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Abstract
We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph
(with reweighted edges) that approximately preserves the effective resistances between every pair
of nodes. We show that every dense regular expander admits a (1 + ε)-resistance sparsifier of
size Õ(n/ε), and conjecture this bound holds for all graphs on n nodes. In comparison, spectral
sparsification is a strictly stronger notion and requires Ω(n/ε2) edges even on the complete graph.

Our approach leads to the following structural question on graphs: Does every dense regular
expander contain a sparse regular expander as a subgraph? Our main technical contribution,
which may of independent interest, is a positive answer to this question in a certain setting of
parameters. Combining this with a recent result of von Luxburg, Radl, and Hein [16] leads to
the aforementioned resistance sparsifiers.
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1 Introduction

Compact representations of discrete structures are of fundamental importance, both from an
applications point of view and from a purely mathematical perspective. Graph sparsification
is perhaps one of the simplest examples: given a graph G(V,E), is there a subgraph that
represents G truthfully, say up to a small approximation? This notion has had different names
in different contexts, depending on the property that is being preserved: preserving distances
is known as a graph spanner [11], preserving the size of cuts is known as a cut sparsifier [3],
while preserving spectral properties is known as a spectral sparsifier [13]. These concepts are
known to be related, for example, every spectral sparsifier is clearly also a cut sparsifier, and
spectral sparsifiers can be constructed by an appropriate sample of spanners [6].

Our work is concerned with sparsification that preserves effective resistances. We define
this in Section 1.1, but informally the effective resistance between two nodes u and v is
the voltage differential between them when we regard the graph as an electrical network
of resistors with one unit of current injected at u and extracted at v. Effective resistances
are very useful in many applications that seek to cluster nodes in a network (see [16] and
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references therein for a comprehensive list), and are also of fundamental mathematical
interest. For example, they have deep connections to random walks on graphs (see [10] for
an excellent overview of this connection). Most famously, the commute time between two
nodes u and v (the expected time for a random walk starting at u to hit v plus the expected
time for a random walk starting at v to hit u) is exactly 2m times the effective resistance
between u and v, where throughout n := |V | and m := |E|. Hence, we are concerned with
sparsification which preserves commute times.

We ask whether graphs admit a good resistance sparsifier : a reweighted subgraph
G′(V,E′, w′) in which the effective resistances are equal, up to a (1 + ε)-factor, to those in
the original graph. The short answer is yes, because every (1 + ε)-spectral sparsifier is also a
(1 + ε)-resistance sparsifier. Using the spectral-sparsifiers of [2], we immediately conclude
that every graph admits a (1 + ε)-resistance sparsifier with O(n/ε2) edges.

Interestingly, the same 1/ε2 factor loss appears even when we interpret “sparsification” far
more broadly. For example, a natural approach to compressing the effective resistances is to
use a metric embedding (instead of looking for a subgraph): map the nodes into some metric,
and use the metric’s distances as our resistance estimates. This approach is particularly
attractive since it is well-known that effective resistances form a metric space which embeds
isometrically into `2-squared (i.e., the metric is of negative type, see e.g. [5]). Hence, using
the Johnson-Lindenstrauss dimension reduction lemma, we can represent effective resistances
up to a distortion of (1 + ε) using vectors of dimension O(ε−2 logn), i.e., using total space
Õ(n/ε2). In fact, this very approach was used by [14] to quickly compute effective resistance
estimates, which were then used to construct a spectral sparsifier.

Since a 1/ε2 term appears in both of these natural ways to compactly represent effective
resistances, an obvious question is whether this is necessary. For the stronger requirement of
spectral sparsification, we know the answer is yes – every spectral sparsifier of the complete
graph requires Ω(n/ε2) edges [2, Section 4] (see also [1]). However, it is currently unknown
whether such a bound holds also for resistance sparsifiers, and the starting point of our work
is the observation (based on [16]) that for the complete graph, every O(1/ε)-regular expander
is a (1 + ε)-resistance sparsifier, despite not being a (1 + ε)-spectral sparsifier! We thus put
forward the following conjecture.

I Conjecture 1. Every graph admits a (1 + ε)-resistance sparsifier with Õ(n/ε) edges.

We make the first step in this direction by proving the special case of dense regular
expanders (which directly generalize the complete graph). Even this very special case turns
out to be nontrivial, and in fact leads us to another beautiful problem which is interesting in
its own right.

I Question 2. Does every dense regular expander contain a sparse regular expander as a
subgraph?

Our positive answer to this question (for a certain definition of expanders) forms the bulk
of our technical work (Sections 2 and 3), and is then used to find good resistance sparsifiers
for dense regular expanders (Section 4).

1.1 Results and Techniques
Throughout, we consider undirected graphs, and they are unweighted unless stated otherwise.
In a weighted graph, i.e., when edges have nonnegative weights, the weighted degree of a
vertex is the sum of weights on incident edges, and the graph is considered regular if all of
its weighted degrees are equal. Typically, a sparsifying subgraph must be weighted even
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740 Towards Resistance Sparsifiers

when the host graph is unweighted, in order to exhibit comparable parameters with far fewer
edges.

Before we can state our results we first need to recall some basic definitions from spectral
graph theory. Given a weighted graph G, let D be the diagonal n× n matrix of weighted
degrees, and let A be the weighted adjacency matrix. The Laplacian of G is defined as
L := D −A, and the normalized Laplacian is the matrix L̂ := D−1/2LD−1/2.

I Definition 3 (Effective Resistance). Let G(V,E,w) be a weighted graph, and let P the
Moore-Penrose pseudo-inverse of its Laplacian matrix. The effective resistance (also called
resistance distance) between two nodes u, v ∈ V is

RG(u, v) := (eu − ev)TP (eu − ev),

where eu and ev denote the standard basis vectors in RV that correspond to u and v

respectively.

When the graph G is clear from context we will omit it and write R(u, v). We can now define
the main objects that we study.

I Definition 4 (Resistance Sparsifier). Let G(V,E,w) be a weighted graph, and let ε ∈ (0, 1).
A (1 + ε)-resistance sparsifier for G is a subgraph H(V,E′, w′) with reweighted edges such
that (1− ε)RH(u, v) ≤ RG(u, v) ≤ (1 + ε)RH(u, v), for all u, v ∈ V .

It will turn out that in order to understand resistance sparsifiers, we need to use expansion
properties.

I Definition 5 (Graph Expansion). The edge-expansion (also known as the Cheeger constant)
of a weighted graph G(V,E,w) is

φ(G) := min
{
w(S, S̄)
|S|

: S ⊂ V, 0 < |S| ≤ |V |/2
}
,

where w(S, S̄) denotes the total weight of edges with exactly one endpoint in S ⊂ V . The
spectral expansion of G, denoted λ2(G), is the second-smallest eigenvalue of the graph’s
normalized Laplacian.

Our main result is the following. Throughout this paper, “efficiently” means in randomized
polynomial time.

I Theorem 6. Fix β, γ > 0, let n be sufficiently large, and 1/n0.99 < ε < 1. Every D-regular
graph G on n nodes with D ≥ βn and φ(G) ≥ γD contains (as a subgraph) a (1+ε)-resistance
sparsifier with at most ε−1n(logn)O(1/βγ2) edges, and it can be found efficiently.

While dense regular expanders may seem like a simple case, even this special case requires
significant technical work. The most obvious idea, of sparsifying through random sampling,
does not work — selecting each edge of G uniformly at random with probability Õ(1/(Dε))
(the right probability for achieving a subgraph with Õ(n/ε) edges) need not yield a (1 + ε)-
resistance sparsifier. Intuitively, this is because the variance of independent random sampling
is too large (see Theorem 26 for the precise effect), and the easiest setting to see this is the
case of sparsifying the complete graph. If we sparsify through independent random sampling,
then to get a (1 + ε)-resistance sparsifier requires picking each edge independently with
probability at least 1/(ε2n), and we end up with n/ε2 edges. To beat this, we need to use
correlated sampling. More specifically, it turns out that a random O(1/ε)-regular graph is
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a (1 + ε)-resistance sparsifier of the complete graph, despite not being a (1 + ε)-spectral
sparsifier. So instead of sampling edges independently (the natural approach, and in fact the
approach used to construct spectral sparsifiers by Spielman and Srivastava [14]), we need to
sample a random regular graph.

In order to prove Theorem 6, we actually need to generalize this approach beyond the
complete graph. But what is the natural generalization of a random regular graph when
the graph we start with is not the complete graph? It turns out that what we need is an
expander, which is sparse but maintains regularity of its degrees. This motivates our main
structural result, that every dense regular expander contains a sparse regular expander (as a
subgraph). This can be seen as a type of sparsification result that retains regularity.

I Theorem 7. Fix β, γ > 0 and let n be sufficiently large. Every D-regular graph G on
n nodes with D ≥ βn and φ(G) ≥ γD contains a weighted d-regular subgraph H with
d = (logn)O(1/βγ2) and φ(H) ≥ 1

3 . All edge weights in H are in {1, 2}, and H can be found
efficiently.

To prove this theorem, we analyze a modified version of the cut-matching game of
Khandekar, Rao, and Vazirani [8]. This game has been used in the past to construct expander
graphs, but in order to use it for Theorem 7 we need to generalize beyond matchings, and
also show how to turn the graphs it creates (which are not necessarily subgraphs of G) into
subgraphs of G.

The expansion requirement for G in Theorem 7 is equivalent to λ2(G) = Ω(1), when
β and γ are viewed as absolute constants. We note that H is a much weaker expander,
satisfying only λ2(H) = Ω(1/polylog(n)), but this is nonetheless sufficient for Theorem 6.
Also, H is regular in weighted degrees. For completeness we give a variant of Theorem 7 that
achieves an unweighted H by requiring stronger expansion from G, but this is not necessary
for our application to resistance sparsifiers, which anyway involves reweighting the edges.

I Theorem 8. For every β > 0 there is 0 < γ < 1 such the following holds for sufficiently
large n. Every D-regular graph G on n nodes with D ≥ βn and φ(G) ≥ γD contains an
(unweighted) d-regular subgraph H with d = (logn)O(1/βγ) and φ(H) ≥ 1

3 , and it can be
found efficiently.

The algorithm underlying Theorems 6, 7 and 8 turns out to be quite straightforward:
decompose the host graph into disjoint perfect matchings or Hamiltonian cycles (which are
“atomic” regular components), and subsample a random subset of them of size d to form
the target subgraph. However, since the decomposition leads to large dependencies between
inclusion of different edges in the subgraph, it is unclear how to approach this algorithm
with direct probabilistic analysis. Instead, our analysis uses the adaptive framework of [8] to
quantify the effect of gradually adding random matching/cycles from the decomposition to
the subgraph.

1.2 Related Work
The line of work most directly related to resistance sparsifiers is the construction of spectral
sparsifiers. This was initiated by Spielman and Teng [13], and was later pushed to its
limits by Spielman and Teng [15], Spielman and Srivastava [14], and Batson, Spielman, and
Srivastava [2], who finally proved that every graph has a (1 + ε)-spectral sparsifier with
O(n/ε2) edges and that this bound is tight (see also [1]).

The approach by Spielman and Srivastava [14] is particularly closely related to our work.
They construct almost-optimal spectral sparsifiers (a logarithmic factor worse than [2]) by
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742 Towards Resistance Sparsifiers

sampling each edge independently with probability proportional to the effective resistance
between the endpoints. This method naturally leads us to try the same thing for resistance
sparsification, but as discussed, independent random sampling (even based on the effective
resistances) cannot give improved resistance sparsifiers. Interestingly, in order to make
their algorithm extremely efficient they needed a way to estimate effective resistances very
quickly, so along the way they showed how to create a sketch of size O(n logn/ε2) from which
every resistance distance can be read off in O(logn) time (essentially through an `2-squared
embedding and a Johnson-Lindenstrauss dimension reduction).

2 Sparse Regular Expanding Subgraphs

In this section we prove Theorem 7, building towards it in stages. Our starting point is
the Cut-Matching game of Khandekar, Rao and Vazirani (KRV) [8], which is a framework
to constructing sparse expanders by iteratively adding perfect matchings across adaptively
chosen bisections of the vertex set. The resulting graph H is regular, as it is the union
of perfect matchings, and if the matchings are contained in the input graph G then H is
furthermore a subgraph of G, as desired. In Section 2.1, we employ this approach to prove
Theorem 7 in the case D/n = 3

4 + Ω(1).
To handle smaller D, we observe that the perfect matchings in the KRV game can be

replaced with a more general structure that we call a weave, defined as a set of edges where
for every vertex at least one incident edge crosses the given bisection. To ensure that H
is regular (all vertices have the same degree), we would like the weaves to be regular. We
thus decompose the input graph to disjoint regular elements – either perfect matchings or
Hamiltonian cycles – and use them as building blocks to construct regular weaves. Leveraging
the fact that for some bisections, G contains no perfect matching but does contain a weave,
we use this extension in Section 2.2 to handle the case D/n = 1

2 + Ω(1).
Finally, for the general case D/n = Ω(1), we need to handle a graph G that contains

no weave on some bisections. The main portion of our proof constructs a weave that is not
contained in G, but rather embeds in G with small (polylogarithmic) congestion. Repeating
this step sufficiently many times as required by the KRV game, yields a subgraph H as
desired.

Notation and terminology

For a regular graph G, we denote deg(G) the degree of each vertex. We say that a graph H
is an edge-expander if φ(H) > 1

3 . A bisection of a vertex set of size n is a partition (S, S̄)
with equal sizes 1

2n if n is even, or with sizes b 1
2nc and d

1
2ne if n is odd.

2.1 The Cut-Matching Game
Khandekar, Rao and Vazirani [8] described the following game between two players. Start
with an empty graph (no edges) H on a vertex set of even size n. In each round, the cut
player chooses a bisection, and the matching player answers with a perfect matching across
the bisection. The game ends when H is an edge-expander. Informally, the goal of the cut
player is to reach this as soon as possible, and that of the matching player is to delay the
game’s ending.

I Theorem 9 ([8, 7]). The cut player has an efficiently computable strategy that wins (i.e.,
is guaranteed to end the game) within O(log2 n) rounds, and a non-efficient strategy that
wins within O(logn) rounds.
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The following result illustrates the use of the KRV framework in our setting.

I Theorem 10. Let δ > 0 and let n be even and sufficiently large (n ≥ n0(δ)). Then every
n-vertex graph G(V,E) with minimum degree D ≥ ( 3

4 + δ)n contains an edge-expander H
that is d-regular for d = O(logn), and also an efficiently computable edge-expander H ′ that
is a d′-regular for d′ = O(log2 n).

Proof. Apply the Cut-Matching game on V with the following player strategies. For the cut
player, execute the efficient strategy from Theorem 9 that wins within O(log2 n) rounds. For
the matching player, given a bisection (S, S̄), consider the bipartite subgraph G[S, S̄] of G
induced by (S, S̄). Each vertex in S has in G at least D ≥ 3

4n neighbors, but at most 1
2n− 1

of them are in S, and the rest must be in S̄, which implies that G[S, S̄] has minimum degree
≥ 1

4n. Hence, as a simple consequence of Hall’s theorem (see Proposition 29), it contains a
perfect matching that can be efficiently found. The matching player returns this matching
as his answer. We then remove this matching from G before proceeding to the next round,
to ensure that different iterations find disjoint matchings. The slackness parameter δ (and n
being sufficiently large) ensure that the minimum degree of G does not fall below 3

4n during
the O(log2 n) iterations, so the above argument holds in all rounds.

The game ends with an edge-expander H ′ which is a disjoint union of d′ = O(log2 n)
perfect matchings contained in G, and hence is a d′-regular subgraph of G, as required. To
obtain the graph H, apply the same reasoning but using the non-efficient strategy from
Theorem 9 that wins within O(logn) rounds. J

2.2 The Cut-Weave Game
For values of D below 3

4n, we can no longer guarantee that every bisection in G admits a
perfect matching. However, we observe that one can allow the matching player a wider range
of strategies while retaining the ability of the cut player to win within a small number of
rounds.

I Definition 11 (weave). Given a bisection (S, S̄) of a vertex set V , a weave on (S, S̄) is a
subgraph in which every node has an incident edge crossing (S, S̄).

I Definition 12 (Cut-Weave Game). The Cut-Weave game with parameter r is the following
game of two players. Start with a graph H on a vertex set of size n and no edges. In each
round, the cut player chooses a bisection of the vertex set, and the weave player answers
with an r-regular weave on the bisection. The edges of the weave are added to H.

Note that the r = 1 case is the original Cut-Matching game (when n is even). The following
theorem is an extension of Theorem 9. For clarity of presentation, its proof is deferred to
Section 3.

I Theorem 13. In the Cut-Weave game with parameter r, the cut player has an efficient
strategy that wins within O(r log2 n) rounds, and furthermore ensures φ(H) ≥ 1

2r.

In order to construct regular weaves, we employ a decomposition ofG into disjoint Hamiltonian
cycles. The following theorem was proven by Perkovic and Reed [12], and recently extended
by Csaba, Kühn, Lo, Osthus and Treglown [4].

I Theorem 14. Let δ > 0. Every D-regular graph G on n nodes with D ≥ ( 1
2 + δ)n, admits

a decomposition of its edges into b 1
2Dc Hamiltonian cycles and possibly one perfect matching

(if D is odd). Furthermore, the decomposition can be found efficiently.
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744 Towards Resistance Sparsifiers

Now we can use the Cut-Weave framework to make another step towards Theorem 7.

I Theorem 15. Let δ > 0 and let n be sufficiently large. Then every n-vertex graph G(V,E)
with minimum degree D ≥ ( 1

2 + δ)n contains a d-regular edge-expander H with d = O(log3 n),
which furthermore can be efficiently found.

Proof. We simulate the Cut-Weave game with r = 16δ−1 logn. The proof is the same as
Theorem 10, only instead of a perfect matching we need to construct an r-regular weave
across a given bisection (S, S̄). We apply Theorem 14 to obtain a Hamiltonian decomposition
of G. For simplicity, if D is odd we discard the one perfect matching from Theorem 14. Let
C be the collection of Hamiltonian cycles in the decomposition.

Suppose w.l.o.g. |S| = d 1
2ne. Every v ∈ S has at most |S| − 1 ≤ 1

2n neighbors in S, and
hence at least δn incident edges crossing to S̄. We set up a Set-Cover instance of the cycles C
against the nodes in S, where a node v is considered covered by a cycle C is v has an incident
edge crossing to S̄, that belongs to C. This is a dense instance: since each cycle visits v
only twice, v can be covered by 1

2δn cycles. Therefore, 4δ−1 logn randomly chosen cycles
form a cover with high probability (see Proposition 30 for details). We then repeat the same
procedure to cover the nodes on side S̄. The result is a collection of 8δ−1 logn = 1

2r disjoint
Hamiltonian cycles, whose union forms an r-regular weave on (S, S̄), which we return as the
answer of the weave player. Applying Theorem 13 with r = O(logn) concludes the proof of
Theorem 15. J

Observe that in the proof of Theorem 15, the weave player is in fact oblivious to the
queries of the cut player: all she does is sample random cycles from C, and the output
subgraph H is the union of those cycles. Therefore, in order to construct H, it is sufficient to
decompose G into disjoint Hamiltonian cycles, and choose a random subset of size O(log3 n)
of them. There is no need to actually simulate the cut player, and in particular, the proof
does not require her strategy (from Theorem 13) to be efficient.

2.3 Reduction to Double Cover
We now begin to address the full range of parameters stated in Theorem 7. In this range there
is no Hamiltonian decomposition theorem (or a result of similar flavor) that we are aware of,
so we replace it with a basic argument which incurs edge weights w : V × V → {0, 1, 2} in
the target subgraph H, as well as a loss in its degree.

Given the input graph G(V,E), we construct its double cover, which is the bipartite graph
G′′(V ′′, E′′) defined by V ′′ = V × {0, 1} and E′′ = {((v, 0)(u, 1)) : vu ∈ E}. It is easily seen
that if G is D-regular then so is G′′, and since |V ′′| = 2|V | we have D ≥ 1

2β|V
′′|. It also well

known that λ2(G) = λ2(G′′), and therefore by the discrete Cheeger inequalities,

φ(G′′) ≥ 1
2λ2(G′′)D = 1

2λ2(G)D ≥ 1
2γ

2(G)D.

G′′ satisfies the requirements of Theorem 7 with β′′ = 1
2β and γ′′ = 1

2γ
2. Suppose

we find in G′′ a d-regular edge-expander H ′′ with d = (logn)O(1/β′′γ′′) = (logn)O(1/βγ2).
We carry it over to a subgraph H of G, by including each edge uv ∈ E in H with weight
|{(v, 0)(u, 1), (u, 0)(v, 1)} ∩ E(H ′′)|, where E(H ′′) denotes the edge set of H ′′. Each edge
then appears in H with weight either 1 or 2 (or 0, which means it is not present in H). It can
be easily checked that H is d-regular in weighted degrees, and φ(H) ≥ 1

2φ(H ′′). Therefore
H is a suitable target subgraph for Theorem 7.

The above reduction allows us to restrict our attention to regular bipartite graphs G, but
on the other hand we are forced to look for a subgraph H which is unweighted and d-regular
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with d = (logn)O(1/βγ) (which is tighter than stated in Theorem 7). We take this approach
in the remainder of the proof. The gain is that such G admits a decomposition into disjoint
perfect matchings, which can be efficiently found, as a direct consequence of Hall’s theorem.
We will use this fact where we have previously used Theorem 14.

2.4 Constructing an Embedded Weave
We now get to the main technical part of the proof. Given a bisection (S, S̄) queried by the
cut player, we need to construct an r-regular weave on the bisection, where this time we
choose r = (logn)O(1/βγ). Unlike the proof of Theorem 15, we cannot hope to find a weave
which is a subgraph of G, since if D < 1

2n, any bisection in which one side contains some
vertex and all its neighbors would not admit a weave in G. Instead, we aim for a weave
which embeds into G with polylogarithmic congestion.

We will use two types of graph operations: The union of two graphs on the same vertex
set V is obtained by simply taking the set union of their edge sets, whereas the sum of
the two graphs is given by keeping parallel edges if they appear in both graphs. We now
construct the weave in 4 steps.

Step 1

Fix µ = βγ2

4 . We partition the entire vertex set V into subsets S0, S1, . . . , St by the following
process:
1. Set S0 ← S̄ and T ← S.
2. While T 6= ∅, take Si ⊆ T to be the subset of nodes with at least µD neighbors in Si−1,

and set T → T \ Si.

I Lemma 16. The process terminates after t ≤ 2
βγ iterations.

Proof. Consider an iteration i ≤ 2
βγ that ends with T 6= ∅. Denote T̄ = V \ T = ∪ij=0Sj .

By the hypothesis φ(G) ≥ γD we have at least γD|T | edges crossing from T to T̄ , so by
averaging over the nodes in T , there is v ∈ T with γD neighbors in T̄ . For every j < i, v
must have less than µD neighbors in Sj , or it would already belong to Sj+1 ⊆ T̄ . Summing
over j = 0, . . . , i− 1, we see that v has less than iµD ≤ 1

2γD neighbors in T̄ \ Si, so at least
1
2γD neighbors in Si. This implies |Si| ≥ 1

2γD. We have shown that each of the first 2
βγ

iterations either terminates the process or removes 1
2γD ≥

1
2γβn nodes from T , so after 2

βγ

iterations we must have T = ∅. J

Step 2

By Section 2.3 we have a decomposition of all the edges in G into a collection M of D
disjoint perfect matchings. For every i = 1, . . . , t, we now cover the nodes in Si with perfect
matchings, similar to the proof of Theorem 15. A node v ∈ Si is considered covered by a
matching if v has an incident edge with the other endpoint in Si−1, and that edge lies on the
matching. Since v has µD incident edges crossing to Si−1, and each matching touches v with
at most one edge, we have µD matchings that can cover v. Therefore k = 1

µ logn randomly
chosen matchings fromM form a cover of Si (see Proposition 30), which we denote as Ki.
Thus, for each i we have a subgraph Ki which is k-regular, such that each node in Si has an
incident edge in Ki with the other endpoint in Si−1. Denote henceforth

K = ∪ti=1Ki.

APPROX/RANDOM’15



746 Towards Resistance Sparsifiers

Note that K is a regular subgraph of G, since it is a union of disjoint perfect matchings from
M, and deg(K) ≤ kt.

Step 3

In this step we construct a graph K∗ from the subgraph K. As discussed, K∗ will not be a
subgraph of G but will embed into it with reasonable congestion. Let us formally define the
notion of graph embedding that we will be using.

I Definition 17 (Graph embedding with congestion). Let G(V,E) and G′(V,E′) be graphs
on the same vertex set. Denote by PG the set of simple paths in G. An embedding of G′ into
G is a map f : E′ → PG such that every edge in G′ is mapped to a path in G with the same
endpoints.

The congestion of f on an edge e ∈ E is cngf (e) := |e′ ∈ E′ : e ∈ f(e′)|. The congestion
of f is cng(f) := maxe∈E cngf (e). We say that G′ embeds into G with congestion c if there
is an embedding f with cng(f) = c.

The following claim is a simple observation and we omit its proof.

I Claim 18. If G′ embeds into G with congestion c, then φ(G) ≥ 1
cφ(G′).

We generate K∗ with the following inductive construction.

I Lemma 19. Let ρ0 = c0 = 0. We can efficiently construct subgraphs K∗1 , . . . ,K∗t (which
may have parallel edges and self-loops), such that for every i = 1, . . . , t,
1. K∗i is ρi-regular, where ρi = k(1 + ρi−1).
2. K∗i embeds into K with congestion ci, where ci = 1 + kci−1.
3. Every v ∈ Si has an incident edge in K∗i with the other endpoint in S0.

Proof. We go by induction on i. For the base case i = 1 we simply set K∗1 = K1. The claim
holds as we recall that
1. K1 is k-regular.
2. K1 is a subgraph of K, hence it embeds into K with congestion 1 = 1 + kc0.
3. By Step 2, every v ∈ S1 has an incident edge in K1 crossing to S0.

We turn to the inductive step i > 1. Start with a graph K ′ which is a fresh copy of K∗i−1,
with each edge duplicated into k parallel edges. By induction, K ′ is (kρi−1)-regular. Now
sum Ki into K ′; recall this means keeping parallel edges instead of unifying them. Since Ki

is k-regular, K ′ is ρi-regular.
Let v ∈ Si. By Step 2, there is an edge vw ∈ Ki such that w ∈ Si−1. By induction, there

is an edge wu ∈ K∗i−1 such that u ∈ S0. Note that both edges vw and wu are present in K ′.
Perform the following crossing operation on K ′: Remove the edges vw and wu, and add an
edge vu and a self-loop on w.

Perform this on every v ∈ Si. The resulting graph is K∗i . We need to show that it is well
defined in the following sense: we might be using the same edge wu for several v’s, and we
need to make sure each wu appears sufficiently many times, to be removed in all the crossing
operations in which it is needed. Indeed, we recall that Ki is the union of k disjoint perfect
matchings, and therefore each w ∈ Si−1 has at most k edges in Ki incoming from Si. Since
K ′ contains k copies of each edge wu, we have enough copies to be removed in all necessary
crossing operations.

Lastly we show that K∗i satisfies all the required properties.
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1. Since K ′ was ρi-regular, and the switching operations do not effect vertex degrees, we
see that K∗i is ρi-regular.

2. Each edge vu in K∗i which is not original from K ′, corresponds to a path (of length 2) in
K ′ that was removed upon adding that edge; hence K∗i embeds into K ′ with congestion
1. K ′ is the sum of Ki, which is a subgraph of K, and k copies of K∗i−1, which by
induction embeds into K with congestion ci−1. Hence K ′ embeds into K with congestion
1 + kci−1 = ci. Therefore, K∗i embeds into K with congestion ci.

3. For every v ∈ Si, we added to K∗i an edge vu such that u ∈ S0. J

We now take K∗ =
∑t
i=1K

∗
i . By Claim 19, K∗ is (

∑t
i=1 ρi)-regular, embeds into K with

congestion
∑t
i=1 ci, and every v ∈ S has an incident edge vu ∈ K∗ such that u ∈ S̄. (To see

why the latter point holds, recall that we put S̄ = S0.)

Step 4

In this final step we repeat Steps 1–3, only with the roles of S and S̄ interchanged. This
results in a subgraph K̄ of G which is kt-regular, and a graph K̄∗ which is (

∑t
i=1 ρi)-regular,

embeds into K̄ with congestion
∑t
i=1 ci, and every v ∈ S̄ has an incident edge vu ∈ K̄∗ such

that u ∈ S.
Our final weave is K∗ + K̄∗. By the above it is clearly a weave, and moreover it is

r-regular and embeds into K ∪ K̄ (and hence into G, which contains K ∪ K̄) with congestion
c, where r = 2

∑t
i=1 ρi and c = 2

∑t
i=1 ci. By inspecting the recurrence formulas from

Claim 19, in which ρi and ci were defined, we can bound ρi, ci ≤ (2k)i ≤ (2k)t for every
i, and hence r, c ≤ 2t(2k)t. Recalling that t ≤ 2

βγ + 1 and k = 1
µ logn = O(logn), we find

r, c ≤ (logn)O(1/βγ).

2.5 Completing the Proof of Theorem 7
We play the Cut-Weave game for L rounds, where L = O(r log2 n) is the number of rounds
required by the efficient strategy in Theorem 13. For each round ` = 1, . . . , L, we constructed
above an r-regular weave W ∗` = K∗ + K̄∗, that embeds into a subgraph W` = K ∪ K̄ of G
with congestion c. Let H = ∪L`=1W` and H∗ =

∑L
1=`W

∗
` . Then H is a union of disjoint

perfect matchings from M, and hence regular. Moreover deg(H) ≤ 2ktL, since H is the
union of L subgraphs {W`}L`=1, where each W` is a union W` of two kt-regular graphs K, K̄.

Now consider H∗. Since each W ∗` embeds into W` with congestion c, we see that H∗
embeds into H with congestion (at most) cL. By Theorem 13 we have φ(H∗) ≥ 1

2r, and this
now implies φ(H) ≥ r

2cL .
Recalling the parameters:

t = O(1) ; k = O(logn) ; r, c = O(logO(1/βγ) n) ; L = O(r log2 n),

we see that H is a d-regular subgraph of d = (logn)O(1/βγ) and φ(H) ≥ 1/(logn)O(1/βγ).
We can now repeat this Cut-Weave game (logn)O(1/βγ) disjoint times, because if each time
we remove the graph H we have found, we decrease the degree D = βn of each node by only
polylog (n). By repeating the game this many times and taking the union of the disjoint
resulting subgraphs, we find a regular subgraph H of G with deg(H) = (logn)O(1/βγ) and
φ(H) ≥ 1. Lastly recall that unfolding the reduction from Section 2.3 puts on H edge weight
in {1, 2}, and weakens the degree bound to deg(H) = (logn)O(1/βγ2). This completes the
proof of Theorem 7.

Regarding the algorithm to construct H, the observation made after Theorem 15 applies
here as well. The weave player’s strategy is oblivious to the queries of the cut player, since she
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just samples random matchings fromM to form H. The cut player strategy does not actually
need to be simulated, nor the graphs K∗ need to actually be constructed. The algorithm
to construct H then amounts to the following: Construct the double cover graph G” of G;
decompose G” into disjoint perfect matchings; choose a random subset of (logn)O(1/βγ2) of
them to form a subgraph H” of G”; and unfold the double cover construction to obtain the
final subgraph H from H”.

2.6 Proof of Theorem 8
The theorem follows from replacing the reduction to the double cover in Section 2.3 by a
Hamiltonian decomposition result that holds for this stronger expansion requirement, due to
Kühn and Osthus [9, Theorem 1.11]. The trade-off between β and γ is inherited from their
theorem (in which it is unspecified). Circumventing Section 2.3 also improves the dependence
of d on γ. The proof of Theorem 8 is otherwise identical to the proof of Theorem 7.

3 Proof of the Cut-Weave Theorem

Recall the setting of the Cut-Weave game with parameter r: The game starts with a graph
G0 on n vertices and without edges. In each round t = 1, 2, . . ., the weave player queries a
bisection of the vertex set, and the weave player answers with an r-regular weave Ht on that
bisection. The weave is then unified into the graph, putting Gt = Gt−1 ∪Ht.

We now prove Theorem 13 by an adaptation of the analysis from [8]. The main change is
in Lemma 25.

For each step t, let Mt be the matrix describing one step of the natural lazy random walk
on Ht: W.p. 1

2 stay in the current vertex, and with probability 1
2r move to a neighbor. The

cut player strategy is as follows:
Choose a random unit vector z ⊥ 1 in Rn.
Compute u = MtMt−1 . . .M1z.
Output the bisection (S, . . . S) where S is the bn/2c vertices with smallest values in u.

Let us analyze the game with this strategy. In the graph Gt (which equals ∪tt′=1Ht′), we
consider the following t-steps random walk: Take one (lazy) step on H1, then on H2, and so
on until Ht. In other words, the walk is given by applying sequentially M1, then M2, and so
on.

Let Pij(t) denote the probability to go from node j to node i within t steps. Let Pi
denote the vector (Pi1, Pi2, . . . , Pji). We use the following potential function:

Ψ(t) =
∑
i,j∈V

(Pij − 1/n)2 =
n∑
i=1
‖Pi − 1/n‖22.

I Lemma 20. For every t and every i ∈ V , we have
∑
j∈V Pij(t) = 1.

Proof. By induction on t: It holds initially, and in each step t, vertex i trades exactly half
of its total present probability with its neighbors in Ht. (Note that this relies on the fact
that Ht is regular.) J

I Lemma 21. If Ψ(t) < 1/4n2 then G = Gt has edge-expansion at least 1
2r.

Proof. If Ψ(t) < 1/4n2 then Pji(t) ≥ 1
2n for all i, j ∈ V . Hence the graph Kt on V , in which

each edge ij has weight Pji(t) + Pij(t), has edge-expansion 1
2 . We finish by showing that

Kt embeds into Gt with congestion 1/r. Proof by induction: Consider the transition from
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Gt−1 to Gt, which is unifying Ht into Gt−1. Let i, j ∈ V be connected with an edge in Ht,
and let k be any vertex. In the transition from Kt−1 to Kt, we need to ship 1

2r of the type-k
probability in i (namely 1

2rPik) to j, and similarly, ship 1
2rPjk probability from j to i. (The

“type-k” probabiility is probability mass that was originally located in k.) In total, we need
to ship 1

2r
∑
k∈V Pik = 1

2r from i to j and a similar amount from j to i. In total the edge ij
in Ht needs to support 1

r flow (of probability) in the transition, so the claim follows. J

We turn to analyzing the change in potential in a single fixed round t. To simplify
notation we let

Pji = Pji(t) ; Qji = Pji(t+ 1).

Moreover recall we have a vector u generated by the cut player in the current round:

u = MtMt−1 . . .M1z.

Denote its entries by u1, . . . , un. We are now adding the graph Ht+1 to Gt to produce Gt+1.

I Lemma 22. For every i, ui is the projection of Pi on r, i.e. ui = PTi z.

Proof. Fix i. Abbreviate M = MtMt−1 . . .M1( 1
n1). If φ is any distribution on the vertices

then PTi φ is the probability that the random walk lands in vertex i after t steps, meaning

(Mφ)i = PTi φ. (1)

Let z′ = 1
n‖z‖∞

z. Applying (1) with φ = z′+ 1
n1 gives (M(z′+ 1

n1))i = PTi (z′+ 1
n1). Applying

(1) again with φ = 1
n1 gives (M 1

n1)i = PTi ( 1
n1) and together we get (Mz′)i = PTi z

′, which
implies ui = (Mz)i = PTi z. J

I Lemma 23. With probability 1− 1/nΩ(1) over the choice of z, for all pairs i, j ∈ V ,

‖Pi − Pj‖22 ≥
n− 1
C logn |ui − uj |

2.

Proof. Similar to [8, Lemma 3.4]. J

I Lemma 24. Let E(S, S̄) denote the set of edges in Ht+1 that cross the bisection (S, S̄)
produced by the cut player (from the vector u). Then,

(n− 1)E

 ∑
ij∈E(S,S̄)

|ui − uj |2
 ≥ Ψ(t).

Proof. Denote by deg(S,S̄)(i) the number of edges in E(S, S̄) incident to vertex i. Note that
deg(S,S̄)(i) ≥ 1 for every i ∈ V , since Ht+1 is a weave on (S, S̄). Recall that S contains the
vertices with smallest entries in u. Hence there is a number η ∈ R such that i ≤ η ≤ j for
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each edge ij ∈ E(S, S̄). Hence,∑
ij∈E(S,S̄)

|ui − uj |2 ≥
∑

ij∈E(S,S̄)

((ui − η)2 + (η − uj)2)

=
∑
i∈V

deg(S,S̄)(i)(ui − η)2

≥
∑
i∈V

(ui − η)2

=
∑
i∈V

u2
i − 2η

∑
i∈V

ui + nη2

≥
∑
i∈V

u2
i ,

where the last equality is by noting that z ⊥ 1, hence u ⊥ 1, hence
∑
i ui = 0.

Next, since ui = PTi z and z ⊥ 1 we have ui = (Pi − 1/n)T z. Hence ui is the projection
of Pi − 1/n on z. By properties of random projections we have E[u2

i ] = 1
n−1‖Pi − 1/n‖22 (see

details in [8]), hence

E

[∑
i∈V

u2
i

]
= 1
n− 1

∑
i∈V
‖Pi − 1/n‖22 = 1

n− 1Ψ(t),

and the lemma follows from combining this with the above. J

I Lemma 25. Let Et+1 denote the edge set of Ht+1. The potential reduction is

Ψ(t)−Ψ(t+ 1) = 1
r

∑
ij∈Et+1

‖Pi − Pj‖22.

Proof. We construct from G a graph G′ by splitting each vertex i into r copies i1, . . . , ir,
assigning arbitrarily one edge from the r edges incident to i in Et+1 to the copies, and
distributing the type-j probability in i, for each j, evenly among the copies. We denote
by Pjik the amount of type-j probability on ik before adding Et+1 to G′, and by Qjik the
type-j probability in i after adding Et+1. Note that we have defined Pjik = 1

rPji for all
i, j ∈ V and k ∈ [r], but for the Qjik ’s all we know is that

∑r
k=1Qjik = Qji, so Qji may be

distributed arbitrarily among the Qjik ’s. As usual Pik denotes the vector with entries Pjik ,
and Qik is defined similarly.

Define the potential of G′ as:

Ψ′(t) =
∑
i∈V

r∑
k=1
‖Pik − 1/nr‖22.

We thus have

Ψ(t) =
∑
i∈V
‖Pi − 1/n‖22 = r

r∑
k=1

∑
i∈V
‖1
r
Pi − 1/nr‖22 = r

r∑
k=1

∑
i∈V
‖Pik − 1/nr‖22 = rΨ′(t).

To relate Ψ(t + 1) to Ψ′(t + 1), we use the general fact that for any constants c and X,
the solution to min‖x− c1‖ s.t. x ∈ Rr,

∑
i xi = X is attained on x = X

r 1. Since we have
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∑r
k=1Qjik = Qji for all i, j, we infer

Ψ(t+ 1) =
∑
i∈V
‖Qi − 1/n‖22

=
∑
i,j∈V

(Qji − 1/n)2

=
∑
i,j∈V

r

r∑
k=1

(1
r
Qji − 1/nr)2

≤
∑
i,j∈V

r

r∑
k=1

(Qjik − 1/nr)2

= r
∑
i∈V

r∑
k=1
‖Qik − 1/nr‖22

= rΨ′(t+ 1).

We have thus proven,

Ψ(t)−Ψ(t+ 1) ≥ r(Ψ′(t)−Ψ′(t+ 1)).

Now observe that Et+1 is, by construction, a perfect matching on G′. Therefore by [8,
Lemma 3.3] (which the current lemma generalizes),

Ψ′(t)−Ψ′(t+ 1) ≥
∑

ik,jk′∈Et+1

‖Pik − Pjk′‖22

=
∑

ik,jk′∈Et+1

‖1
r
Pi −

1
r
Pj‖22

= 1
r2

∑
i,j∈Et+1

‖Pi − Pj‖22,

and the lemma follows. J

Proof of Theorem 13. The initial potential is Ψ(0) = n− 1, and by Lemma 21 we need to
get it below 1/4n2. Putting Lemmas 23 to 25 together, we see that in each step we have
in expectation Ψ(t+ 1) ≤ (1− 1

Cr logn )Ψ(t). Hence, in expectation, it is enough to play for
O(r log2 n) rounds. J

4 Resistance Sparsification

We prove Theorem 6 by combining Theorem 7 with the following known result.

I Theorem 26 (von Luxburg, Radl and Hein [16]). Let G be a non-bipartite weighted graph
with maximum edge weight wmax and minimum weighted degree dmin. Let u, v be nodes in G
with weighted degrees du, dv respectively. Then∣∣∣∣RG(u, v)−

(
1
du

+ 1
dv

)∣∣∣∣ ≤ 2
(

1
λ2(G) + 2

)
wmax

d2
min

.

Qualitatively, the theorem asserts that in a sufficiently regular expander, the resistance
distance is essentially determined by vertex degrees. Therefore an expanding subgraph H of
G with the same weighted degrees can serve as a resistance sparsifier. In particular, in order
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to resistance-sparsify a regular expander, all we need is a regular expanding subgraph, as we
have by Theorem 7. Since Theorem 26 does not apply to bipartite graphs, we will use the
following variant that holds also for bipartite graphs as long as they are regular. Its proof
appears in Section A.1.

I Theorem 27. Let G be a weighted graph which is d-regular in weighted degrees, with
maximum edge weight wmax. Let u, v be nodes in G. Then∣∣∣∣RG(u, v)− 2

d

∣∣∣∣ ≤ 12
(

1
λ2(G) + 2

)
wmax

d2 .

Proof of Theorem 6. Using Theorem 7 we obtain a d-regular subgraph H of G with φ(H) >
1
3 . By removing the obtained subgraph H from G and iterating, we can apply the theorem
3d/ε times and obtain disjoint subgraphs H. Since d = (logn)O(1) and D = Ω(n), the
degree of G does not significantly change in the process, and the requirements of Theorem 7
continue to hold throughout the iterations (with a loss only in constants). Taking the union
of the disjoint subgraphs produced in this process, we obtain a subgraph H of G which is
(3d2/ε)-regular with φ(H) ≥ d/ε. By the discrete Cheeger inequality,

λ2(H) ≥ 1
2

(
φ(H)

deg(H)

)2
≥ 1

18d2 .

Recall that H has edge weights in {1, 2}. We now multiply each weight by εD/(3d2),
rendering it D-regular in weighted degrees. This does not affect λ2(H) since it is an eigenvalue
of the normalized Laplacian.

Let u, v ∈ V . Apply Theorem 27 on both G and H. As G is D-regular with wmax = 1
and λ2(G) = Ω(1), we know that RG(u, v) = 2

D ± O
( 1
D2

)
. And as H is D-regular with

wmax = O( εDd2 ) and λ2(H) = Ω(1/d2), we know that RH(u, v) = 2
D ±O

(
ε
D

)
. Putting these

together, we get RH(u,v)
RG(u,v) = 1 ± O

(
ε+ 1

D

)
= 1 ± O (ε) , where the last equality holds for

sufficiently large n since D = Ω(n). Scaling ε down by the constant hidden in the last O(ε)
notation yields the theorem. J
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28th Annual ACM Symposium on Theory of Computing, pages 47–55. ACM, 1996. doi:
10.1145/237814.237827.

4 Béla Csaba, Daniela Kühn, Allan Lo, Deryk Osthus, and Andrew Treglown. Proof of the
1-factorization and Hamilton decomposition conjectures. ArXiv e-prints, abs/1401.4159,
2014. arXiv:1401.4159.

5 M. M. Deza and M. Laurent. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.
6 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In

3rd Innovations in Theoretical Computer Science Conference, pages 393–398. ACM, 2012.
doi:10.1145/2090236.2090267.

http://arxiv.org/abs/1403.7058
http://dx.doi.org/10.1137/090772873
http://dx.doi.org/10.1145/237814.237827
http://dx.doi.org/10.1145/237814.237827
http://arxiv.org/abs/1401.4159
http://dx.doi.org/10.1145/2090236.2090267


M. Dinitz, R. Krauthgamer, and T. Wagner 753

7 Rohit Khandekar, Subhash A. Khot, Lorenzo Orecchia, and Nisheeth K. Vishnoi. On
a cut-matching game for the sparsest cut problem. Technical Report UCB/EECS-2007-
177, EECS Department, University of California, Berkeley, 2007. URL: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2007/EECS-2007-177.html.

8 Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single
commodity flows. J. ACM, 56(4), 2009. doi:10.1145/1538902.1538903.

9 Daniela Kühn and Deryk Osthus. Decompositions of complete uniform hypergraphs into
hamilton berge cycles. J. Comb. Theory, Ser. A, 126:128–135, 2014. doi:10.1016/j.jcta.
2014.04.010.

10 L. Lovász. Random walks on graphs: a survey. In Combinatorics, Paul Erdős is eighty,
Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., pages 353–397. János Bolyai
Math. Soc., Budapest, 1996.

11 D. Peleg and A. A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989. doi:
10.1002/jgt.3190130114.

12 L. Perkovic and B. Reed. Edge coloring regular graphs of high degree. In Discrete
Math.,165/166, pages 567–578, 1997.

13 D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In 36th Annual ACM Symposium on Theory of
Computing, pages 81–90. ACM, 2004. doi:10.1145/1007352.1007372.

14 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM J. Comput., 40(6):1913–1926, December 2011. doi:10.1137/080734029.

15 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, July 2011. doi:10.1137/08074489X.

16 Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute times in large
random neighborhood graphs. Journal of Machine Learning Research, 15(1):1751–1798,
2014. URL: http://jmlr.org/papers/v15/vonluxburg14a.html.

A Appendix: Omitted Proofs
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G = (V,E,w) is bipartite with bipartition V = V1 ∪ V2. Note that since it is regular, we
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the theorem holds (due to poor expansion), so we henceforth assume d′ ≥ 3.

For brevity we denote the error term in Theorem 26 as

err := 2
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1
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)
wmax

d2 .

We will use the notion of hitting time: For a pair of vertices u, v, the hitting time HG(u, v)
is defined as the expected time it takes a random walk in G that starts at u, to hit v. Define
the normalized hitting time hG(u, v) = 1

2WHG(u, v), where W is the sum of all edge weights
in G. We then have,

RG(u, v) = hG(u, v) + hG(v, u). (2)

We will use the following bound on the normalized hitting time, which is given in the same
theorem by von Luxburg, Radl and Hein [16].
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I Theorem 28. In the same setting of Theorem 26,

∀u 6= v ∈ V, hG(u, v) = 1
dv
± err.

(Like Theorem 26, this theorem does not apply to bipartite graphs, and this is the obstacle
we are now trying to circumvent.)

We begin by handling pairs of vertices contained within the same partition side, say V1.
We construct from G a weighted graph G1 on the vertex set V1, with weights w1, by putting

∀i 6= j ∈ V1, w1(i, j) = 1
d

∑
k∈V2

w(i, k)w(j, k).

We argue that HG1(u, v) = 1
2HG(u, v). This follows by observing that we set the weights w1

such that for any i, j ∈ V1, the probability to walk in one step from i to j in G1 equals the
probability to walk in two steps from i to j in G via an intermediate node in V2. Furthermore,
we have normalized the weights w1 such that G1 is d-regular in weighted degrees. Recalling
that |V1| = 1

2 |V |, we have

hG1(u, v) = 1
d|V1|

HG1(u, v) = 2
d|V |

· 1
2HG(u, v) = hG(u, v).

Recalling that the unweighted degree in G is d′ ≥ 3, we see that by construction, G1 contains
a triangle and hence is non-bipartite. Hence we can apply to it Theorem 28 and obtain
hG1(u, v) = 1

d ± err1, where err1 is the error term of G1. Note that for every i 6= j ∈ V1 we
have w1(i, j) ≤ wmax

d

∑
k∈V2

w(i, k) = wmax, so the maximum edge weight in G1 is bounded
by wmax, and λ2(G1) ≥ λ2(G) (easy to verify by construction), so err1 ≤ err, and we have
hG1(u, v) = 1

d ± err. Hence,

hG(u, v) = 1
d
± err.

Recalling that RG(u, v) = hG(u, v) + hG(v, u), we have established that

RG(u, v) = 2
d
± 2err

for every pair u, v ∈ V1. The same arguments hold for every pair u, v ∈ V2 as well. We are
left to handle the case u ∈ V1, v ∈ V2. Recalling the definition of hitting time, we have

HG(u, v) = 1 + w(u, v)
d

· 0 +
∑

x∈V2\{v}

w(u, x)
d

HG(x, v) (factoring out the first step)

= 1 + w(u, v)
d

· 0 +
∑

x∈V2\{v}

w(u, x)
d

· 2W · hG(x, v)

= 1 + 2W
∑

x∈V2\{v}

w(u, x)
d

(
1
d
± err

)
(since v, x ∈ V2)

= 1 + 2W
(

1− w(u, v)
d

)(
1
d
± err

)
.

Therefore

hG(u, v) = 1
2W +

(
1− w(u, v)

d

)(
1
d
± err

)
,
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which implies

hG ≤
1

2W + 1
d
± err

and

hG(u, v) ≥ 1
2W +

(
1− wmax

d

)(1
d
± err

)
= 1

2W + 1
d
± 2err.

Together, hG(u, v) = 1
d + 1

2W ± 2err. Now, since for an arbitrary vertex i we have

d = deg(i) =
∑
j∈V

w(i, j) ≤ nwmax,

we see that 1
2W = 1

nd ≤
wmax
d2 ≤ err and hence

hG(u, v) = 1
d
± 3err.

Plugging this into RG(u, v) = hG(u, v) + hG(v, u), we find

RG(u, v) = 2
d
± 6err,

which completes the proof of Theorem 27. J

A.2 Further Omitted Proofs
I Proposition 29. Let G(V,U ;E) be a bipartite graph on n nodes with |V | = |U | = 1

2n, and
minimum degree ≥ 1

4n. Then G contains a perfect matching.

Proof. Let S ⊂ V be non-empty, and denote N(S) ⊂ U the set of nodes with a neighbor in S.
If |S| ≤ 1

4n then since any v ∈ S has 1
4n neighbors in U , we have |N(S)| ≥ N({v}) ≥ 1

4n ≥ |S|.
If |S| > 1

4n then by the minimum degree condition on side U , every u ∈ U must have a
neighbor in S, and hence |N(S)| = |U | = |V | ≥ |S|. The same arguments apply for S ⊂ U ,
so the condition of Hall’s Marriage Theorem is verified, and it implies that G contains a
perfect matching. J

I Proposition 30. Consider an instance of Set Cover with a set S of n elements, and
a family M of subsets of S. Suppose each x ∈ S belongs to at least a µ-fraction of the
subsets in M. Then for sufficiently large n, we can efficiently find a cover M ⊂ M with
|M | ≤ 1.1

µ logn.

Proof. Pick q uniformly random sets (with replacement) fromM to formM . The probability
that a given element in S is not covered by M is upper-bounded by (1− µ)q. Taking a union
bound over the element, we need to ensure that n(1− µ)q < 1 in order to ensure that with
constant probability, M is a solution to the given Set Cover instance. This can be achieved
by q ≤ 1.1

µ logn. J

APPROX/RANDOM’15
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