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Abstract
Kernel methods are an extremely popular set of techniques used for many important machine
learning and data analysis applications. In addition to having good practical performance, these
methods are supported by a well-developed theory. Kernel methods use an implicit mapping of
the input data into a high dimensional feature space defined by a kernel function, i.e., a function
returning the inner product between the images of two data points in the feature space. Central
to any kernel method is the kernel matrix, which is built by evaluating the kernel function on a
given sample dataset.

In this paper, we initiate the study of non-asymptotic spectral properties of random kernel
matrices. These are n×n random matrices whose (i, j)th entry is obtained by evaluating the ker-
nel function on xi and xj , where x1, . . . ,xn are a set of n independent random high-dimensional
vectors. Our main contribution is to obtain tight upper bounds on the spectral norm (largest
eigenvalue) of random kernel matrices constructed by using common kernel functions such as
polynomials and Gaussian radial basis.

As an application of these results, we provide lower bounds on the distortion needed for re-
leasing the coefficients of kernel ridge regression under attribute privacy, a general privacy notion
which captures a large class of privacy definitions. Kernel ridge regression is standard method
for performing non-parametric regression that regularly outperforms traditional regression ap-
proaches in various domains. Our privacy distortion lower bounds are the first for any kernel
technique, and our analysis assumes realistic scenarios for the input, unlike all previous lower
bounds for other release problems which only hold under very restrictive input settings.
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1 Introduction

In recent years there has been significant progress in the development and application of
kernel methods for many practical machine learning and data analysis problems. Kernel
methods are regularly used for a range of problems such as classification (binary/multiclass),
regression, ranking, and unsupervised learning, where they are known to almost always
outperform “traditional” statistical techniques [23, 24]. At the heart of kernel methods
is the notion of kernel function, which is a real-valued function of two variables. The
power of kernel methods stems from the fact for every (positive definite) kernel function
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it is possible to define an inner-product and a lifting (which could be nonlinear) such that
inner-product between any two lifted datapoints can be quickly computed using the kernel
function evaluated at those two datapoints. This allows for introduction of nonlinearity into
the traditional optimization problems (such as Ridge Regression, Support Vector Machines,
Principal Component Analysis) without unduly complicating them.

The main ingredient of any kernel method is the kernel matrix, which is built using
the kernel function, evaluated at given sample points. Formally, given a kernel function
κ : X ×X → R and a sample set x1, . . . ,xn, the kernel matrix K is an n× n matrix with its
(i, j)th entry Kij = κ(xi,xj). Common choices of kernel functions include the polynomial
kernel (κ(xi,xj) = (a〈xi,xj〉 + b)p, for p ∈ N) and the Gaussian kernel (κ(xi,xj) =
exp(−a‖xi − xj‖2), for a > 0) [23, 24].

In this paper, we initiate the study of non-asymptotic spectral properties of random
kernel matrices. A random kernel matrix, for a kernel function κ, is the kernel matrix K
formed by n independent random vectors x1, . . . ,xn ∈ Rd. The prior work on random kernel
matrices [13, 2, 6] have established various interesting properties of the spectral distributions
of these matrices in the asymptotic sense (as n, d → ∞). However, analyzing algorithms
based on kernel methods typically requires understanding of the spectral properties of these
random kernel matrices for large, but fixed n, d. A similar parallel also holds in the study of
the spectral properties of “traditional” random matrices, where recent developments in the
non-asymptotic theory of random matrices have complemented the classical random matrix
theory that was mostly focused on asymptotic spectral properties [27, 20].

We investigate upper bounds on the largest eigenvalue (spectral norm) of random kernel
matrices for polynomial and Gaussian kernels. We show that for inputs x1, . . . ,xn drawn
independently from a wide class of probability distributions over Rd (satisfying the subgaussian
property), the spectral norm of a random kernel matrix constructed using a polynomial
kernel of degree p, with high probability, is roughly bounded by O(dpn). In a similar setting,
we show that the spectral norm of a random kernel matrix constructed using a Gaussian
kernel is bounded by O(n), and with high probability, this bound reduces to O(1) under
some stronger assumptions on the subgaussian distributions. These bounds are almost tight.
Since the entries of a random kernel matrix are highly correlated, the existing techniques
prevalent in random matrix theory cannot be directly applied. We overcome this problem by
careful splitting and conditioning arguments on the random kernel matrix. Combining these
with subgaussian norm concentrations form the basis of our proofs.

1.1 Applications
Largest eigenvalue of kernel matrices plays an important role in the analysis of many
machine learning algorithms. Some examples include, bounding the Rademacher complexity
for multiple kernel learning [16], analyzing the convergence rate of conjugate gradient
technique for matrix-valued kernel learning [26], and establishing the concentration bounds
for eigenvalues of kernel matrices [12, 25].

In this paper, we focus on an application of these eigenvalue bounds to an important
problem arising while analyzing sensitive data. Consider a curator who manages a database
of sensitive information but wants to release statistics about how a sensitive attribute (say,
disease) in the database relates with some nonsensitive attributes (e.g., postal code, age,
gender, etc). This setting is widely considered in the applied data privacy literature, partly
since it arises with medical and retail data. Ridge regression is a well-known approach for
solving these problems due to its good generalization performance. Kernel ridge regression
is a powerful technique for building nonlinear regression models that operate by combining
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ridge regression with kernel methods [21].1 We present a linear reconstruction attack that
reconstructs, with high probability, almost all the sensitive attribute entries given sufficiently
accurate approximation of the kernel ridge regression coefficients. In a linear reconstruction
attack, given the released information ρ, the attacker constructs a system of approximate
linear equalities of the form Az ≈ ρ for a matrix A and attempts to solve for z.

We consider reconstruction attacks against attribute privacy, a loose notion of privacy,
where the goal is to just avoid any gross violation of privacy. Concretely, the input is assumed
to be a database whose ith row (record for individual i) is (xi, yi) where xi ∈ Rd is assumed to
be known to the attacker (public information) and yi ∈ {0, 1} is the sensitive attribute, and a
privacy mechanism is attribute non-private if the attacker can consistently reconstruct a large
fraction of the sensitive attribute (y1, . . . , yn). We show that any privacy mechanism that
always adds ≈ o(1/(dpn)) noise2 to each coefficient of a polynomial kernel ridge regression
model is attribute non-private. Similarly any privacy mechanism that always adds ≈ o(1)
noise2 to each coefficient of a Gaussian kernel ridge regression model is attribute non-private.
As we later discuss, there exists natural settings of inputs under which these kernel ridge
regression coefficients, even without the privacy constraint, have the same magnitude as these
noise bounds, implying that privacy comes at a steep price. While the linear reconstruction
attacks employed in this paper themselves are well-known [9, 15, 14], these are the first
attribute privacy lower bounds that: (i) are applicable to any kernel method and (ii) work for
any d-dimensional data, analyses of all previous attacks (for other release problems) require
d to be comparable to n. Additionally, unlike previous reconstruction attack analyses, our
bounds hold for a wide class of realistic distributional assumptions on the data.

1.2 Comparison with Related Work
In this paper, we study the largest eigenvalue of an n × n random kernel matrix in the
non-asymptotic sense. The general goal with studying non-asymptotic theory of random
matrices is to understand the spectral properties of random matrices, which are valid
with high probability for matrices of a large fixed size. This is contrast with the existing
theory on random kernel matrices which have focused on the asymptotics of various spectral
characteristics of these random matrices, when the dimensions of the matrices tend to
infinity. Let x1, . . . ,xn ∈ Rd be n i.i.d. random vectors. For any F : Rd × Rd × R → R,
symmetric in the first two variables, consider the random kernel matrix K with (i, j)th
entry Kij = F (xi,xj , d). El Karoui [13] considered the case where K is generated by either
the inner-product kernels (i.e., F (xi,xj , d) = f(〈xi,xj〉, d)) or the distance kernels (i.e.,
F (xi,xj , d) = f(‖xi − xj‖2, d)). It was shown there that under some assumptions on f

and on the distributions of xi’s, and in the “large d, large n” limit (i.e., and d, n→∞ and
d/n→ (0,∞)): a) the non-linear kernel matrix converges asymptotically in spectral norm to
a linear kernel matrix, and b) there is a weak convergence of the limiting spectral density.
These results were recently strengthened in different directions by Cheng et al. [2] and Do et
al. [6]. To the best of our knowledge, ours is the first paper investigating the non-asymptotic
spectral properties of a random kernel matrix.

Like the development of non-asymptotic theory of traditional random matrices has found
multitude of applications in areas including statistics, geometric functional analysis, and
compressed sensing [27], we believe that the growth of a non-asymptotic theory of random

1 We provide a brief coverage of the basics of kernel ridge regression in Section 4.
2 Ignoring the dependence on other parameters, including the regularization parameter of ridge regression.
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kernel matrices will help in better understanding of many machine learning applications that
utilize kernel techniques.

The goal of private data analysis is to release global, statistical properties of a database
while protecting the privacy of the individuals whose information the database contains. Dif-
ferential privacy [7] is a formal notion of privacy tailored to private data analysis. Differential
privacy requires, roughly, that any single individual’s data have little effect on the outcome of
the analysis. A lot of recent research has gone in developing differentially private algorithms
for various applications, including kernel methods [11]. A typical objective here is to release
as accurate an approximation as possible to some function f evaluated on a database D.

In this paper, we follow a complementary line of work that seeks to understand how
much distortion (noise) is necessary to privately release some particular function f evaluated
on a database containing sensitive information [5, 8, 9, 15, 4, 18, 3, 19, 14]. The general
idea here, is to provide reconstruction attacks, which are attacks that can reconstruct
(almost all of) the sensitive part of database D given sufficiently accurate approximations to
f(D). Reconstruction attacks violate any reasonable notion of privacy (including, differential
privacy), and the existence of these attacks directly translate into lower bounds on distortion
needed for privacy.

Linear reconstruction attacks were first considered in the context of data privacy by
Dinur and Nissim [5], who showed that any mechanism which answers ≈ n logn random
inner product queries on a database in {0, 1}n with o(

√
n) noise per query is not private.

Their attack was subsequently extended in various directions by [8, 9, 18, 3].
The results that are closest to our work are the attribute privacy lower bounds analyzed

for releasing k-way marginals [15, 4], linear/logistic regression parameters [14], and a subclass
of statistical M -estimators [14]. Kasiviswanathan et al. [15] showed that, if d = Ω̃(n1/(k−1)),
then any mechanism which releases all k-way marginal tables with o(

√
n) noise per entry

is attribute non-private.3 These noise bounds were improved by De [4], who presented an
attack that can tolerate a constant fraction of entries with arbitrarily high noise, as long
as the remaining entries have o(

√
n) noise. Kasiviswanathan et al. [14] recently showed

that, if d = Ω(n), then any mechanism which releases d different linear or logistic regression
estimators each with o(1/

√
n) noise is attribute non-private. They also showed that this

lower bound extends to a subclass of statistical M -estimator release problems. A point to
observe is that in all the above referenced results, d has to be comparable to n, and this
dependency looks unavoidable in those results due to their use of least singular value bounds.
However, in this paper, our privacy lower bounds hold for all values of d, n (d could be � n).
Additionally, all the previous reconstruction attack analyses critically require the xi’s to
be drawn from product of univariate subgaussian distributions, whereas our analysis here
holds for any d-dimensional subgaussian distributions (not necessarily product distributions),
thereby is more widely applicable. The subgaussian assumption on the input data is quite
common in the analysis of machine learning algorithms [1].

2 Preliminaries

2.1 Notation
We use [n] to denote the set {1, . . . , n}. dH(·, ·) measures the Hamming distance. Vectors
used in the paper are by default column vectors and are denoted by boldface letters. For

3 The Ω̃ notation hides polylogarithmic factors.
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a vector v, v> denotes its transpose and ‖v‖ denotes its Euclidean norm. For two vectors
v1 and v2, 〈v1,v2〉 denotes the inner product of v1 and v2. For a matrix M , ‖M‖ denotes
its spectral norm, ‖M‖F denotes its Frobenius norm, and Mij denotes its (i, j)th entry. In
represents the identity matrix in dimension n. The unit sphere in d dimensions centered
at origin is denoted by Sd−1 = {z : ‖z‖ = 1, z ∈ Rd}. Throughout this paper C, c, C ′, also
with subscripts, denote absolute constants (i.e., independent of d and n), whose value may
change from line to line.

2.2 Background on Kernel Methods
We provide a very brief introduction to the theory of kernel methods; see the many books on
the topic [23, 24] for further details.

I Definition 1 (Kernel Function). Let X be a non-empty set. Then a function κ : X ×X → R
is called a kernel function on X if there exists a Hilbert space H over R and a map φ : X → H
such that for all x,y ∈ X , we have

κ(x,y) = 〈φ(x), φ(y)〉H.

For any symmetric and positive semidefinite4 kernel κ, by Mercer’s theorem [17] there
exists: (i) a unique functional Hilbert space H (referred to as the reproducing kernel Hilbert
space, Definition 2) on X such that κ(·, ·) is the inner product in the space and (ii) a map φ
defined as φ(x) := κ(·,x)5 that satisfies Definition 1. The function φ is called the feature
map and the space H is called the feature space.

I Definition 2 (Reproducing Kernel Hilbert Space). A kernel κ(·, ·) is a reproducing kernel
of a Hilbert space H if ∀f ∈ H, f(x) = 〈κ(·,x), f(·)〉H. For a (compact) X ⊆ Rd, and
a Hilbert space H of functions f : X → R, we say H is a Reproducing Kernel Hilbert
Space if there ∃κ : X × X → R, s.t.: a) κ has the reproducing property, and b) κ spans
H = span{κ(·,x) : x ∈ X}.

A standard idea used in the machine-learning community (commonly referred to as the
“kernel trick”) is that kernels allow for the computation of inner-products in high-dimensional
feature spaces (〈φ(x), φ(y)〉H) using simple functions defined on pairs of input patterns
(κ(x,y)), without knowing the φ mapping explicitly. This trick allows one to efficiently
solve a variety of non-linear optimization problems. Note that there is no restriction on the
dimension of the feature maps (φ(x)), i.e., it could be of infinite dimension.

Polynomial and Gaussian are two popular kernel functions that are used in many machine
learning and data mining tasks such as classification, regression, ranking, and structured
prediction. Let the input space X = Rd. For x,y ∈ Rd, these kernels are defined as:
1. Polynomial Kernel: κ(x,y) = (a〈x,y〉+ b)p, with parameters a, b ∈ R and p ∈ N. Here

a is referred to as the slope parameter, b ≥ 0 trades off the influence of higher-order
versus lower-order terms in the polynomial, and p is the polynomial degree. For an input
x ∈ Rd, the feature map φ(x) of the polynomial kernel is a vector with a polynomial in d
number of dimensions [23].

4 A positive definite kernel is a function κ : X × X → R such that for any n ≥ 1, for any finite set of
points {xi}n

i=1 in X and real numbers {ai}n
i=1, we have

∑n

i,j=1 aiajκ(xi,xj) ≥ 0.
5 κ(·,x) is a vector with entries κ(x′,x) for all x′ ∈ X .
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2. Gaussian Kernel: (frequently referred to as the radial basis kernel): κ(x,y) =
exp

(
−a‖x− y‖2) with real parameter a > 0. The value of a controls the locality

of the kernel with low values indicating that the influence of a single point is “far” and
vice-versa [23]. An equivalent popular formulation, is to set a = 1/2σ2, and hence,
κ(x,y) = exp

(
−‖x− y‖2/2σ2). For an input x ∈ Rd, the feature map φ(x) of the

Gaussian kernel is a vector of infinite dimensions [23]. Note that while we focus on the
Gaussian kernel in this paper, the extension of our results to other exponential kernels
such as the Laplacian kernel (where κ(x,y) = exp (−a‖x− y‖1)), is quite straightforward.

2.3 Background on Subgaussian Random Variables
Let us start by formally defining subgaussian random variables and vectors.

I Definition 3 (Subgaussian Random Variable and Vector). We call a random variable x ∈ R
subgaussian if there exists a constant C > 0 if Pr[|x| > t] ≤ 2 exp(−t2/C2) for all t > 0. We
say that a random vector x ∈ Rd is subgaussian if the one-dimensional marginals 〈x,y〉 are
subgaussian random variables for all y ∈ Rd.

The class of subgaussian random variables includes many random variables that arise naturally
in data analysis, such as standard normal, Bernoulli, spherical, bounded (where the random
variable x satisfies |x| ≤M almost surely for some fixed M). The natural generalizations of
these random variables to higher dimension are all subgaussian random vectors. For many
isotropic convex sets6 K (such as the hypercube), a random vector x uniformly distributed
in K is subgaussian.

I Definition 4 (Norm of Subgaussian Random Variable and Vector). The ψ2-norm of a
subgaussian random variable x ∈ R, denoted by ‖x‖ψ2 is:

‖x‖ψ2 = inf
{
t > 0 : E[exp(|x|2/t2)] ≤ 2

}
.

The ψ2-norm of a subgaussian random vector x ∈ Rd is:

‖x‖ψ2 = sup
y∈Sd−1

‖〈x,y〉‖ψ2 .

I Claim 5 (Vershynin [27]). Let x ∈ R be a subgaussian random variable. Then there exists
a constant C > 0, such that Pr[|x| > t] ≤ 2 exp(−Ct2/‖x‖2

ψ2
).

Consider a subset T of Rd, and let ε > 0. An ε-net of T is a subset N ⊆ T such that
for every x ∈ T , there exists a z ∈ N such that ‖x − z‖ ≤ ε. We would use the following
well-known result about the size of ε-nets.

I Proposition 6 (Bounding the size of an ε-Net [27]). Let T be a subset of Sd−1 and let
ε > 0. Then there exists an ε-net of T of cardinality at most (1 + 2/ε)d.

The proof of the following claim follows by standard techniques.

I Claim 7 (Vershynin [27]). Let N be a 1/2-net of Sd−1. Then for any x ∈ Rd, ‖x‖ ≤
2 maxy∈N 〈x,y〉.

6 A convex set K in Rd is called isotropic if a random vector chosen uniformly from K according to the
volume is isotropic. A random vector x ∈ Rd is isotropic if for all y ∈ Rd, E[〈x,y〉2] = ‖y‖2.
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904 Spectral Norm of Random Kernel Matrices with Applications to Privacy

3 Largest Eigenvalue of Random Kernel Matrices

In this section, we provide the upper bound on the largest eigenvalue of a random kernel
matrix, constructed using polynomial or Gaussian kernels. Notice that the entries of a
random kernel matrix are dependent. For example any triplet of entries (i, j), (j, k) and (k, i)
are mutually dependent. Additionally, we deal with vectors drawn from general subgaussian
distributions, and therefore, the coordinates within a random vector need not be independent.

We start off with a simple lemma, to bound the Euclidean norm of a subgaussian random
vector. A random vector x is centered if E[x] = 0.

I Lemma 8. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Then for all
i ∈ [n], Pr[‖xi‖ ≥ C

√
d] ≤ exp(−C ′d) for constants C,C ′.

Proof. To this end, note that since xi is a subgaussian vector (from Definition 3)

Pr
[
|〈xi,y〉| ≥ C

√
d/2
]
≤ 2 exp(−C2d),

for constants C and C2, any unit vector y ∈ Sd−1. Taking the union bound over a (1/2)-net
(N ) in Sd−1, and using Proposition 6 for the size of the nets (which is at most 5d as ε = 1/2),
we get that

Pr
[
max
y∈N
|〈xi,y〉| ≥ C

√
d/2
]
≤ exp(−C3d),

From Claim 7, we know that ‖xi‖ ≤ 2 maxy∈N 〈xi,y〉. Hence, Pr
[
‖xi‖ ≥ C

√
d
]
≤

exp(−C ′d). J

3.1 Polynomial Kernel
We now establish the bound on the spectral norm of a polynomial kernel random matrix.
We assume x1, . . . ,xn are independent vectors drawn according to a centered subgaussian
distribution over Rd. Let Kp denote the kernel matrix obtained using x1, . . . ,xn in a
polynomial kernel. Our idea to split the kernel matrix Kp into its diagonal and off-diagonal
parts, and then bound the spectral norms of these two matrices separately. The diagonal part
contains independent entries of the form (a‖xi‖2 + b)p, and we use Lemma 8 to bound its
spectral norm. Dealing with the off-diagonal part of Kp is trickier because of the dependence
between the entries, and here we bound the spectral norm by its Frobenius norm. We
also verify the upper bounds provided in the following theorem by conducting numerical
experiments (see Figure 1a).

I Theorem 9. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Let p ∈ N,
and let Kp be the n × n matrix with (i, j)th entry Kpij = (a〈xi,xj〉 + b)p. Assume that
n ≤ exp(C1d) for a constant C1. Then there exists constants C0, C

′
0 such that

Pr
[
‖Kp‖ ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ exp(−C ′0d).

Proof. To prove the theorem, we split the kernel matrix Kp into the diagonal and off-diagonal
parts. Let Kp = D+W , where D represents the diagonal part of Kp and W the off-diagonal
part of Kp. Note that

‖Kp‖ ≤ ‖D‖+ ‖W‖ ≤ ‖D‖+ ‖W‖F .
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Let us estimate the norm of the diagonal part D first. From Lemma 8, we know that for all
i ∈ [n] with C3 = C ′,

Pr
[
‖xi‖ ≥ C

√
d
]

= Pr
[
‖xi‖2 ≥ (C

√
d)2
]
≤ exp(−C3d).

Instead of ‖x‖2
i , we are interested in bounding (a‖xi‖2 + b)p.

Pr
[
‖xi‖2 ≥ (C

√
d)2
]

= Pr
[
(a‖xi‖2 + b)p ≥ (a(C

√
d)2 + b)p

]
. (1)

Consider (a(C
√
d)2 + b)p. A simple inequality to bound (a(C

√
d)2 + b)p is7

(a(C
√
d)2 + b)p ≤ 2p(|a|p(C

√
d)2p + |b|p).

Therefore,

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|p(C

√
d)2p + |b|p)

]
≤ Pr

[
(a‖xi‖2 + b)p ≥ (a(C

√
d)2 + b)p

]
.

Using (1) and substituting in the above equation, for any i ∈ [n]

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|pC2pdp + |b|p)

]
≤ Pr

[
‖xi‖ ≥ C

√
d
]
≤ exp(−C3d).

By applying a union bound over all n non-zero entries in D, we get that for all i ∈ [n]

Pr
[
(a‖xi‖2 + b)p ≥ 2p(|a|pC2pdp + |b|p)

]
≤ n · exp(−C3d) ≤ exp(C1d) · exp(−C3d)

≤ exp(−C4d),

as we assumed that n ≤ exp(C1d). This implies that

Pr[‖D‖ ≥ 2p(|a|pC2pdp + |b|p)] ≤ exp(−C4d). (2)

We now bound the spectral norm of the off-diagonal part W using Frobenius norm as an
upper bound on the spectral norm. Firstly note, by definition, for any y ∈ Rd, the random
variable 〈xi,y〉 is subgaussian with its ψ2-norm at most C5‖y‖ for some constant C5. This
follows as:

‖〈xi,y〉‖ψ2 := inf
{
t > 0 : E[exp(〈xi,y〉2/t2)] ≤ 2

}
≤ C5‖y‖.

Therefore, for a fixed xj , ‖〈xi,xj〉‖ψ2 ≤ C5‖xj‖. For i 6= j, conditioning on xj ,

Pr [|〈xi,xj〉| ≥ τ ] = Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] .

From Claim 5,

Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] ≤ Exj

[
exp

(
−C6τ

2

‖〈xi,xj〉‖2
ψ2

)]
≤ Exj

[
exp

(
−C6τ

2

(C5‖xj‖)2

)]
= Exj

[
exp

(
−C7τ

2

‖xj‖2

)]
,

7 For any a, b,m ∈ R and p ∈ N, (a ·m+ b)p ≤ 2p(|a|p|m|p + |b|p).
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where the last inequality uses the fact that ‖〈xi,xj〉‖ψ2 ≤ C5‖xj‖. Now let us condition the
above expectation on the value of ‖xj‖ based on whether ‖xj‖ ≥ C

√
d or ‖xj‖ < C

√
d. We

can rewrite

Exj

[
−C7τ

2

‖xj‖2

]
≤ Exj

[
exp

(
−C7τ

2

C2d

) ∣∣∣∣∣ ‖xj‖ < C
√
d

]
Pr[‖xj‖ < C

√
d]

+ Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d].

The above equation can be easily be simplified as:

Exj

[
−C7τ

2

‖xj‖2

]
≤ exp

(
−C8τ

2

d

)
+ Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d].

From Lemma 8, Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d), and

Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]
≤ 1.

This implies that as Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d)),

Exj

[
exp

(
−C7τ

2

‖xj‖2

) ∣∣∣∣∣ ‖xj‖ ≥ C√d
]

Pr[‖xj‖ ≥ C
√
d] ≤ exp(−C3d).

Putting the above arguments together,

Pr [|〈xi,xj〉| ≥ τ ] = Exj
[Pr [|〈xi,xj〉| ≥ τ | xj ]] ≤ exp

(
−C8τ

2

d

)
+ exp(−C3d).

Taking a union bound over all (n2 − n) < n2 non-zero entries in W ,

Pr
[
max
i6=j
|〈xi,xj〉| ≥ τ

]
≤ n2

(
exp

(
−C8τ

2

d

)
+ exp(−C3d)

)
.

Setting τ = C · d in the above and using the fact that n ≤ exp(C1d),

Pr
[
max
i 6=j
|〈xi,xj〉| ≥ C · d

]
≤ exp(−C9d). (3)

We are now ready to bound the Frobenius norm of W .

‖W‖F =

∑
i 6=j

(a〈xi,xj〉+ b)2p

1/2

≤
(
n222p (|a|2p〈xi,xj〉2p + |b|2p

))1/2

≤ n2p (|a|p|〈xi,xj〉|p + |b|p) .

Plugging in the probabilistic bound on |〈xi,xj〉| from (3) gives,

Pr [‖W‖F ≥ n2p (|a|p|Cpdp + |b|p)] ≤ Pr [n2p (|a|p|〈xi,xj〉|p + |b|p) ≥ n2p (|a|p|Cpdp + |b|p)]
Pr [‖W‖F ≥ n2p (|a|p|Cpdp + |b|p)] ≤ Pr [n2p (|a|p|〈xi,xj〉|p + |b|p) ≥ n2p (|a|p|Cpdp + |b|p)]

≤ exp(−C9d). (4)
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Plugging bounds on ‖D‖ (from (2)) and ‖W‖F (from (4)) to upper bound ‖Kp‖ ≤ ‖D‖+
‖W‖F yields that there exists constants C0 and C ′0 such that,

Pr
[
‖Kp‖ ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ Pr

[
‖D‖+ ‖W‖F ≥ Cp0 |a|pdpn+ 2p+1|b|pn

]
≤ exp(−C ′0d).

This completes the proof of the theorem. The chain of constants can easily be estimated
starting with the constant in the definition of the subgaussian random variable. J

I Remark. Note that for our proofs it is only necessary that x1, . . . ,xn are independent
random vectors, but they need not be identically distributed.

The above spectral norm upper bound on Kp (again with exponentially high probability)
could be improved to

O
(
Cp0 |a|p(dp + dp/2n) + 2p+1n|b|p

)
,

with a slightly more involved analysis (omitted here). For an even p, the expectation of every
individual entry of the matrix Kp is positive, which provides tight examples for this bound.

3.2 Gaussian Kernel
We now establish the bound on the spectral norm of a Gaussian kernel random matrix.
Again assume x1, . . . ,xn are independent vectors drawn according to a centered subgaussian
distribution over Rd. LetKg denote the kernel matrix obtained using x1, . . . ,xn in a Gaussian
kernel. Here an upper bound of n on the spectral norm on the kernel matrix follows trivially
as all entries of Kg are less than equal to 1. We show that this bound is tight, in that for
small values of a, with high probability the spectral norm is at least Ω(n) (Theorem 10
(Part 2)).

In fact, even for large a’s, it is impossible to obtain better than O(n) upper bound on
the spectral norm of Kg without additional assumptions on the subgaussian distribution, as
illustrated by this example: Consider a distribution over Rd, such that a random vector drawn
from this distribution is a zero vector (0)d with probability 1/2 and uniformly distributed
over the sphere in Rd of radius 2

√
d with probability 1/2. A random vector x drawn from this

distribution is isotropic and subgaussian, but Pr[x = (0)d] = 1/2. Therefore, in x1, . . . ,xn
drawn from this distribution, with high probability more than a constant fraction of the
vectors will be (0)d. This means that a proportional number of entries of the matrix Kg will
be 1, and the norm will be O(n) regardless of a.

This situation changes, however, when we add the additional assumption that x1, . . . ,xn
have independent centered subgaussian coordinates8 (i.e., each xi is drawn from a product
distribution formed from some d centered univariate subgaussian distributions). In that
case, the kernel matrix Kg is a small perturbation of the identity matrix, and we show
that the spectral norm of Kg is with high probability bounded by an absolute constant (for
a = Ω(logn/d)). For this proof, similar to Theorem 9, we split the kernel matrix into its
diagonal and off-diagonal parts. The spectral norm of the off-diagonal part is again bounded
by its Frobenius norm. We also verify the upper bounds presented in the following theorem
by conducting numerical experiments (see Figure 1b).

8 Some of the commonly used subgaussian random vectors such as the standard normal, Bernoulli satisfy
this additional assumption.
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I Theorem 10. Let x1, . . . ,xn ∈ Rd be independent centered subgaussian vectors. Let a > 0,
and let Kg be the n × n matrix with (i, j)th entry Kgij

= exp(−a‖xi − xj‖2). Then there
exists constants c, c0, c

′
0, c1 such that

1. ‖Kg‖ ≤ n.
2. If a < c1/d, Pr [‖Kg‖ ≥ c0n] ≥ 1− exp(−c′0n).
3. If all the vectors x1, . . . ,xn satisfy the additional assumption of having independent

centered subgaussian coordinates, and assume n ≤ exp(C1d) for a constant C1. Then for
any δ > 0 and a ≥ (2 + δ) logn

d , Pr [‖Kg‖ ≥ 2] ≤ exp(−cζ2d) with ζ > 0 depending only
on δ.

Proof. Proof of Part 1 is straightforward as all entries of Kg do not exceed 1.
Let us prove the lower estimate for the norm in Part 2. For i = 1, . . . , n define

Zi =
n∑

j= n
2 +1

Kgij .

From Lemma 8 for all i ∈ [n], Pr
[
‖xi‖ ≥ C

√
d
]
≤ exp(−C ′d). In other words, ‖xi‖ is less

than C
√
d for all i ∈ [d] with probability at least 1 − exp(−C ′d). Let us call this event

E1. Under E1 and assumption a < c1/d, E[Zi] ≥ c2n and E[Z2
i ] ≤ c3n

2. Therefore, by
Paley-Zygmund inequality (under event E1),

Pr[Zi ≥ c4n] ≥ c5. (5)

Now Z1, . . . , Zn are not independent random variables. But if we condition on xn/2+1, . . . ,xn,
then Z1, . . . , Zn/2 become independent (for simplicity, assume that n is divisible by 2).
Thereafter, an application of Chernoff bound on Z1, . . . , Zn/2 using the probability bound
from (5) (under conditioning on xn/2+1, . . . ,xn and event E1) gives:

Pr
[
Zi ≥ c4n for at least c5n entries Zi ∈ {Z1, . . . , Zn/2}

]
≥ 1− exp(−c6n).

The first conditioning can be removed by taking the expectation with respect to xn/2+1, . . . ,xn
without disturbing the exponential probability bound. Similarly, conditioning on event E1
can also be easily removed.

LetK ′g be the submatrix ofKg consisting of rows 1 ≤ i ≤ n/2 and columns n/2+1 ≤ j ≤ n.
Note that ‖K ′g‖ ≥ u>K ′gu, where u =

(√
2
n , . . . ,

√
2
n

)
(of dimension n/2). Then

Pr[‖Kg‖ ≤ c0n] ≤ Pr[‖K ′g‖ ≤ c7n] ≤ Pr[u>K ′gu ≤ c7n]

Pr

 2
n

n/2∑
i=1

Zi ≤ c7n

 ≤ exp(−c′0n).

The last line follows as from above arguments with exponentially high probability above more
than Ω(n) entries in Z1, . . . , Zn/2 are greater than Ω(n), and by readjusting the constants.

Proof of Part 3: As in Theorem 9, we split the matrix Kg into the diagonal (D) and the
off-diagonal part (W ) (i.e., Kg = D +W ). It is simple to observe that D = In, therefore we
just concentrate on W . The (i, j)th entry in W is exp(−a‖xi − xj‖2), where xi and xj are
independent vectors with independent centered subgaussian coordinates. Therefore, we can
use Hoeffding’s inequality, for fixed i, j,

Pr
[
exp(−a‖xi − xj‖2) ≥ exp(−a(1− ζ)d)

]
= Pr

[
‖xi − xj‖2

d
≤ (1− ζ)

]
≤ exp(−c8ζ

2d),

(6)
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where we used the fact that if a random variable is subgaussian then its square is a subexpo-
nential random variable [27].9 To estimate the norm ofW , we bound it by its Frobenius norm.
If a ≥ (2+δ) logn

d , then we can choose ζ > 0 depending on δ such that n2 exp(−a(1−ζ)d) ≤ 1.
Hence,

Pr[‖Kg‖ ≥ 2] ≤ Pr[‖D‖+ ‖W‖F ≥ 2] = Pr[‖W‖F ≥ 1]

= Pr

 ∑
1≤i,j≤n,i 6=j

exp(−a‖xi − xj‖2) ≥ 1


≤ Pr

 ∑
1≤i,j≤n,i 6=j

exp(−a‖xi − xj‖2) ≥ n2 exp(−a(1− ζ)d)


≤ Pr

 ∑
1≤i,j≤n

exp(−a‖xi − xj‖2) ≥ n2 exp(−a(1− ζ)d)


≤ n2 Pr

[
max

1≤i,j≤n
exp(−a‖xi − xj‖2) ≥ exp(−a(1− ζ)d)

]
≤ n2 exp(−c8ζ

2d)
≤ exp(−cζ2d) for some constant c.

The first equality follows as ‖D‖ = 1, and the second-last inequality follows from (6). This
completes the proof of the theorem. Again the long chain of constants can easily be estimated
starting with the constant in the definition of the subgaussian random variable. J

I Remark. Note that again the xi’s need not be identically distributed.
The analysis in Theorem 10 could easily be reworked to handle other exponential kernels

such as the Laplacian kernel.

4 Privately Releasing Kernel Ridge Regression Coefficients

We consider an application of Theorems 9 and 10 to obtain noise lower bounds for privately
releasing coefficients of kernel ridge regression. For privacy violation, we consider a general-
ization of blatant non-privacy [5] referred to as attribute non-privacy (formalized in [15]).
Consider a database D ∈ Rn×d+1 that contains, for each individual i, a sensitive attribute
yi ∈ {0, 1} as well as some other information xi ∈ Rd which is assumed to be known to the
attacker. The ith record is thus (xi, yi). Let X ∈ Rn×d be a matrix whose ith row is xi, and
let y = (y1, . . . , yn). We denote the entire database D = (X|y) where | represents vertical
concatenation. Given some released information ρ, the attacker constructs an estimate ŷ
that she hopes is close to y. We measure the attack’s success in terms of the Hamming
distance dH(y, ŷ). A scheme is not attribute private if an attacker can consistently get an
estimate that is within distance o(n). Formally:

IDefinition 11 (Failure of Attribute Privacy [15]). A (randomized) mechanismM : Rn×d+1 →
Rl is said to allow (θ, γ)-attribute reconstruction if there exists a setting of the nonsensitive

9 We call a random variable x ∈ R subexponential if there exists a constant C > 0 if Pr[|x| > t] ≤
2 exp(−t/C) for all t > 0.
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910 Spectral Norm of Random Kernel Matrices with Applications to Privacy

Kernel matrix size (n)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000Lo

g 
of

 th
e 

La
rg

es
t E

ig
en

va
lu

e 
(a

ve
ra

ge
d 

ov
er

 1
00

 ru
ns

)

19

20

21

22

23

24

25

26

27

28
Acutal Value
Upper Bound from Theorem 6

(a) Polynomial Kernel
Kernel matrix size (n)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

La
rg

es
t E

ig
en

va
lu

e 
(a

ve
ra

ge
d 

ov
er

 1
00

 ru
ns

)

0.8

1

1.2

1.4

1.6

1.8

2

2.2
Acutal Value
Upper Bound from Theorem 7 (Part c)

(b) Gaussian Kernel

Figure 1 Largest eigenvalue distribution for random kernel matrices constructed with a polynomial
kernel (left plot) and a Gaussian kernel (right plot). The actual value plots are constructed by
averaging over 100 runs, and in each run we draw n independent standard Gaussian vectors in
d = 100 dimensions. The predicted values are computed from bounds in Theorems 9 and 10 (Part 3).
The kernel matrix size n is varied from 10 to 10000 in multiples of 10. For the polynomial kernel, we
set a = 1, b = 1, and p = 4, and for the Gaussian kernel a = 3 log(n)/d. Note that our upper bounds
are fairly close to the actual results. For the Gaussian kernel, the actual values are very close to 1.

attributes X ∈ Rn×d and an algorithm (adversary) A : Rn×d×Rl → Rn such that for every
y ∈ {0, 1}n,

Pr
ρ←M((X|y))

[A(X, ρ) = ŷ : dH(y, ŷ) ≤ θ] ≥ 1− γ.

Asymptotically, we say that a mechanism is attribute nonprivate if there is an infinite sequence
of n for whichM allows (o(n), o(1))-attribute reconstruction. Here d = d(n) is a function of
n. We say the attack A is efficient if it runs in time poly(n, d).

4.1 Kernel Ridge Regression Background

One of the most basic regression formulation is that of ridge regression [10]. Suppose that we
are given a dataset {(xi, yi)}ni=1 consisting of n points with xi ∈ Rd and yi ∈ R. Here xi’s
are referred to as the regressors and yi’s are the response variables. In linear regression the
task is to find a linear function that models the dependencies between xi’s and the yi’s. A
common way to prevent overfitting in linear regression is by adding a penalty regularization
term (also known as shrinkage in statistics). In kernel ridge regression [21], we assume a
model of form y = f(x) + ξ, where we are trying to estimate the regression function f and ξ
is some unknown vector that accounts for discrepancy between the actual response (y) and
predicted outcome (f(x)). Given a reproducing kernel Hilbert space H with kernel κ, the
goal of ridge regression kernel ridge regression is to estimate the unknown function f? such
the least-squares loss defined over the dataset with a weighted penalty based on the squared
Hilbert norm is minimized.

Kernel Ridge Regression: argminf∈H

(
1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
H

)
, (7)
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where λ > 0 is a regularization parameter. By representer theorem [22], any solution f?

for (7), takes the form

f?(·) =
n∑
i=1

αiκ(·,xi), (8)

where α = (α1, . . . , αn) is known as the kernel ridge regression coefficient vector. Plugging
this representation into (7) and solving the resulting optimization problem (in terms of α
now), we get that the minimum value is achieved for α = α?, where

α? = (K + λIn)−1y, where K is the kernel matrix with
Kij = κ(xi,xj) and y = (y1, . . . , yn). (9)

Plugging this α? from (9) in to (8), gives the final form for estimate f?(·). For a new point
x ∈ Rd, the predicted response is f?(x) =

∑n
i=1 α

?
i κ(x,xi) where α? = (K + λIn)−1y and

α? = (α?1, . . . , α?n). Therefore, knowledge of α? and x1, . . . ,xn suffices for making future
predictions.

If K is constructed using a polynomial kernel (defined in 1. in Section 2.2) then the
above procedure is referred to as the polynomial kernel ridge regression, and similarly if K is
constructed using a Gaussian kernel (defined in 2. in Section 2.2) then the above procedure
is referred to as the Gaussian kernel ridge regression.

4.2 Reconstruction Attack from Noisy α∗

Algorithm 1 outlines the attack. The privacy mechanism releases a noisy approximation
to α?. Let α̃ be this noisy approximation, i.e., α̃ = α? + e where e is some unknown noise
vector. The adversary tries to reconstruct an approximation ŷ of y from α̃. The adversary
solves the following `2-minimization problem to construct ŷ:

minz∈Rn‖α̃− (K + λIn)−1z‖. (10)

In the setting of attribute privacy, the database D = (X|y). Let x1, . . . ,xn be the rows of
X, using which the adversary can construct K to carry out the attack. Since the matrix
K + λIn is invertible for λ > 0 as K is a positive semidefinite matrix, the solution to (10) is
simply z = (K + λIn)α̃, element-wise rounding of which to closest 0, 1 gives ŷ.

Algorithm 1 Reconstruction Attack from Noisy Kernel Ridge Regression Coefficients
Input: Public information X ∈ Rn×d, regularization parameter λ, and α̃ (noisy α?).

1: Let x1, . . . ,xn be the rows of X, construct the kernel matrix K with Kij = κ(xi,xj)
2: Return ŷ = (ŷ1, . . . , ŷn) defined as follows:

ŷi =
{

0 if ith entry in (K + λIn)α̃ < 1/2
1 otherwise

I Lemma 12. Let α̃ = α? + e, where e ∈ Rn is some unknown (noise) vector. If ‖e‖∞ ≤ β
(absolute value of all entries in e is less than β), then ŷ returned by Algorithm 1 satisfies,
dH(y, ŷ) ≤ 4(K + λ)2β2n. In particular, if β = o

(
1

‖K‖+λ

)
, then dH(y, ŷ) = o(n).

APPROX/RANDOM’15
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Proof. Since α? = (K + λIn)−1y, α̃ = (K + λIn)−1y + e. Now multiplying (K + λIn) on
both sides gives,

(K + λIn)α̃ = y + (K + λIn)e.

Concentrate on ‖(K + λIn)e‖. This can be bound as

‖(K + λIn)e‖ ≤ ‖(K + λIn)‖‖e‖ = (‖K‖+ λ)‖e‖.

If the absolute value of all the entries in e are less than β then ‖e‖ ≤ β
√
n. A simple

manipulation then shows that if the above hold then (K + λIn)e cannot have more than
4(‖K‖+ λ)2β2n entries with absolute value above 1/2. Since ŷ and y only differ in those
entries where (K + λIn)e is greater than 1/2, it follows that dH(y, ŷ) ≤ 4(‖K‖ + λ)2β2n.
Setting β = o( 1

‖K‖+λ ) implies dH(y, ŷ) = o(n). J

For a privacy mechanism to be attribute non-private, the adversary has to be able
reconstruct an 1 − o(1) fraction of y with high probability. Using the above lemma, and
the different bounds on ‖K‖ established in Theorems 9 and 10, we get the following lower
bounds for privately releasing kernel ridge regression coefficients.

I Theorem 13.
1. Any privacy mechanism which for every database D = (X|y) where X ∈ Rn×d and

y ∈ {0, 1}n releases the coefficient vector of a polynomial kennel ridge regression model
(for constants a, b, and p) fitted between X (matrix of regressor values) and y (response
vector), by adding o( 1

dpn+λ ) noise to each coordinate is attribute non-private. The attack
that achieves this attribute privacy violation operates in O(dn2) time.

2. Any privacy mechanism which for every database D = (X|y) where X ∈ Rn×d and
y ∈ {0, 1}n releases the coefficient vector of a Gaussian kennel ridge regression model
(for constant a) fitted between X (matrix of regressor values) and y (response vector), by
adding o( 1

2+λ ) noise to each coordinate is attribute non-private. The attack that achieves
this attribute privacy violation operates in O(dn2) time.

Proof. For Part 1, draw each individual i’s non-sensitive attribute vector xi independently
from any d-dimensional subgaussian distribution, and use Lemma 12 in conjunction with
Theorem 9.

For Part 2, draw each individual i’s non-sensitive attribute vector xi independently from
any product distribution formed from some d centered univariate subgaussian distributions,
and use Lemma 12 in conjunction with Theorem 10 (Part 3).10

The time needed to construct the kernel matrix K is O(dn2), which dominates the overall
computation time. J

We can ask how the above distortion needed for privacy compares to typical entries in
α?. The answer is not simple, but there are natural settings of inputs, where the noise
needed for privacy becomes comparable with coordinates of α?, implying that the privacy
comes at a steep price. One such example is if the xi’s are drawn from the standard normal
distribution, y = (1)n, and all other kernel parameters are constant, then the expected value
of the corresponding α? coordinates match the noise bounds obtained in Theorem 13.

10Note that it is not critical for xi’s to be drawn from a product distribution. It is possible to analyze the
attack even under a (weaker) assumption that each individual i’s non-sensitive attribute vector xi is
drawn independently from a d-dimensional subgaussian distribution, by using Lemma 12 in conjunction
with Theorem 10 (Part 1).
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Note that Theorem 13 makes no assumptions on the dimension d of the data, and holds
for all values of n, d. This is different from all other previous lower bounds for attribute
privacy [15, 4, 14], all of which require d to be comparable to n, thereby holding only either
when the non-sensitive data (the xi’s) are very high-dimensional or for very small n. Also all
the previous lower bound analyses [15, 4, 14] critically rely on the fact that the individual
coordinates of each of the xi’s are independent11, which is not essential for Theorem 13.

4.3 Note on using `1-reconstruction Attacks
A natural alternative to (10) is to use `1-minimization (also known as “LP decoding”). This
gives rise to the following linear program:

minz∈Rn‖α̃− (K + λIn)−1z‖1. (11)

In the context of privacy, the `1-minimization approach was first proposed by Dwork et al. [8],
and recently reanalyzed in different contexts by [4, 14]. These results have shown that, for
some settings, the `1-minimization can handle considerably more complex noise patterns than
the `2-minimization. However, in our setting, since the solutions for (11) and (10) are exactly
the same (z = (K + λIn)α̃), there is no inherent advantage of using the `1-minimization.

5 Concluding Remarks

We initiate the study of non-asymptotic spectral properties of random kernel matrices, and
provide tight bounds on the spectral norm of these matrices when constructed using kernel
functions such as polynomials and Gaussian radial basis. Using these results, we provide lower
bounds on the distortion needed for releasing coefficients of kernel ridge regression under
attribute privacy, a general privacy notion that captures a large class of privacy definitions.

We believe that developing a non-asymptotic spectral theory for random kernel matrices
is an interesting research direction that would provide deep insights into the workings of
many kernel-based machine learning algorithms.
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