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Abstract
A recent result of Moshkovitz [10] presented an ingenious method to provide a completely ele-
mentary proof of the Parallel Repetition Theorem for certain projection games via a construction
called fortification. However, the construction used in [10] to fortify arbitrary label cover in-
stances using an arbitrary extractor is insufficient to prove parallel repetition. In this paper, we
provide a fix by using a stronger graph that we call fortifiers. Fortifiers are graphs that have
both `1 and `2 guarantees on induced distributions from large subsets.

We then show that an expander with sufficient spectral gap, or a bi-regular extractor with
stronger parameters (the latter is also the construction used in an independent update [11] of [10]
with an alternate argument), is a good fortifier. We also show that using a fortifier (in particular
`2 guarantees) is necessary for obtaining the robustness required for fortification.
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1 Introduction

Label-cover and general two-prover games
A label cover instance is specified by a bipartite graph G = ((X,Y ), E), a pair of alphabets
ΣX and ΣY and a set of constraints ψe : ΣX → ΣY on each edge e ∈ E. The goal is to label
the vertices of X and Y using labels from ΣX and ΣY so as to satisfy as many constraints
are possible.

This problem is often viewed as a two-prover game. The verifier picks an edge (x, y) at
random and sends x to the first prover and y to the second prover. They are to return a
label of the vertex that they received, and the verifier accepts if the labels they returned are
consistent with the constraint ψ(x,y). The value of this game G, denoted by val(G), is given
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by the acceptance probability of the verifier maximized over all possible strategies of the
provers. These are also called projection games as the constraints are functions from ΣX to
ΣY . They are called general games if the constraint on each edge is an arbitrary relation
ψ(x,y) ⊆ ΣX × ΣY .

These two notions are equivalent in the sense that val(G) is exactly equal to the maximum
fraction of constraints that can be satisfied by any labelling.

This problem is central to the PCP Theorem [2, 1] and almost all inapproximability
results that stem from it. The (Strong) PCP Theorem can be rephrased as stating that for
every ε > 0, it is NP-hard to distinguish whether a given label cover instance has val(G) = 1
or val(G) < ε. An important step is a way to transform instances with val(G) < 1 − ε to
instances G′ with val(G′) < ε. This is usually achieved via the Parallel Repetition Theorem.

Parallel Repetition
The k-fold repetition of a game G, denoted by Gk, is the following natural definition –
the verifier picks k edges (x1, y1), · · · , (xk, yk) from E uniformly and independently, sends
(x1, . . . , xk) and (y1, . . . , yk) to the provers respectively, and accepts if the labels returned by
them are consistent on each of the k edges.

If val(G) = 1 to start with then val(Gk) still remains 1. How does val(Gk) decay with k
if val(G) < 1? Turns out even this simple operation of repeating a game in parallel has a
counter-intuitive effect on the value of the game. It is easy to see that val(Gk) ≥ val(G)k
as provers can use a same strategy as in G to answer each query (xi, yi). The first surprise
is val(Gk) is not val(G)k, but sometimes can be much larger than val(G)k. Fortnow [8]
presented a game G for which val(G2) > val(G)2, Feige [6] improved this by giving an
example of game G with val(G) < 1 but val(G2) = val(G). Indeed, there are known examples
[15] of projection games where val(G) = (1− ε) but val(Gk) ≥

(
1− ε

√
k
)
for a large range

of k.
The first non trivial upper bound on val(Gk) was proven by Verbitsky [17] who showed

that if val(G) < 1 then the value val(Gk) must go to zero as k goes to infinity. It is indeed
true that val(Gk) decays exponentially with k (if val(G) < 1). This breakthrough was first
proved by Raz [14], and has subsequently seen various simplifications and improvements
in parameters [9, 13, 5, 4]. The following statements are due to Holenstein [9], Dinur and
Steurer [5] respectively.

I Theorem 1.1 (Parallel repetition theorem for general games). Suppose G is a projection
game such that val(G) ≤ 1− ε and let |ΣX | |ΣY | ≤ s. Then, for any k ≥ 0,

val(Gk) ≤
(
1− ε3/2

)Ω(k/ log s)
.

I Theorem 1.2 (Parallel repetition theorem for projection games). Suppose G is a projection
game such that val(G) ≤ ρ. Then, for any k ≥ 0,

val(Gk) ≤
( 2√ρ

1 + ρ

)k/2
.

Although a lot of these results are substantial simplifications of earlier proofs, they con-
tinue to be involved and delicate. Arguably, one might still hesitate to call them elementary
proofs.
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Recently, Moshkovitz [10] came up with an ingenious method to prove a parallel repetition
theorem for certain projection games by slightly modifying the underlying game via a process
that she called fortification. The method of fortification suggested in [10] was a rather mild
change to the underlying game and proving parallel repetition for such fortified projection
games was sufficient for most applications. The advantage of fortification was that parallel
repetition theorem for fortified games had a simple, elementary and elegant proof as seen in
[10].

1.1 Fortified games
Fortified games will be described more formally in Section 2, but we give a very rough
overview here. Moshkovitz showed that there is an easy way to bound the value of repeated
game if we knew that the game was robust on large rectangles. We shall first need the notion
of symmetrized projection games.

Symmetrized Projection games. Given a projection game G on ((X,Y ), E), the symmet-
rized game Gsym is a game on the (multi)graph ((X,X), E′) such that, there is an edge
(x, x′) ∈ E′, for every y ∈ Y with (x, y), (x′, y) ∈ E, with the constraint π(x,y)(σx) =
π(x′,y)(σx′).

For projection games, it would be more convenient to work with the above symmetrized
version for reasons that shall be explained shortly. It is not hard to see that val(G) and
val(Gsym) are within a quadratic factor of each other. Thus for projection games, we shall
work with the game Gsym instead of the original game G.

I Definition 1.3 ((δ, ε)-robust games). Let G be a two-prover game on ((X,X), E). For any
pair of sets S, T ⊆ X, let GS×T be the game where the verifier chooses his random query
(x, x′) ∈ E conditioned on the event that x ∈ S and x′ ∈ T .

G is said to be (δ, ε)-robust if for every S, T ⊆ X with |S|, |T | ≥ δ|X|, we have that

val(GS×T ) ≤ val(G) + ε.

I Theorem 1.4 (Parallel repetition for robust projection games [10]). Let G be a projection
game on a bi-regular bipartite graph ((X,Y ), E) with alphabets ΣX and ΣY . For any positive
integer k, if ε1, ε2, δ > 0 are parameters such that 2δ|ΣY |k−1 ≤ ε1 and Gsym is (δ, ε2)-robust,
then1

val(Gksym) ≤ (val(Gsym) + ε2)k + kε1.

Not all projection games are robust on large rectangles, but Moshkovitz suggested a neat
way of slightly modifying a projection game and making it robust. This process was called
fortification.

On a high level, for any two-prover game, the verifier chooses to verify a constraint
corresponding to an edge (x, y) but is instead going to sample several other dummy vertices
and give the provers two sets of D vertices {x1, . . . , xD} and {y1, . . . , yD} such that x = xi
and y = yj for some i and j. The provers are expected to return labels of all D vertices sent
to them but the verifier checks consistency on just the edge (x, y). This is very similar to the
“confuse/match” perspective of Feige and Kilian [7].

1 The following is the corrected statement from [11].

APPROX/RANDOM’15
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To derandomize this construction, Moshkovitz [10] uses a pseudo-random bipartite graph
where given a vertex w, the provers are expected to return labels of all its neighbours
(Definition 2.1). The most natural candidate of such a pseudo-random graph is an (δ, ε)-
extractor, as we really want to ensure that conditioned on “large enough events” S and T ,
the underlying distribution on the constraints does not change much. This makes a lot of
intuitive sense, since on choosing a random element of S and then a random neighbour,
the extractor property guarantee that the induced distribution on vertices in X is ε-close
to uniform. Thus, it is natural to expect that conditioning on the events S and T should
not change the underlying distribution on the constraints by more than O(ε). This was the
rough argument in [10], which unfortunately turns out to be false. We elaborate on this in
Section 3.2 and Appendix A.

A recent updated version [11] of [10] provides an different argument for the fortification
lemma using a stronger extractor. We discuss this at the end of Section 1.2.

1.2 Our contributions
We present a fix to the approach of [10], by describing a way to transform any given game
instance G into a robust instance G∗ with the same value following the framework of [10]
but using a different graph for concatenation, and a different analysis.

We first describe a concrete counter-example to the original argument of [10] in Section 3.2,
that shows concatenating (Definition 2.1) with an arbitrary (δ, ε)-extractor is insufficient. In
fact, as we show in Appendix B, concatenating (Definition 2.1) with any left-regular graph
with left-degree by o(1/εδ) fails to make arbitrary instances (δ, ε)-robust. We instead use
bipartite graphs called fortifiers, defined below.

I Definition 1.5 (Fortifiers). A bipartite graph H = ((W,X), EH) is an (δ, ε1, ε2)-fortifier if
for any set S ⊆W such that |S| ≥ δ|W |, if π is the probability distribution on X induced by
picking a uniformly random element w from S, and a uniformly random neighbor x of w,
then

|π − u|1 ≤ ε1 and ‖π − u‖2 ≤ ε2

|X|
.

Notice that a fortifier is an extractor, with the additional condition that the `2-distance of
π from the uniform distribution is small. This is what enables us to show that concatenation
(Definition 2.1) with a fortifier produces a robust instance.

I Theorem 1.6 (Fortifiers imply robustness). Suppose G is a two-prover projection game on a
bi-regular graph ((X,Y ), E). Then, for any ε, δ > 0, if H = ((W,X), EH) is a (δ, ε, ε)-fortifier,
then the symmetrized concatenated game G∗ = (H ◦G)sym is (δ,O(ε))-robust.

In particular, bipartite spectral expanders are good fortifiers, as Lemma 2.8 shows. This
gives us our main result which follows from Lemma 2.8 and Theorem 1.6:

I Corollary 1.7. Let G be a two-prover projection game on a bi-regular graph ((X,Y ), E).
For any ε, δ > 0, if H = ((X,X), EH) is a symmetric bipartite graph that is a λ-expander
(Definition 2.3) with λ < ε

√
δ then the symmetrized concatenated game G∗ = (H ◦G)sym is

(δ, 4ε)-robust.

As one would expect, the condition on the fortifier can be relaxed if the underlying graph
of Gsym is a spectral-expander. We prove the following theorem. Theorem 1.6 follows from
this theorem by setting λ0 = 1.



A. Bhangale, R. Saptharishi, G. Varma, and R. Venkat 501

I Theorem 1.8. Let G be a two-prover projection game on bi-regular graph ((X,Y ), E) where
Gsym is a λ0-expander. Then for any ε, δ > 0, if H = ((W,X), EH) is a (δ, ε, (ε/λ0))-fortifier,
then the symmetrized concatenated game G∗ = (H ◦G)sym is (δ,O(ε))-robust.

One could ask if the definition of a fortifier is too strong, or if a weaker object would
suffice. We argue in Section 3.1 that if we proceed through concatenation, fortifiers are
indeed necessary to make a game robust.

Bipartite Ramanujan graphs of degree Θ(1/ε2δ) have λ < ε
√
δ and are therefore good

fortifiers. In Appendix B, we show that this is almost optimal by proving a lower bound
of Ω(1/εδ) on the left-degree of any graph that can achieve (δ, ε)-robustness. This shows
that our construction of using expanders to achieve robustness is almost optimal, in terms of
the degree of the fortifier graph. Note that the degree of the fortifier is important as the
alphabet size of the concatenated game is the alphabet size of the original game raised to the
degree. There are known explicit constructions of bi-regular (δ, ε)-extractors with left-degree
poly(1/ε)poly log(1/δ). But the lower bound in Section 3.1 shows that (δ, ε)-extractors are
not fortifiers if δ � ε, which is usually the relevant setting (see Theorem 1.4).

Independently, the author of [10] came up with a different argument to obtain robustness
of projection games by using a (δ, εδ)-extractor. This is described in an updated version [11]
present on the author’s homepage.

It is also seen from Theorem 1.8 that bi-regular (δ, εδ)-extractors are indeed (δ, ε, ε)-
fortifiers as well. Using an expander instead is arguably simpler, and is almost optimal.

I Remark. Although this fix provides a proof of a Parallel Repetition Theorem for projection
games following the framework of [10], the degree of the fortifier is too large to get the
required PCP for proving optimal hardness of the Set-Cover problem that Dinur and
Steurer [5] obtained. See [11] for a discussion on this.

Remark about parallel repetition for general games

A fairly straightforward generalization Theorem 1.4 to robust general games on bi-regular
graphs is the following.

I Claim 1.9. Let G be a general two-prover game on a bi-regular graph ((X,Y ), E) with
alphabets ΣX and ΣY . For any positive integer k, if ε, δ > 0 are parameters such that
2δ|ΣX × ΣY |k−1 ≤ ε and G is (δ, ε)-robust, then

val(Gk) ≤ (val(G) + ε)k + kε.

One could attempt a fortifying any game by using a fortifier on both sides. But the
issue with this procedure is that it makes |ΣX | = exp(1/δ) and in such scenarios δ|ΣX | � 1
making it infeasible to ensure 2δ|ΣX × ΣY |k−1 ≤ ε. Hence, though Lemma 1.9 may be
useful in cases where we know that the game G is robust via other means, the technique
of fortification via concatenation increases the alphabet size too much for Lemma 1.9 to be
applicable.

For the case of projection games, this is not an issue as Theorem 1.4 only requires
2δ|ΣY |k−1 < ε and concatenating Gsym by a fortifier only increases |ΣX | and keeps ΣY

unchanged. Thus, one can indeed choose ε and δ small enough to give a parallel repetition
theorem for a robust version of an arbitrary projection game.

APPROX/RANDOM’15
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2 Preliminaries

Notation
For any vector a, let |a|1 :=

∑
i |ai|, and ‖a‖ :=

√∑
i a2

i be the `1 and `2-norms
respectively.
We shall use uS to refer to the uniform distribution on a set S. Normally, the set S
would be clear from context and in such case we shall drop the subscript S.
For any vector a, we shall use a‖ to refer to the component along the direction of u, and
a⊥ to refer to the component orthogonal to u.
We shall assume that the underlying graph for the games is bi-regular.

We define the concatenation operation of a two-prover games with a bipartite graph that
was alluded to in Section 1.1.

I Definition 2.1 (Concatenation). Given bipartite graphs G = ((X,Y ), E), H = ((W,X), EH)
where H is regular with left degree D, the concatenated graph H ◦ G = ((W,Y ), E′) is a
multigraph such that there is an edge (w, y) ∈ E′, for every pair of edges (w, x) ∈ EH , (x, y) ∈
E.

Given a two-prover projection game on a graph G = ((X,Y ), E) with a set of constraints
ψ, a pair of alphabets ΣX and ΣY , a bipartite graph H = ((W,X), EH) with left degree D,
the concatenated game is a game on the multigraph H ◦G = ((W,Y ), E′) with ΣW = ΣDX . For
any edge (w, y) ∈ E′ which corresponds to the pair (w, x) ∈ E, (x, y) ∈ EH , the constraint
π(w,y)(a) := πx,y(ax), where a ∈ ΣDX and ax is the alphabet at the coordinate corresponding
to x (assuming some fixed ordering of vertices in X). The distribution over the edges in the
multigraph H ◦G is uniform.

I Remark. The concatenated game H ◦G is also a projection game. We shall be working
with the symmetrized version G∗ = (H ◦G)sym of this game.

I Lemma 2.2 (Concatenation preserves value). [10] Given any two-prover game on G, and a
biregular bipartite graph H:

val(H ◦G) = val(G).

Expanders, extractors and fortifiers
I Definition 2.3 (Expanders). For a symmetric, stochastic matrix M , define

λ(M) def= max
v⊥1

‖Mv‖
‖v‖

A D-regular graph H = (X,E) is a graph H is a λ-expander, if λ(H) ≤ λ, where H is
the normalized adjacency matrix of the graph H.

For a symmetric bipartite graph G = ((X,X), E), we say G is a bipartite λ-expander if
λ(H) ≤ λ where H is the normalized biadjacency matrix of G.

Henceforth, when we refer to a bipartite graph as being a λ-expander, we implicitly mean
a bipartite λ-expander.

Any expander H = (X,EH) can be transformed to a natural bipartite expander H ′ on
X ×X, by including the edge (x, x′) and (x′, x) to H ′ for every (x, x′) ∈ EH . We shall abuse
notation and call this graph H ′ = ((X,X), EH) although each edge in H occurs “twice” in
H ′.
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I Lemma 2.4 (Explicit expanders [3]). For every D > 0, there exists a fully explicit family
of graphs {Gi}, such that Gi is D-regular and λ(Gi) ≤ D−1/2(logD)3/2.

I Definition 2.5 (Extractors). A bipartite graph H = ((X,Y ), E) is an (δ, ε)-extractor if for
every subset S ⊆ X such that |S| ≥ δ|X|, if π is the induced probability distribution on Y
by taking a random element of S and a random neighbour, then

|π − u|1 ≤ ε.

I Lemma 2.6 (Explicit Extractors [16]). There exists explicit (δ, ε)-extractors G = (X,Y,E)
such that |X| = O(|Y |/δ) and each vertex of X has degree D = O(exp(poly(log log(1/δ))) ·
(1/ε2)).

Our earlier definition of a fortifier (Definition 1.5) has properties of both an expander
and an extractor. Indeed, we can build fortifiers by just taking a product an expander and
an extractor.

I Lemma 2.7. Let H1 = ((V,W ), E1) is a bi-regular (δ, ε)-extractor, and let H2 = (W,E2)
is a regular λ-expander. Denote H ′2 to be the bipartite graph ((W,W ), E2). Then the
concatenated graph H1 ◦H ′2 is an (δ, ε, λ2ε/δ)-fortifier.

Proof. Let H2 be the normalized adjacency matrix of graph H2. Let πS denotes the
probability distribution on W obtained by picking an element of S ⊆ V uniformly and
then choosing a random neighbour in H1. Thus, H2πS is the probability distribution on W
induced by the uniform distribution on S and a random neighbour in H1 ◦H ′2. We want to
show for all S such that |S| ≥ δ|V |,

|H2πS − u|1 ≤ ε and ‖H2πS − u‖2 ≤ λ2ε/δ

|X|
.

The first inequality is obtained as |H2πS−u|1 = |H2(πS−u)|1 ≤ |πS−u|1 ≤ ε, where we use
the fact that |H2v|1 ≤ |v|1 for any v and any normalized adjacency matrix, and |πS−u|1 ≤ ε
follows form the extractor property of H1.
As for the second inequality, observe that

‖πS − u‖2 ≤ max
w∈W

(πS(w)) · |πS − u|1 ≤ ε · max
w∈W

(πS(w)).

For a bi-regular extractor2 H1 of left-degree D, the degree of any w ∈ W is (|V | ·D/|W |)
and the number of edges out of S is least δ|V | ·D. Hence, maxw πS(w) ≤ 1/(δ|W |), which is
achieved if all neighbours of w are in S. Therefore,

‖πS − u‖2 ≤ (ε/δ)
|W |

=⇒ ‖H2(πS − u)‖2 ≤ λ2 |W |
|X|
‖πS − u‖2 ≤ |W |

|X|
· λ

2 · (ε/δ)
|W |

= λ2 · (ε/δ)
|X|

. J

In particular, any bi-regular (δ, ε)-extractor is a (δ, ε, ε/δ)-fortifier. Hence, if the underlying
graph G of the two-prover game is a

√
δ-expander, then Theorem 1.8 states that merely

using an (δ, ε)-extractor as suggested in [10] would be sufficient to make it (δ,O(ε))-robust.
Also, since any graph is trivially a 1-expander, a bi-regular (δ, εδ)-extractor is also an

(δ, ε, ε)-fortifier. The following lemma also shows that expanders are also fortifiers with
reasonable parameters as well.

2 The bound on the right-degree guaranteed by bi-regularity is crucial for this claim. Without this,
extractors are not sufficient for fortification (Section 3.2).

APPROX/RANDOM’15
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I Lemma 2.8. Let H = (X,EH) be any λ-expander. Then, for every δ > 0, the bipartite
graph H ′ = ((X,X), EH) is also a (δ,

√
λ2/δ, λ2/δ)-fortifier. In particular, if λ ≤ ε

√
δ, then

H ′ is an (δ, ε, ε)-fortifier.

Proof. Let H be the normalized adjacency matrix of H. Let S ⊆W such that |S| ≥ δ|W |.
We have,

‖u⊥S ‖2 ≤
1

δ|W |
.

Hence, by the expansion property of H,

‖HuS − u‖2 := ‖Hu⊥S ‖2 ≤ λ2 · |W |
|X|
· ‖u⊥S ‖2 ≤

λ2/δ

|X|
.

|HuS − u|1 ≤
√
λ2/δ follows from above and Cauchy-Schwarz inequality. J

Although Lemma 2.8 shows that expanders are also fortifiers for reasonable parameters,
the construction in Lemma 2.7 is more useful when the underlying graph for the two-prover
game is already a good expander. For example, if the underlying graph G was a δ-expander,
then Theorem 1.8 suggests that we only require a (δ, ε, ε/δ)-fortifier. Lemma 2.7 implies that
an (δ, ε)-extractor is already a (δ, ε, ε/δ)-fortifier and hence is sufficient to make the game
robust. The main advantage of this is the degree of δ-expanders must be Ω(1/δ2) whereas
we have explicit (δ, ε)-extractors of degree (1/ε2) exp(poly log log(1/δ)) which has a much
better dependence in δ. This dependence on δ is crucial for certain applications.

3 Sub-games on large rectangles

Consider a projection game on graph G = ((X,Y ), E) which is biregular with degree d. For
a biregular bipartite graph H = ((W,X), EH) with degree dH , consider the symmertized
concatenated game G∗ = (H ◦G)sym = ((W,W ), E′). Let S, T ⊆W and µS (or µT ) denote
the induced distributions on X obtained by picking a uniformly random element of S (or T )
and taking a uniformly random neighbour in H. In the next claim, we give an expression
for the distribution of verifier checking the underlying constraint on (x, x′) in the subgame
(G∗)S×T .

I Claim 3.1. For any x, x′ ∈ X such that there are edges (x, y), (x′, y) ∈ E,

πx,x′ = µS(x)µT (x′)∑
(x,x′)∈Gsym

µS(x)µT (x′) . (1)

Proof. Let dS,x, dT,x′ denote the degree of x to S and x′ to T respectively in H. Let NH(x)
denote the neighbor set of a vertex x in H. Then,

µS(x) = dS,x∑
z∈X dS,z

.

The probability πx,x′ of the verifier in (G∗)S×T checking a constraint corresponding to a
constraint (x, x′) in Gsym, is proportional to the number of edges (w,w′) in the graph G∗
such that w ∈ S ∩NH(x), and w′ ∈ T ∩NH(x′). Since every such edge in G∗ was equally
likely, we have:

πx,x′ = dS,x · dT,x′∑
(x,x′)∈Gsym

dS,xdT,x′
= µS(x)µT (x′)∑

(x,x′)∈Gsym

µS(x)µT (x′) .

J
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One way to show that the concatenated game G∗ is (δ,O(ε))-robust would be to show
that the above distribution πx,x′ is O(ε)-close to uniform whenever |S|, |T | have density at
least δ because then the distribution on constraints that the verifier is going to check in
G∗S×T is O(ε) close to the distribution on constraints in G. Hence, up to additive factor of
O(ε) the quantity val(G∗S×T ) is same as val(G). The main question here what properties
should H satisfy so that the above distribution is close to uniform?

3.1 Fortifiers are necessary
To prove that fortifiers are necessary, we shall restrict ourselves to games on graphs G =
((X,X), E). We show that if a bipartite graph H = ((W,X), EH), makes a game on a
particular graph G, (δ,O(ε))-robust, then H is a good fortifier.

As mentioned earlier, if the graph G had some expansion properties, then the requirements
on the graph H to concatenate with can be relaxed. Thus, naturally, the worst case graph G
is one that expands the least – a matching.

I Lemma 3.2 (Fortifiers are necessary). Let ε, δ > 0 be small constants. Let H = ((W,X), EH)
be a bi-regular graph, and let G = ((X,X), E) be a matching. Suppose that for every subset
S, T ⊆W with |S|, |T | ≥ δ|W |, the distribution (defined in Equation (1)) induced by the sub
game on S × T of G∗ := (H ◦G)sym on the edges of G is ε-close to uniform. Then, for every
S ⊆W with |S| ≥ δ|W |,

|µS − u|1 = ε, (2)

‖µS − u‖2 = O(ε)
|X|

. (3)

Proof. It is clear that (2) is necessary as the distribution on constraints in the sub-game
G∗S×W (as defined in (1)) is essentially µS (as µT in this case is uniform).

As for (3), let us assume that

‖µS − u‖2 = c

|X|
.

Taking T = S, we obtain that the distribution (defined in Equation (1)) induced by the game
G∗S×S on the edges of G is given by

πx,x = µS(x)2∑
x µS(x)2 =

(
|X|

1 + c

)
· µS(x)2,

where the last equality used the fact that ‖µS‖2 =
∥∥µ⊥S ∥∥2 + ‖u‖2.∑

x∈X

∣∣∣∣( |X|c+ 1

)
· µS(x)2 − 1

|X|

∣∣∣∣ =
(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x)2 − c+ 1
|X|2

∣∣∣∣
=

(
|X|

1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1
|X|

∣∣∣∣ · (µS(x) +
√
c+ 1
|X|

)

≥
(

1√
1 + c

)
·
∑
x∈X

∣∣∣∣µS(x) −
√
c+ 1
|X|

∣∣∣∣
≥

(
1√

1 + c

)
·

((√
1 + c − 1

)
−
∑
x∈X

∣∣∣∣µS(x) − 1
|X|

∣∣∣∣
)

≥
(

1√
1 + c

)
·
((√

1 + c − 1
)
− ε

)
.
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Thus, if the distribution on constraints is ε-close to uniform, then the above lower bound
forces c = O(ε). J

3.2 General (non-regular) extractors are insufficient
Suppose H = ((W,X), EH) is an arbitrary (δ,O(ε))-extractor and G∗ is the symmetrized
concatenated game. Consider a possible scenario where there is a subset S ⊆ W with
|S| ≥ δ|W | such that µS is of the form

µS =
(
ε,

1− ε
|X| − 1 , . . . ,

1− ε
|X| − 1

)
.

Notice that this is a legitimate distribution that may be obtained from a large subset S as
|µS − u|1 is easily seen to be at most 2ε. However, if G = ((X,X), E) was d-regular with
d = o(|X|), then using (1), the probability mass on the edge (1, 1) on the sub-game over
S × S is

π1,1 =

 ε2

ε2 +O
(
εd
|X|

)
 ≈ 1.

In other words, if such a distribution µS can be induced by the extractor, then the provers
can achieve value close to 1 in the game G∗S×S by just labelling the edge (1, 1) correctly.
Thus, G∗ is not even (δ, 0.9)-robust.

In Appendix A we show that we can adversarially construct a (δ,O(ε))-extractor, although
non-regular, that induces such a skew distribution. In Appendix B we also show that left-
regular graphs of left-degree o(1/δε) are not fortifiers.

4 Robustness from fortifiers

In this section, we show that concatenating a symmetrized two-prover game by fortifier(s)
yields a robust game as claimed by Theorem 1.8.

I Lemma 4.1 (Distributions from large rectangles are close to uniform). Let G = ((X,X), E)
be a graph of a symmetrized two-prover game such that |X| = n. Let µS and µT be two
probability distributions such that∣∣µ⊥S ∣∣1 ≤ ε1 and

∣∣µ⊥T ∣∣1 ≤ ε1, (4)∥∥µ⊥S ∥∥2 ≤
(ε2

n

)
and

∥∥µ⊥T ∥∥2 ≤
(ε2

n

)
. (5)

If the bipartite graph G is a λ0-expander then the distribution on edges (x, y) of G given by
(1) is (2ε1 + ε2

1 + 2λ0 · ε2)-close to uniform.

As described in Section 3, if H is a (δ, ε1, ε2)-fortifier, then for any set S and T of density
at least δ, the distribution on the constraints of G∗S×T is given by (1). Applying the above
lemma for the graph of the symmetrized game yields that the value of the game on any large
rectangle can change only by the above bound on the statistical distance. By setting the
parameters, Theorem 1.8 follows immediately from Lemma 4.1. Further, Theorem 1.7 also
follows from Lemma 4.1 and Lemma 2.8 as any graph is trivially a 1-expander.

The rest of this section would be devoted to the proof of Lemma 4.1. For convenience,
we let d be the left-degree (and hence also, right-degree) of the biparite graph G. We shall
prove Lemma 4.1 by proving the following two claims.
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I Claim 4.2.

∑
(x,y)∈G

∣∣∣∣∣∣∣
µS(x)µT (y)∑

(x,y)∈G
µS(x)µT (y) −

µS(x)µT (y)
d/n

∣∣∣∣∣∣∣ ≤ λ0 · ε2

I Claim 4.3.∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0 · ε2

Clearly, Lemma 4.1 follows from Claim 4.2 and Claim 4.3.

Proof of Claim 4.2. Let G also denote the normalized biadjacency matrix of G. Observe
that

∑
(x,y)∈G µS(x)µT (y) = d · 〈GµS , µT 〉. If we resolve µS and µT in the direction of the

uniform distribution and the orthogonal component, we have

〈GµS , µT 〉 = 〈u,u〉 +
〈
Gµ⊥S , µ

⊥
T

〉
= 1

n
+
〈
Gµ⊥S , µ

⊥
T

〉
=⇒

∣∣∣∣〈GµS , µT 〉 − 1
n

∣∣∣∣ ≤ λ0 ·
∥∥µ⊥S ∥∥ · ∥∥µ⊥T ∥∥

≤
(
λ0 · ε2

n

)
. (using (5))

Therefore,

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d 〈GµS , µT 〉

− µS(x)µT (y)
d/n

∣∣∣∣ ≤ ∑
(x,y)∈G

(
µS(x)µT (y)
d 〈GµS , µT 〉

)
|1 − 〈GµS , µT 〉|

≤ λ0 · ε2. J

Proof of Claim 4.3.

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1
n2

∣∣∣∣ .
Since µS(x) = 1

n + µ⊥S (x) and µT (y) = 1
n + µ⊥T (y),

(n
d

) ∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)− 1
n2

∣∣∣∣ =
(n
d

) ∑
(x,y)∈G

∣∣∣∣µ⊥S (x)
n

+ µ⊥T (y)
n

+ µ⊥S (x)µ⊥T (y)
∣∣∣∣

(Using triangle inequality) ≤ 1
d

∑
(x,y)∈G

∣∣µ⊥S (x)
∣∣+ 1

d

∑
(x,y)∈G

∣∣µ⊥T (y)
∣∣

+
(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣

=
∣∣µ⊥S ∣∣1 +

∣∣µ⊥T ∣∣1 +
(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣ ,

where the last equality uses the fact that G is a bi-regular graph. Define fS(x) ≡ |µ⊥S (x)| is
a vector with the entrywise absolute values of µ⊥S , and similarly fT . Then, the RHS above
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equation reduces to∣∣µ⊥S ∣∣1 +
∣∣µ⊥T ∣∣1 +

(n
d

) ∑
(x,y)∈G

∣∣µ⊥S (x)µ⊥T (y)
∣∣ =

∣∣µ⊥S ∣∣1 +
∣∣µ⊥T ∣∣1

+
(n
d

)
·
∑

(x,y)∈G

fS(x)fT (y)

=
∣∣µ⊥S ∣∣1 +

∣∣µ⊥T ∣∣1 + n 〈GfS , fT 〉
(Using (4)) ≤ 2ε1 + n · 〈GfS , fT 〉 . (6)

A simple bound for n · 〈GfS , fT 〉 would n
∥∥Gµ⊥S ∥∥∥∥µ⊥T ∥∥ by Cauchy-Schwarz inequality. We

can use the expansion of G again to estimate this better. Consider the decomposition
fS = α1 ·u + f⊥S and fT = α2 ·u + f⊥T . It follows that α1 = |fS |1 and α2 = |fT |1, and hence
α1, α2 ≤ ε1 by (4). Hence,

n · 〈GfS , fT 〉 = α1 · α2 + n ·
〈
Gf⊥S , f

⊥
T

〉
≤ ε2

1 + n
∥∥Gf⊥S ∥∥∥∥f⊥T ∥∥

≤ ε2
1 + n · λ0 ·

∥∥µ⊥S ∥∥ · ∥∥µ⊥T ∥∥
(Using (5)) ≤ ε2

1 + λ0ε2.

Combining this with (6), we get

∑
(x,y)∈G

∣∣∣∣µS(x)µT (y)
d/n

− 1
n · d

∣∣∣∣ ≤ 2ε1 + ε2
1 + λ0ε2. J
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A An explicit extractor that does not provide robustness

Let H = ((W,X), EH) be any (δ, ε)-extractor. Let us assume that the extractor is left-regular
with left-degree D, and let m = |W | and n = |X|. For any x ∈ X and S ⊆ W , let dS(x)
denote the degree of x in S. Let us fix one S ⊂W such that |S| = δ|W |.

We will transform the graph H so that the distribution induced by the set S looks like
the counter-example described in Section 3.2 in the following two steps by altering the edges
in the subgraph S ×X:
1. First change the degree into X from S to be exactly uniform.
2. Next further change the degrees into X from S to be like the counterexample
Both these operations can be achieved in a monotone fashion: for every x ∈ X, the
neighborhood of every vertex is either a superset, or a subset of its neighborhood before each
operation.

We will show that moving the edges this way does not perturb the indegree distribution
from other large sets by too much, and the resulting graph is a (δ,O(ε)) extractor as long
as the number of edges we relocate is at most O(εδ ·mD). This process will preserve the
left-regularity of H but would not preserve bi-regularity.

First let us move edges (monotonically) from S into X create the uniform distribution on
X. When doing this, the degree of each vertex changes by ∆S(x) := |dS(x)− δmD

n |, where
dS(x) was the old degree. From the extractor property, we know that:

∑
x∈X

∆S(x) =
∑
x∈X

(δmD)
∣∣∣∣ dS(x)∑

dS(x) −
(

1
n

)∣∣∣∣ ≤ εδ ·mD. (7)
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Every vertex x ∈ X now has degree dSavg. Fix some vertex x1 ∈ X, and relocate from
every other x 6= x1 any set of ε · dSavg edges to be incident on x1. Thus, if d′S(x) refers to the
new degrees, we have d′S(x1) is (1 + εn)dSavg where as d′S(x) is (1 − ε)dSavg for every other
x 6= x1.

The further change in degrees incurred on any x ∈ X is ∆′S(x) :=
∣∣d′S(x)− δmD

n

∣∣. Since
we this process only relocates O(ε · dSavg|X|) edges, we have∑

x∈X
∆′S(x) =

∑
x∈X

∣∣d′S(x)− dSavg
∣∣ ≤ O(n · ε · dSavg) = O(εδ ·mD). (8)

Thus, the neighbourhood of any vertex x has changed additively by at most ∆S(x)+∆′S(x).
Therefore, for any subset T ⊆W of size at least δ|W |,∑

x∈X

∣∣d′T (x)− dTavg
∣∣ ≤ ∑

x∈X

∣∣dT (x)− dTavg
∣∣ +

∑
x∈X
|d′T (x)− dT (x)|

≤ ε|T |D +
∑
x∈X

(∆S(x) + ∆′S(x))

≤ ε|T |D + O(εδ ·mD) (using (7) and (8))
≤ O(ε · |T |D).

Thus, the new graph after relocating edges is still an (δ,O(ε))-extractor. This extractor,
induces a distribution similar to the one described in Section 3.2 and hence cannot provide
robustness.

B Lower bounds on degree of fortifiers

In this section, we will show that an attempt to make a game (δ, ε)-robust by concatenating
any left-regular graph with left degree D fails if D ≤ o(1/εδ).

I Lemma 2.1. Let H = ((W,X), EH) be a left-regular bipartite graph with left-degree
D = 1/(c · εδ) for some c > 0, and small enough constants ε, δ. Then, there exists a subset
S ⊆ W with |S| ≥ δ|W | such that if p was the distribution on X induced by the uniform
distribution on S then

‖p− u‖2 ≥ Ω(cε)
|X|

.

Proof. Let davg = |W |D/|X|. Note that at most |X|/2 vertices x satisfy deg(x) ≥ 2davg.
Further, if there is a set S of |X|/4 vertices x that deg(x) < (0.5)davg, then if p is the
distribution on X induced by the uniform distribution on W , then |p − u|1 > 1/4 which
implies that ‖p− u‖22 ≥

1
4|X| by Cauchy-Schwarz.

Otherwise, there exists X ′ ⊂ X such that |X ′| = c εδ2|X| and for each x ∈ X ′ we have
(0.5)davg < deg(x) < 2davg. Consider the set S0 of all neighbours of X ′. If D < 1/(cεδ), we
have |S0| ≤ 2c δ2ε · |W |D = 2δ|W | which is a very small fraction of |W | when δ is small
enough. Consider an arbitrary set S1 ⊆ W such that |S1| = δm, with S1 ∩ S0 = ∅. Let
S2 = S0 ∪ S1. Let π1, π2 be the probability distribution on X induced by S1, S2 respectively.
Note that |S2| ≤ 3δ|W |.

For every x ∈ X ′, we know that π1(x) = 0 and π2(x) = Ω
(

1
δ|X|

)
. Therefore,

‖π1 − π2‖2 ≥ Ω
(
cδ2ε|X|
δ2|X|2

)
= Ω(cε)
|X|

.
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Since ‖π1 − π2‖ ≤ ‖π1 − u‖ + ‖π2 − u‖, we have that one of the sets S1 or S2 shows the
validity of the lemma J

We thus immediately infer the following:

I Corollary 2.2. For all small enough δ, ε > 0, no left-regular graph H = ((W,X), EH) with
left-degree D = o(1/εδ) is an (δ, ∗, ε)-fortifier.

Note that any (δ, ε, ε)-fortifier is in particular an (δ, ε)-extractor, and hence we also have
that D = Ω((1/ε2) log(1/δ)) [12]. We also point out that the construction of Lemma 2.8 has
left-degree D = Õ(1/ε2δ). The above essentially shows this construction is almost optimal.
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