Update
which will be explained later. Lines 3-10 iteratively removes a transition t = q

γ|τ7−→ q′ from
trans until it is empty. The loop at Line 5 handles the case when q and γ match the
right-hand side of transition rules in ∆ ∪∆′.

The procedure Update listed at Lines 12-19 is called whenever a new transition rule
q
γ|τ7−→ q′ is created. If Λ′ contains a transition rule of the form t = q

γ|τ ′7−→ q′ for any τ ′, then,
we remove t from Λ′ and add a new transition rule q γ|τ

′∪τ7−−−→ q′ into Λ′ at Line 15. In other
words, we update the transduction τ ′ by τ ′ ∪ τ . Moreover, if τ ′ ∪ τ does not equal to τ ′, we
remove t from trans and add q γ|τ

′∪τ7−−−→ q′ into trans at Line 16 for later processing. Otherwise
if Λ′ has no transition rule like t, we add q γ|τ7−→ q′ into Λ′ and trans.

CONCUR’15
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I Theorem 10. Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ),
we can compute a TrNFA Apre∗ in time O(|S|2 ·f(|T |) · |∆| · |Γ|) for some computable function
f and in space O(|S| · |∆| · |〈T 〉| · |Γ|) such that L(Apre∗) = pre∗(L(A)).

4 Computing post∗

In this section, we present an approach to compute post∗ which is different from the way
presented in [30]. In [30], post∗ is computed by transforming a finite TrPDS into an equivalent
PDS and then computing post∗ of the resulting PDS. We will present a saturation procedure
which directly computes post∗ similar as computing pre∗ given in Section 3. Finally, we give
an efficient algorithm implementing this saturation procedure.

4.1 Saturation Procedure for Computing post∗

Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) that re-
cognizes a rational set of configurations of P, we can construct an ε-TrNFA Apost∗ =
(Spost∗ ,Λpost∗ , S0, Sf ) such that Apost∗ recognizes post∗(L(A)), i.e., L(Apost∗) = post∗(L(A)).
W.l.o.g., we assume that S0 = P and there is no transition rule in A leading to an initial state
and A uses only the identity transduction τid. The construction of Apost∗ is similar than
the construction of Apre∗ which is an extension of the saturation procedure for computing
post∗ of PDSs [13].

Given a transduction τ , let τ denote the inversion {(ω1, ω2) | (ω2, ω1) ∈ τ} of τ , let T
denote

⋃
τ∈T τ for a given set T of transductions.

I Proposition 11. 〈T 〉 = 〈T 〉 and 〈T 〉∪ = 〈T 〉∪.

Initially, Apost∗ = A, then we iteratively apply the following saturation procedure until
the automaton is saturated (i.e., no new transition rule can be added):

(i) If 〈p, γ〉
τ
↪→ 〈p′, ε〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
ε| τ◦τ ′7−−−→ s into Λpost

∗
;

(ii) If 〈p, γ〉
τ
↪→ 〈p′, γ1〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
γ1| τ◦τ ′7−−−−→ s into Λpost

∗
;

(iii) If 〈p, γ〉
τ
↪→ 〈p′, γ1γ2〉 ∈ ∆ and p

γ|τ ′

7−→∗ s, add p′
γ1| τid7−−−−→ qγ1

p′ and qγ1
p′

γ2| τ◦τ ′7−−−−→ s into Λpost
∗

and add a new state qγ1
p′ into Spost

∗
.

Intuitively, if there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, ε〉 ∈ ∆, then 〈p, γω〉 is an immediate

predecessor of the configuration 〈p′, ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton already

accepts the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state qf , where
ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, ω1〉, for every ω1 ∈ τ(ω). Adding
the transition rule p′ ε| τ◦τ

′

7−−−→ s allows the automaton to accept 〈p′, ω1〉, for every ω1 ∈ τ(ω),
as ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).

If there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, γ1〉 ∈ ∆, then 〈p, γω〉 is an immediate predecessor

of the configuration 〈p′, γ1ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton already accepts

the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state qf , where ω2 ∈ τ ′(ω)
and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ(ω). Adding the
transition rule p′ γ1| τ◦τ ′7−−−−→ s allows the automaton to accept 〈p′, γ1ω1〉, for every ω1 ∈ τ(ω), as
ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).
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p1

p2

p3

s1 s0
γ1|τid γ2|τid

γ3|τid

τ5 = {(γ1γ2ω, γ2γ3ω) | ω ∈ Γ∗}
τ6 = {(γγ3γ3ω, γγ1γ2ω) | γ ∈ Γ, ω ∈ Γ∗}
τ7 = {(γγ1γ2ω, γγ1γ3ω) | γ ∈ Γ, ω ∈ Γ∗}
τ8 = {((γγ2γ3ω, γγ1γ3ω) | γ ∈ Γ, ω ∈ Γ∗}
τ9 = {(γ1γ2γ3ω, γ1γ1γ2ω) | ω ∈ Γ∗}

qγ2p2
γ2|τid

γ1|τ5

qγ3p3
γ3|τid

γ1|τ6
γ2|τ7

ε|τ8
γ1|τ9

Figure 2 The resulting TrNFA Apost∗ .

If there is a transition rule 〈p, γ〉 τ
↪→ 〈p′, γ1γ2〉 ∈ ∆, then 〈p, γω〉 is an immediate

predecessor of the configuration 〈p′, γ1γ2ω1〉 for every ω1 ∈ τ(ω). Thus, if the automaton

already accepts the configuration 〈p, γω〉 by p
γ|τ ′

7−→∗ s and s
ω2|τ2

7−→∗ qf for some final state
qf , where ω2 ∈ τ ′(ω) and (ε, ε) ∈ τ2. Then it also ought to accept 〈p′, γ1γ2ω1〉, for every
ω1 ∈ τ(ω). Adding the transition rules p′ γ1| τid7−−−−→ qγ1

p′ and qγ1
p′

γ2| τ◦τ ′7−−−−→ s allows the automaton
to accept 〈p′, γ1γ2ω1〉, for every ω1 ∈ τ(ω), as ω2 ∈ (τ ◦ τ ′)(ω1) for all ω1 ∈ τ(ω).

I Theorem 12. Given a finite TrPDS P = (P,Γ, T ,∆) and a rational set of configurations
C of P recognized a TrNFA A = (S,Γ,Λ, T , S0, Sf ), we can construct a TrNFA A′ such that
L(A′) = post∗(C).

I Example 13. Consider the TrPDS shown in Figure 1(a) and the TrNFA A shown in
Figure 1(b). The result of applying the saturation procedure is shown in Figure 2.

4.2 An Efficient Algorithm for Computing post∗

In this section, we present an efficient implementation of the saturation procedure given in
Section 4.1 which avoids unnecessary operations. Given a rational set of configurations of C
represented by a TrNFA A.

Algorithm 2 computes the transition rules of Apost∗ by implementing the saturation
procedure given in Section 4.1. The approach is similar to the solution for efficiently computing
pre∗. We use trans to store the transition rules that we still need to examine. Lines 1-2
initialize the algorithm. Initially, Λ′ is equal to Λ, while trans is equal to Λ∩P × Γ×T × S,
as transition rules starting from states outside of P do not need to be examined. The set
Spost

∗ of states is equal to S ∪ {qγ1
p1
| 〈p, γ〉 τ

↪→ 〈p1, γ1γ2〉 ∈ ∆} as described in Section 4.1.

The algorithm iteratively removes a transition t = p
γ|τ7−→ q from trans until it is empty. The

loops at Line 6, Line 7 and Lines 8-10 handle the case when p and γ match the left-hand
sides of transition rules in ∆. This is done similar as the saturation rules (i), (ii), and (iii),
respectively. The loops at Lines 11-12 and Lines 13-14 handle ε-transition rules. In the

saturation procedure given in Section 4.1, we have to compute paths p
γ|τ ′

7−→∗ s which may
involve several ε-transitions. In Algorithm 2, we solve this problem by combining transition
pairs of the form p

ε|τ17−→ q1 and q1
γ|τ27−→ q into transition rules p γ

′|(dγ′,γc−1τ1)◦τ27−−−−−−−−−−−→ q for γ′ ∈ Γ
whenever such a pair is found.

CONCUR’15
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Input : A finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ) such
that A uses only τid, Λ has no transition leading to a state in P and no
ε-transition

Output : The TrNFA Apost∗ = (Spost∗ ,Λ′, S0, Sf )
1 Λ′ := Λ; trans := Λ ∩ P × Γ× T × S;
2 Spost

∗ := S ∪ {qγ1
p1
| 〈p, γ〉 τ

↪→ 〈p1, γ1γ2〉 ∈ ∆};
3 while trans 6= ∅ do
4 remove t = p

γ|τ7−→ q from trans;
5 if γ 6= ε then
6 foreach 〈p, γ〉 τ1

↪→ 〈p1, ε〉 ∈ ∆ do Update(p1
ε | τ1◦τ7−−−−−→ q);

7 ;

8 foreach 〈p, γ〉 τ1
↪→ 〈p1, γ1〉 ∈ ∆ do Update(p1

γ1 | τ1◦τ7−−−−−−→ q);
9 ;

10 foreach 〈p, γ〉 τ1
↪→ 〈p1, γ1γ2〉 ∈ ∆ do

11 Update(p1
γ1 | τid7−−−−−→ qγ1

p1
);

12 Update(qγ1
p1

γ2 | τ1◦τ7−−−−−−→ q);

13 foreach p2
ε | τ27−−−−→ qγ1

p1
∈ Λ′, γ′2 ∈ Γ do

14 Update(p2
γ′2 | (dγ′2,γ2c−1τ2)◦τ1◦τ7−−−−−−−−−−−−−−−→ q)

15 else foreach q
γ1 | τ17−−−−−→ q′ ∈ Λ′, γ′1 ∈ Γ do

16 Update(p γ′1 | (dγ′1,γ1c−1τ)◦τ17−−−−−−−−−−−−−→ q′)
17 ;

18 return Apost∗ ;
Algorithm 2. An efficient algorithm for computing post∗.

I Theorem 14. Given a finite TrPDS P = (P,Γ, T ,∆) and a TrNFA A = (S,Γ,Λ, T , S0, Sf ),
we can compute a TrNFA Apost∗ in O(|S|·f(|T |)·|∆|3·|Γ|) time and space for some computable
function f such that L(Apost∗) = post∗(L(A)).

5 Application

In [30], Uezato and Minamide presented two potential applications of TrPDSs: checking
reachability of conditional PDSs [22, 15] and discrete-timed PDSs [1] via pre∗ or post∗
computing of TrPDSs. In this section, we will present another potential application of TrPDSs.
We show how the presence of transductions enables the modeling of Boolean programs with
call-by-reference parameter passing. Boolean programs in which all variables and parameters
(call-by-value) have Boolean type are thought of as an abstract representation of C/C++
programs with recursion [3]. In their definition, Boolean programs contain procedures with
call-by-value parameter passing rather than call-by-reference parameter passing. While
call-by-reference parameter passing is a widely used programming paradigm in C/C++, Java,
etc. Using TrPDSs, we can verify safety properties of Boolean programs with call-by-reference
parameter passing.
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5.1 Boolean Programs with Call-by-Reference Parameter Passing

A Boolean program BP is a tuple (Proc,main,G), where Proc is a finite set of procedures,
main ∈ Proc is the initial procedure, G is a finite set of global Boolean variables. Every
procedure r ∈ Proc is a tuple (Nr, Er, Lr), where Nr is a finite set of control points with
rentry as the unique entry node, Er is a finite set of edges, Lr is the finite set of local Boolean
variables in r. W.l.o.g., we assume that Lr ∩G = ∅ for all r ∈ Proc. L′r = Lr ∪G is a set
of visible variables in r. Let Lrefr be the set of all the call-by-reference formal parameters
of the procedure r, Lrefn (resp. Ln) be the set Lrefr (resp. Lr) such that n ∈ Nr. Given
a procedure call stmt = r(v1, ..., vm) at the control point n whose return address is n′, for
every formal parameter v′ of r, let fRef(n′)(v′) ∈ {v1, ..., vm} be the actual parameter of v′
at the caller site n′.

A valuation ξ ⊆ L′r is a subset of L′r meaning that the Boolean value of x ∈ L′r is 1 if
x ∈ ξ, otherwise 0. Let ξ(x) = 1 if x ∈ ξ, otherwise 0. Let ξ[d/x] be the valuation such
that ξ[d/x](y) = d if x = y, otherwise ξ(y). The edges in Er are of the form (n, ξ, stmt, n′)
meaning that n′ is the next control point of n when the valuation at n is ξ, where stmt is
the statement at n. Let [[stmt]]ξ be the valuation after executing the statement stmt that is
neither a procedure call nor return. The details of the execution model and semantics of
other statements refer to [3].

5.2 Modeling Approach

W.l.o.g., we assume that call-by-reference actual parameters are local variables. Indeed, global
variables are always visible for all procedures and do not need to be passed by parameters.
Different from call-by-value parameter passing which keeps its own copy at callee site, a
parameter passed by call-by-reference will not keep its own copy at callee site. Precisely
speaking, the values of call-by-reference actual parameters at a caller procedure are always
same as the values of the corresponding formal parameters at the callee procedure. We
will use transductions to encode the changing of call-by-reference formal parameters, as
transductions in TrPDSs allow us to manipulate the stack content rather than the top of
stack in PDSs.

The construction of TrPDSs from Boolean programs BP with call-by-reference parameter
passing follows the standard modeling approach of PDSs from Boolean programs [13] except
the assignments with call-by-reference formal parameter as left value for which the side-effect
of assignments should also effect on the value of the corresponding actual parameters at
the corresponding caller site. The valuations of global variables G are put in the control
locations of the TrPDSs, the pairs of the valuations of local variables and control points
(i.e., nodes) of the program are stored in the stack of the TrPDSs. The TrPDS model
will be P = (2G,

⋃
r∈Proc(Nr × 2Lr ), T ,∆). A configuration of the TrPDS model is in the

form of c = 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 meaning that the execution of BP is at the control
point n0 with ξ as the valuation of global variables, ξ0 as the valuation of local variables
of the procedure containing n0. Moreover, (n1, ξ1) · · · (nk, ξk) is the calling history of the
execution such that for every i : 1 ≤ i ≤ k, ni is the return address of the procedure call
that jump into the procedure containing ni−1 and ξi is the stored valuation of local variables
when the procedure call is made. Different from Boolean programs only with call-by-value
parameter passing, a local variable of a procedure may be a call-by-reference parameter
of the procedure. In this case, the value of a local variable and its referenced variable are
identical. Therefore, the potential possible configurations of the TrPDS model should only
have admitted valuations with respect to the local variables and their referenced variables.

CONCUR’15
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Formally, a word (n0, ξ0) · · · (nk, ξk) or a configuration 〈ξ, (n0, ξ0) · · · (nk, ξk)〉 is admissible if
for every i : 0 ≤ i ≤ k − 1 and every v ∈ Lrefni

, v ∈ ξi iff fRef(ni+1)(v) ∈ ξi+1.
Given two variable sets ξ′0, ξ0 ⊆

⋃
r∈Proc L

ref
r , let

−−−−→
(ξ′0, ξ0) ⊆ Γ∗ × Γ∗ be the transduction

such that for every ((n1, ξ1)...(nk, ξk), (n1, ξ
′
1)...(nk, ξ′k)) ∈ Γ∗×Γ∗, ((n1, ξ1)...(nk, ξk), (n1, ξ

′
1)

...(nk, ξ′k)) ∈
−−−−→
(ξ′0, ξ0) iff (n1, ξ1)...(nk, ξk) is admissible, and for every i : 1 ≤ i ≤ k, ξ′i =

ξi ∪ {fRef(ni)(v) | v ∈ ξ′i−1 \ ξi−1} \ {fRef(ni)(v) | v ∈ ξi−1 \ ξ′i−1}. Intuitively, given
an admissible word (n1, ξ1)...(nk, ξk) and two sets ξ0 and ξ′0 denoting respectively the
valuations of local variables before and after an assignment, (n1, ξ

′
1)...(nk, ξ′k) is the admissible

word obtained from (n1, ξ1)...(nk, ξk) with the updating of all the actual parameters of the
corresponding formal call-by-reference parameters with respect to ξ′0 and ξ0.

The set ∆ of transition rules that mimic the control flow of BP is defined as follows: for
every edge e = (n, ξ, stmt, n′) in a procedure r,
〈ξ ∩ G, (n, ξ ∩ Lr)〉

τid
↪→ 〈ξ ∩ G, (r′enrty, ξ′)(n′, ξ ∩ Lr)〉 ∈ ∆ if stmt is a procedure call

r′(v1, ..., vm), where ξ′ = {v ∈ Lr′ | fRef(n′)(v) ∈ ξ};
〈ξ ∩G, (n, ξ ∩ Lr)〉

τid
↪→ 〈ξ ∩G, ε〉 ∈ ∆ if stmt is a return,

〈ξ ∩ G, (n, ξ ∩ Lr)〉
τe
↪→ 〈[[stmt]]ξ ∩ G, (n′, [[stmt]]ξ ∩ Lr)〉 ∈ ∆ otherwise, where τe =

−−−−−−−−→
([[stmt]]ξ, ξ).

The set T of transductions is {τid, τe | e = (n, ξ, stmt, n′) ∈ Er, r ∈ Proc, stmt is neither
a procedure call nor return}. Intuitively, the TrPDS model mimics the execution of BP . The
intuition behind function calls and returns is similar as translating from Boolean programs
into PDSs. For details refer to [13]. We explain the assignments.

Suppose the execution of BP is at the control point n with the valuation ξ, and the calling
history is (n1, ξ1)...(nk, ξk). If the edge e = (n, ξ, stmt, n′) is in a procedure r such that stmt
is neither a procedure call nor return, then, the execution of BP will move from n to the next
point n′ with the valuation [[stmt]]ξ. Moreover, the local variables at n1 that corresponds to
the formal call-by-reference parameters in r should take the values of the call-by-reference
parameters at n′. Similarly, for every i : 2 ≤ i ≤ k, the local variables at ni that corresponds
to the formal call-by-reference parameters in the procedure containing ni−1 should take
the values of the call-by-reference parameters at ni. Therefore, we add the transition rule
〈ξ ∩ G, (n, ξ ∩ Lr)〉

τe
↪→ 〈[[stmt]]ξ ∩ G, (n′, [[stmt]]ξ ∩ Lr)〉 into ∆ which allows the TrPDS

model to move from the configuration 〈ξ ∩ G, (n, ξ ∩ Lr)(n1, ξ1)...(nk, ξk)〉 to 〈[[stmt]]ξ ∩
G, (n′, [[stmt]]ξ ∩ Lr)(n1, ξ

′
1)...(nk, ξ′k)〉 for every ((n1, ξ1)...(nk, ξk), (n1, ξ

′
1)...(nk, ξ′k)) ∈ τe.

The transduction τe =
−−−−−−−−→
([[stmt]]ξ, ξ) correctly specifies the updating of all the actual parameters

of the corresponding call-by-reference parameters in the calling history.
I Remark. From the definitions of transductions T and admissible, we can see that all
the reachable configurations in the TrPDS model from an admissible configuration are also
admissible.

Given two transductions τ1 =
−−−−→
(ξ′1, ξ1), τ2 =

−−−−→
(ξ′2, ξ2) ∈ T , then

τ1 ◦ τ2 =
{
∅ if ξ′1 6= ξ2,−−−−→
(ξ′2, ξ1) otherwise.

Given two symbols (n1, ξ1), (n′1, ξ′1) ∈ Γ∗ and a transduction τ =
−−−→
(ξ′, ξ) ∈ T , d(n1, ξ1),

(n′1, ξ′1)c−1τ is
−−−−→
(ξ′1, ξ1) if n1 = n′1 ∧ ξ′1 = (ξ1 ∪ {fRef(n1)(v) | v ∈ ξ′ \ ξ}) \ {fRef(n1)(v) |

v ∈ ξ \ ξ′}, ∅ otherwise.
Then, we can get that 〈T 〉 ⊆ {

−−−→
(ξ′, ξ) | ∃r ∈ Proc : ξ, ξ′ ⊆ Lr} which is finite.
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I Theorem 15. The Boolean program BP can reach a control point n of the procedure r
with the valuation ξ and the calling history ω from a control point n′ of r′ with the valuation
ξ′ and the calling history ω′ iff 〈ξ′ ∩G, (n′, ξ′ ∩ Lr′)ω′〉 =⇒∗ 〈ξ ∩G, (n, ξ ∩ Lr)ω〉.

Using Theorem 15, we can verify safety properties of Boolean programs with mixed
call-by-reference and call-by-value parameter passing via solving the reachability problem of
TrPDSs. The efficiency heavily relies upon the number of transductions from the modeling
of the Boolean program and the saturation. From the modeling, the number of transductions
is linear in the size of the edges labeled by assignments which assign values to reference
variables. During the saturation procedure, transductions are computing via left quotient
and composition operators. Therefore, the number of transductions added by the saturation
procedure is exponential in the size of return nodes in the Boolean program and doubly
exponential in the size of reference variables.
I Remark. One may argue that Boolean program with mixed call-by-reference and call-by-
value parameter passing can be translated into a Boolean program with only call-by-value
parameter passing by using global variables which can be verified by existing techniques such
as [3]. However, this will leads to larger state space and may degrade performance.

6 Related Work

Model-checking techniques for PDSs were widely studied and applied to program analysis in
the literature [6, 13, 16, 17, 26]. PDSs with checkpoint were introduced in [15] as an extension
of PDSs. PDSs with checkpoint can inspect the stack content and are applied to analyse
programs with runtime inspection. The reachability problem and LTL model-checking for
PDSs with checkpoint were studied in [15] and were applied to the analysis of the HTML5
parser specification in [22]. CTL model-checking for PDSs with checkpoint was studied in
[25, 28]. A similar extension of PDSs was used to formulate abstract garbage collection in
the control flow analysis of higher-order programs [12].

Weighted PDSs and extended weighted PDSs were introduced in [23, 19] for data-flow
analysis purpose. These two extensions associate transitions with elements from semiring
domains. The reachability problem is decidable for bounded idempotent semiring. (Extended)
weighted PDSs and TrPDSs are quite different two computation models. At least, the elements
from semiring can neither inspect nor modify the stack content except the top most symbol
on the stack.

Recently, well-structured PDSs (WSPDSs) that combine well-structured transition systems
and PDSs was introduced by [10] in which the infinite set of control states and the infinite
stack alphabet are well-quasi-order. WSPDS is a powerful model in which recursive vector
addition system with states [4, 5], multi-set PDSs [24] and dense-timed PDSs are subsumed
[11]. However, the reachability problem is undecidable for WSPDSs. But coverability becomes
decidable when the set of control states is finite. In TrPDSs, the set of control states and
the stack alphabet are both finite, but the transductions can inspect and modify the stack
content.

We should clarify the relation between our work and the work [30]. TrPDSs were first
introduced in [30] and are generalization of PDSs with checkpoint and discrete-timed PDSs.
The authors showed that TrPDSs can be simulated by PDSs and proposed a saturation
procedure to compute pre∗ which different from ours. Indeed, our approach is essential
to get an efficient implementation algorithm. We also proposed a saturation procedure to
compute post∗ and its efficient implementation algorithm. These two efficient implementation
algorithms necessarily improve the complexity due to the fact that the algorithms have
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better complexity than the saturation procedures for pushdown systems. Moveover, we
presented a potential application of TrPDSs to modeling and verifying Boolean programs
with call-by-reference parameter passing.

7 Conclusion and Future Work

We introduced two saturation procedures to compute pre∗ and post∗. We also presented
two efficient implementation algorithms for the saturation procedures and measured their
complexity. We showed that TrPDSs are powerful enough to model Boolean programs with
call-by-reference parameter passing. This allows us to verify safety properties of Boolean
programs with mixed call-by-reference and call-by-value parameter passing.

In future, we plan to implement our techniques in a tool and investigate BDD-based
symbolic algorithms by representing transductions and valuations of global and local variables
in BDDs.

Acknowledgements. We want to thank Lijun Zhang and Zhilin Wu for discussions and
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