
On Linear Programming Relaxations for
Unsplittable Flow in Trees
Zachary Friggstad1 and Zhihan Gao2

1 Department of Computing Science, University of Alberta
Edmonton, AB, Canada, T6G 2E8
zacharyf@cs.ualberta.ca

2 Department of Combinatorics and Optimization, University of Waterloo
Waterloo, ON, Canada, N2L 3G1
z9gao@uwaterloo.ca

Abstract
We study some linear programming relaxations for the Unsplittable Flow problem on trees (UFP-
tree). Inspired by results obtained by Chekuri, Ene, and Korula for Unsplittable Flow on paths
(UFP-path), we present a relaxation with polynomially many constraints that has an integrality
gap bound of O(logn ·min{logm, logn}) where n denotes the number of tasks and m denotes the
number of edges in the tree. This matches the approximation guarantee of their combinatorial
algorithm and is the first demonstration of an efficiently-solvable relaxation for UFP-tree with
a sub-linear integrality gap.

The new constraints in our LP relaxation are just a few of the (exponentially many) rank
constraints that can be added to strengthen the natural relaxation. A side effect of how we prove
our upper bound is an efficient O(1)-approximation for solving the rank LP. We also show that
our techniques can be used to prove integrality gap bounds for similar LP relaxations for packing
demand-weighted subtrees of an edge-capacitated tree.

On the other hand, we show that the inclusion of all rank constraints does not reduce the
integrality gap for UFP-tree to a constant. Specifically, we show the integrality gap is Ω(

√
logn)

even in cases where all tasks share a common endpoint. In contrast, intersecting instances of
UFP-path are known to have an integrality gap of O(1) even if just a few of the rank 1 constraints
are included.

We also observe that applying two rounds of the Lovász-Schrijver SDP procedure to the nat-
ural LP for UFP-tree derives an SDP whose integrality gap is also O(logn ·min{logm, logn}).

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, I.1.2 Algorithms

Keywords and phrases Unsplittable flow, Linear programming relaxation, Approximation al-
gorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2015.265

1 Preliminaries

In the Unsplittable Flow problem on trees (UFP-tree), we are given a tree T = (V,E)
with a nonnegative capacity ce ≥ 0 specified for each edge e ∈ E. Throughout, we will let
m denote the number of edges in T . Additionally, we are given n tasks where each task
1 ≤ i ≤ n is specified by endpoints si, ti ∈ V , a demand di ≥ 0, and a weight wi ≥ 0.

For a task i we let span(i) denote all edges e ∈ E lying between the unique si − ti path
in T . A set of tasks S is said to be feasible if∑

i∈S:e∈span(i)

di ≤ ce for each edge e ∈ E.

© Zachary Friggstad and Zhihan Gao;
licensed under Creative Commons License CC-BY

18th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’15) /
19th Int’l Workshop on Randomization and Computation (RANDOM’15).
Editors: Naveen Garg, Klaus Jansen, Anup Rao, and José D.P. Rolim; pp. 265–283

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.265
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

266 On Linear Programming Relaxations for Unsplittable Flow in Trees

The goal is to find a feasible set of tasks S with maximum possible weight.
The seemingly unusual “Unsplittable Flow” name is inherited from a generalization to

arbitrary graphs G where the problem is to select a maximum weight set tasks and select a
single si − ti path for each chosen task upon which to route all of the task’s demand. This
generalization captures the well-studied Edge-Disjoint Paths problem in undirected graphs
for which the best true approximation is O(

√
n) [10]. We will not pursue a discussion of this

generalization as all of our results pertain only to trees.
In UFP-tree, there is only one possible path for each task to follow so the difficulty is

only in selecting which tasks to route. Still, UFP-tree is NP-hard even if the tree consists
of only a single edge as this case is just a reformulation of the classic Knapsack problem. A
more interesting specialization of UFP-tree when the tree is a path (UFP-path). Currently,
the best approximation for UFP-path is 2 + ε for any constant ε > 0 [2] and the best lower
bound is only strong NP-hardness [6]. It may still be possible to obtain a PTAS for UFP-
path; indeed a (1 + ε)-approximation with running time nOε(log n) was recently developed
by Batra et al. [4], improving over a previous (1 + ε)-approximation with running time
nOε(log n·log(nD)) where D is the ratio of the maximum to minimum density (i.e. wi/di) [3].

The current best approximation for UFP-tree is considerably worse than the (2 + ε)-
approximation for UFP-path, with a ratio of O(logn ·min{logm, logn}) [9]. It is known
that UFP-tree is APX-hard [14], which rules out a PTAS unless P = NP.

A major barrier to developing better approximations for UFP-tree is that the following
natural LP relaxation has an Ω(n) integrality gap even in UFP-path instances [8].

maximize
∑

i

wi · xi (Nat-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

This bad gap is witnessed by a simple “staircase” example: suppose the nodes in the
underlying path are indexed by {0, 1, . . . , n}. Then for every 1 ≤ i ≤ n we set the capacity
of edge (i − 1, i) to 2−i and create a task with endpoints 0, i, demand 2−i and weight 1.
The all- 1

2 solution is feasible for Nat-LP with value n/2, but the optimum integer solution
selects only one task (if i < j then di + dj > 2−i = c(i−1,i)).

Nat-LP can still be used to obtain reasonable approximations in two important special
cases of UFP-tree. First, if there is some value B such that di ≤ B for all tasks i and
B ≤ ce for all edges e (the no-bottleneck property) then the integrality gap is at most 48 [11].
Second, if δ > 0 is such that di ≤ (1− δ) · ce for each task i and each e ∈ span(i), then the
integrality gap is O(δ−3 · log(1/δ)) [9].

Strengthenings of the natural LP relaxation for UFP-path have been considered in [9, 1].
In [9], a polynomial-size LP relaxation was presented for UFP-path and its integrality gap
was proven to be O(min{logm, logn}). In particular, they show the gap is O(1) if all tasks
span a common vertex and used a simple reduction from the general case to this intersecting
case that loses an O(min{logm, logn})-factor. The constraints they added are of the form∑

i∈S xi ≤ 1 for a certain collection of subsets S such that {i, j} is infeasible for any distinct
i, j ∈ S.

These are just some of the so-called rank constraints one can add to strengthen a
packing LP. In their full generality, the rank constraint for a set of tasks S is the constraint∑

i∈S xi ≤ rank(S) where rank(S) is the size of the largest feasible subset of S. The authors

Z. Friggstad and Z. Gao 267

of [9] also consider the more powerful LP that includes adding the rank constraints for every
set of tasks that span a common node (Rank-LP in our paper, formally defined in Section
1.2). They show how to solve Rank-LP in UFP-path instances within an O(1)-factor and
leave approximating Rank-LP in UFP-tree instances as an open problem.

Additionally, two other polynomial-size LP relaxation for UFP-path were introduced
in [1]. The constraints in one of these relaxations are motivated by a geometric view of
UFP-path that was initially identified in [6]. They showed its integrality gap was O(1)
in unit-weight, but not necessarily intersecting, instances (i.e. wi = 1 for all i). Their LP
also approximates Rank-LP for UFP-path within O(1). The other relaxation essentially
“embeds” a dynamic programming algorithm introduced by Bonsma et al [6] for instances
that have a bad integrality gap and is shown to have a constant integrality gap. We remark
that no such dynamic programming procedure is known for UFP-tree, so these techniques
do not seem to apply to this more general setting.

To date, there has not been any demonstration of a polynomial-time solvable (or even
O(1)-approximable) LP relaxation for UFP-tree that has a o(n) integrality gap. Our results
settle this open problem affirmatively by presenting a LP relaxation for UFP-tree with
polynomially many constraints that has an integrality gap of O(logn ·min{logm, logn}).
Meanwhile, we show how to solve Rank-LP in UFP-tree instances within a constant
factor.

Another potential avenue to strengthen the natural LP relaxation would be to use lift-
and-project techniques (a.k.a hierarchies). Such techniques start with a linear or semidefinite
programming relaxation of a {0, 1} integer program and strengthen the relaxation through
a number of rounds. Typically, one can solve the `’th round of the resulting relaxation
with nO(`) overhead over solving the original formulation. We omit an introduction to such
techniques (Lovász-Schrijver, Sherali-Adams, Lasserre hierarchies, etc.) from this extended
abstract since our lift-and-project observations are secondary to our main results. A good
introduction can be found in [12].

While some positive lift-and-project results are known for the restricted case of a single
edge (i.e. Knapsack) [16, 13], the only known result for more general UFP-tree instances
is a negative one. Namely, LP-based hierarchies seem ineffective even for UFP-path: the
integrality gap of Nat-LP strengthened with ` rounds of the Sherali-Adams hierarchy is
Ω(n/`) [9]. In this paper, we show that applying two rounds of the Lovász-Schrijver SDP
procedure (a SDP version of the Lovász-Schrijver hierarchy) to the natural LP for UFP-tree
derives a SDP relaxation for UFP-tree with an integrality gap of O(logn·min{logm, logn}).

1.1 A Generalization to Packing Trees
We will also (briefly) consider the following generalization of UFP-tree to the setting where
each task is now a subtree of T , rather than just a path in T . Here a task i is specified by a
subtree Ti of T , a demand di, and a weight wi. The goal is still to find a maximum-weight
subset of tasks S so that

∑
i∈S:e∈span(i) di ≤ ce for each edge e where, naturally, span(i)

denotes the edges lying on Ti. We let k-TreePacking denote this problem where each input
tree Ti is further restricted to contain at most k leaves. In this way, UFP-tree is the same
as k-TreePacking with k = 2.

While some special cases of k-TreePacking have been studied (e.g. UFP-path, UFP-
tree, and, as discussed below, the Maximum Independent Set Problem), it seems that
the general problem has not been considered before. There is a simple reduction from the
Maximum Independent Set Problem in graphs with degree at most k to k-TreePacking
instances where T is just a star, and all demands, capacities, and weights are 1. Namely,

APPROX/RANDOM’15

268 On Linear Programming Relaxations for Unsplittable Flow in Trees

if G = (V,E) is a Maximum Independent Set instance then we let T be a star with leaves
indexed by E. For each v ∈ V , we create a subtree Tv whose leaves in T are the edges
in G incident to v. Thus, an independent set in G is the same as a feasible collection of
subtrees in the k-TreePacking instance and we get the following as a corollary of Maximum
Independent Set hardness results for bounded degree graphs in [7, 5].

I Corollary 1 (of [7, 5]). The following hardness results hold for k-TreePacking even if
all demands, capacities, and weights are 1 and T is a star:
1. There is no k

O(log4 k) -approximation unless P = NP.
2. There is no k

O(log2 k) -approximation unless the Unique Games conjecture is false.

While k-TreePacking has not been explicitly studied before, it is easy to generalize
the O(logn ·min{logm, logn})-approximation for UFP-tree in [9] to get a combinatorial
O(k · logn ·min{logm, log(kn)}) approximation. However, as with UFP-tree, no compact
LP relaxation was known for k-TreePacking that has a o(n) integrality gap. In this
paper, we first present a LP relaxation for k-TreePacking with an integrality gap of
O(k · logn ·min{logm, log(kn)}), which is o(n) when considering k as a fixed constant. In
particular, this LP relaxation has an integrality gap at most 4k + 1 for the instances with
unit weight subtrees sharing a common node. Note that both ratios in Corollary 1 are
asymptotically larger than k1−c for any constant c > 0. Thus, in this case the integrality gap
of our LP relaxation is close to matching the hardness lower bounds stated in Corollary 1.

1.2 Results and Techniques
In this subsection, we present all our main results and techniques. The proofs are deferred
to later sections and the appendix. Our main results pertain to UFP-tree. Our techniques
extend to obtain LP relaxations with bounded integrality gaps for k-TreePacking, but
those are secondary to our main result and will be discussed later. We assume that the
singleton set {i} is feasible for each task i. Otherwise, we can discard any task that does not
fit by itself 1.

We establish some notation to describe our strengthening of Nat-LP. For any two vertices
u, v we let P (u, v) be the set of edges lying between u and v in T . Similarly, for an edge e
and vertex v we let P (e, v) be the set of edges lying between e and v in T , including e itself.

I Definition 2. For every task i, every vertex v spanned by task i, and every endpoint
a ∈ {si, ti} we form a blocking set C(i, v, a) of tasks as follows. C(i, v, a) includes i and every
other task j that satisfies the following conditions.
1. v is also spanned by j
2. dj ≥ di

3. di + dj > ce for some e ∈ P (a, v) ∩ span(j)
This is a natural generalization of the RightBlock and LeftBlock sets used in the relaxation
Compact UFP-LP for UFP-path from [9].

For every collection of tasks S such that {i, j} is infeasible for any distinct i, j ∈ S, we
say S is a pairwise infeasible clique. The following lemma, whose proof is found at the start
of Section 2, shows that a blocking set is a pairwise infeasible clique.

I Lemma 3. For any distinct j, j′ in some blocking set C(i, v, a), the set {j, j′} is not
feasible.

1 This preprocessing step is not necessary when using lift-and-project techniques as a single level of even
the Lovász-Schrijver LP hierarchy will enforce xi = 0 for such tasks.

Z. Friggstad and Z. Gao 269

From this, we formulate our stronger LP relaxation for UFP-tree.

maximize
∑

i

wi · xi (Compact-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E (1)

∑
i∈C(j,v,a)

xi ≤ 1 ∀ blocking sets C(j, v, a) (2)

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

Note that there are O(n · m) constraints in this relaxation. We could omit the xi ≤ 1
constraints because they are enforced by the blocking constraints (2), but we will keep them
for ease of notation because the dual variables for xi ≤ 1 serve a slightly different purpose
than dual variables for blocking sets in our analysis.

We say that a set of tasks S is intersecting if there is some vertex v that lies on the si− ti
path for every i ∈ S. A UFP-tree instance is said to be intersecting if the set of all tasks is
intersecting. Finally, say that an instance is a unit-weight instance if wi = 1 for all tasks i.

I Theorem 4. The integrality gap of Compact-LP is O(logn ·min{logm, logn}) and is
at most 9 in unit-weight, intersecting instances of UFP-tree.

More specifically, we show that the greedy combinatorial algorithm in [9] for unit-weight,
intersecting instances of UFP-tree finds a feasible solution S such that |S| is within a factor
of 9 from the LP optimum. In our analysis, we construct a feasible dual solution and then
verify that a relaxation of the complementary slackness conditions holds, in some appropriate
sense, on average.

Chekuri, Ene, and Korula also introduce a larger family of constraints. For every collection
of tasks S we say rank(S) is the size of the largest subset of S that is feasible (paying no
attention to the weights wi). They consider the following even stronger LP which, in our
language, is presented as follows.

maximize
∑

i

wi · xi (Rank-LP)

s.t.
∑

i:e∈span(i)

di · xi ≤ ce ∀ e ∈ E

∑
i∈S

xi ≤ rank(S) ∀ intersecting sets of tasks S (3)

0 ≤ xi ≤ 1 ∀ 1 ≤ i ≤ n

In the full version of [9], the integrality gap of Rank-LP is shown to be O(1) on intersecting
instances of UFP-path with arbitrary weights wi. They also show a connection to their
version of the blocking sets for UFP-path which, in our notation, means that if x is a feasible
solution to Compact-LP for a UFP-path instance, then x/18 is feasible for Rank-LP.
However, they do not identify any such connection for UFP-tree nor do they provide a way
to even approximate Rank-LP; this is left as an open problem.

We resolve this open problem affirmatively by showing that a consequence of Theorem 4
is that we can solve Rank-LP within constant factors in UFP-tree. Specifically, we prove
the following as a special case of a slightly more general statement about packing problems.

I Theorem 5. If x is a feasible solution to Compact-LP for UFP-tree, then x/9 is a
feasible solution to Rank-LP.

APPROX/RANDOM’15

270 On Linear Programming Relaxations for Unsplittable Flow in Trees

It is known that there is a reduction from the (general) UFP-tree instances to the inter-
secting UFP-tree instances losing an approximation factor at most O(min{logm, logn}).
An intriguing possibility for obtaining an O(logn)-approximation for UFP-tree would be
to show the integrality gap of Rank-LP is O(1) in intersecting cases. Indeed, this is the
case for UFP-path [9]. Unfortunately, we have examples showing that the integrality gap
can be super-constant in intersecting cases of UFP-tree.

I Theorem 6. The integrality gap of Rank-LP for UFP-tree is Ω(
√

logn) even in
instances with a common end node r (i.e. ti = r for all tasks i).

We would like to briefly reflect on this result. Essentially by definition, the integrality
gap of Rank-LP on intersecting, unit-weight instances of UFP-tree is 1: consider the
rank constraint for S being the set of all tasks. In fact, for any subset of tasks S in an
intersecting instance, the LP is requiring that

∑
i∈S xi ≤ rank(S) so this might seem like

a very strong formulation. However, it is not the case that the set of feasible solutions to
Rank-LP is equal to the convex hull of integer solutions. Theorem 6 basically says that one
can choose the weight vector to make the integrality gap very large. We are not aware of
any other packing problems for which the integrality gaps of the unweighted and a weighted
versions have been observed to differ by a super-constant factor (though, it is easy to argue
the difference is never worse than O(logn), see Appendix A.1). This observation may be of
general interest.

Our techniques extend easily to k-TreePacking. The notion of a blocking set naturally
generalizes to k-TreePacking and one can consider an analogous relaxation of Compact-
LP (details of this generalization are in Appendix B).

I Theorem 7. The integrality gap of Compact-LP for k-TreePacking is O(k · logn ·
min{logm, log(kn)}) and is at most 4k + 1 in intersecting, unit weight instances.

Note that the latter bound is close to the hardness lower bounds stated in Corollary 1. Also,
our integrality gap analysis is tight within constant factors for intersecting, unit weight
instances.

I Lemma 8. For any k ≥ 2, there are intersecting, unit weight instances instances of
k-TreePacking with integrality gap at least k/2 in Compact-LP.

Finally, we observe that applying two rounds of Lovász-Schrijver SDP operatator (see [12]
for a definition) to Nat-LP derives the constraint

∑
i∈S xi ≤ 1 for any pairwise infeasible

clique S. Since a blocking set is a pairwise infeasible clique, the integrality gap bounds for
Compact-LP stated in Theorem 4 also holds for the two-round Lovász-Schrijver SDP for
UFP-tree and, more generally, for k-TreePacking.

I Lemma 9. Let LSt
+ denote the t rounds of the Lovász-Schrijver SDP operator, and let P be

the polytope defined by the constraints of Nat-LP for k-TreePacking. Then the integrality
gap of max{wT · x : x ∈ LS2

+(P)} is O(k · logn · min{logm, log(kn)}). In particular, for
UFP-tree, the integrality gap is O(logn ·min{logm, logn}).

Thus, SDP hierarchies are much more effective than LP hierarchies for k-TreePacking
since, as mentioned earlier, the integrality gap using t rounds of the Sherali-Adams operator
is Ω(n/t) even in UFP-path instances [9].

The paper is organized as follows. Section 2 contains the proof of Theorem 4, Section
3 contains the proof of Theorem 5, and Section 4 presents the lower bound in Theorem
6. Concluding remarks are made in Section 5. For the sake of space, the results for k-
TreePacking mentioned in Theorem 7 and Lemma 8 are discussed in Appendix B and the
proof of Lemma 9 is deferred to Appendix C.

Z. Friggstad and Z. Gao 271

2 A Stronger, Compact LP For UFP-tree

We begin by proving Lemma 3 from Section 1.2, referring to the three conditions in Definition
2 for the blocking sets.

Proof of Lemma 3. Condition 3 implies {i, j} itself is not feasible for any j ∈ C(i, v, a)\{i}.
Now consider any two distinct j, j′ ∈ C(i, v, a) \ {i}. Let e, e′ ∈ P (a, v) be any edges that
are violated by {i, j} and {i, j′}, respectively, as in condition 3. Suppose, without loss of
generality, that e′ ∈ P (e, v) so condition 1 implies e′ ∈ span(j) as well. By conditions 2 and
3, we have dj + dj′ ≥ di + dj′ > ce′ so {j, j′} violates the capacity of edge e′. J

The following summarizes some of the reductions performed in the combinatorial UFP-
tree-approximation [9] that remain valid for our LP-based arguments. For convenience, we
have sketched these reductions in Appendix A.

I Lemma 10. If the integrality gap of Compact-LP for intersecting, unit-weight UFP-
tree instances is O(1), then the integrality gap of of Compact-LP in general UFP-tree
instances is O(logn ·min{logm, logn}).

Thus, to prove Theorem 4 it suffices to prove that the integrality gap of Compact-LP is 9.
The rest Section 2 is devoted to proving this statement.

2.1 Duality and Complementary Slackness
From now on, we will assume that there is a root node r such that every task spans r. We
will also assume, for simplicity, that there are precisely 2n leaves of the tree and each leaf of
T is an endpoint of precisely one task. This is without any loss of generality since we can
append a new node ` to every endpoint of every task i, move that endpoint of i to the new
node `, and set the capacity of the parent edge of ` to di. This does not change the set of
feasible LP solutions for Compact-LP.

It is important to remember that we are considering Compact-LP in unit-weight
instances in this analysis, which is why we state the dual of Compact-LP only for unit-
weight instances. To avoid clutter, we will let C refer to a blocking set of the form C(j, v, a).
For example, a sum of the form

∑
C:i∈C sums over all blocking sets of the form C(j, v, a)

that contain i. We let ye be the dual variables for constraints (1), zC be the dual variables
for constraints (2) and z′i be the dual variables for constraints xi ≤ 1.

minimize
∑

e

ce · ye +
∑

C

zC +
∑

i

z′i (Dual-LP)

s.t.
∑

e∈span(i)

di · ye +
∑

C:i∈C

zC + z′i ≥ 1 ∀ tasks i (4)

y, z, z′ ≥ 0

Relaxed Complementary Slackness. We construct feasible primal x and dual (y, z, z′)
solutions satisfying the following conditions.
1. xi ∈ {0, 1} for each task i
2. xi = 1 =⇒

∑
e∈span(i)

di · ye ≤ 2

3. ye > 0 =⇒
∑

i:e∈span(i)

di · xi ≥
ce

2
4.
∑

C zC +
∑

i z
′
i ≤ 5

∑
i xi

APPROX/RANDOM’15

272 On Linear Programming Relaxations for Unsplittable Flow in Trees

Let OPTf denote the optimal fractional solution to Compact-LP for the intersecting,
unit-weight instance we are considering.

I Lemma 11. Suppose x and (y, z, z′) are feasible primal and dual solutions that satisfy
conditions 1− 4 above. Then x is an integer solution with value ≥ OPTf/9.

Proof. Let α, β > 0 be quantities we will set later that satisfy α+ β = 1. Then∑
i

xi = α
∑

i

xi + β
∑

i

xi

≥ α

2
∑

i

∑
e∈span(i)

xi · di · ye + β

5

(∑
C

zC +
∑

i

z′i

)

= α

2
∑

e

ye

∑
i:e∈span(i)

xi · di + β

5

(∑
C

zC +
∑

i

z′i

)

≥ α

4
∑

e

ce · ye + β

5

(∑
C

zC +
∑

i

z′i

)
.

The first inequality uses conditions 2 and 4 and the second inequality uses condition 3.
Setting α = 4

9 and β = 5
9 shows

∑
i

xi ≥
1
9

(∑
e

ce · ye +
∑

C

zC +
∑

i

z′i

)
.

Finally, by weak duality and since (y, z, z′) is feasible for Dual-LP with cost
∑

e ce · ye +∑
C zC +

∑
i z
′
i, then

∑
i xi ≥ 1

9OPTf . J

We will prove there indeed exists such x and (y, z, z′). The x-values will be obtained by a
simple greedy algorithm and the corresponding (y, z, z′)-values will be carefully constructed
to witness the near-optimality of x as a solution to Compact-LP.

2.2 The Greedy Algorithm
Algorithm 1 is essentially the greedy algorithm of [9] for unit-weight, intersecting instances
of UFP-tree. We have augmented it with some bookkeeping for use in our analysis. In the
algorithm, we say that e is undersaturated by S if

∑
i∈S:e∈span(i) di < ce/2.

Algorithm 1 Greedy algorithm for unit-weight, intersecting instances.
1: Initialize S,Du and Ds to ∅.
2: for each task i in increasing order of demand di do
3: if S ∪ {i} is feasible then add i to S
4: else
5: Let B(i) be the edges whose capacities are violated by S ∪ {i}.
6: if some e ∈ B(i) is undersaturated by S then add i to Du

7: else add i to Ds

8: return S

Intuitively, for i 6∈ S we have that B(i) consists of the edges that “blocked” i; those edges
that would have their capacity constraint violated by S′ ∪ {i} (for the set S′ ⊆ S of tasks
that were chosen at the time i was considered). Then Du consists of tasks that were blocked

Z. Friggstad and Z. Gao 273

r

Figure 1 The tree T ′ is partitioned into six paths. Two are drawn with bold edges, two with
thin edges, and two with dashed edges. Note that the root has degree 2, but the path it lies on is
broken into two paths.

by at least one undersaturated edge and Ds consists of tasks that were blocked only by
“mostly saturated” edges. Note that once an edge blocks some task, no more tasks spanning
that edge will be added to S.

Let x be defined by xi = 1 if i ∈ S and xi = 0 if i 6∈ S. By construction, x is a feasible
integer solution to Compact-LP. We must show

∑
i xi = |S| is within a factor of 9 from

the optimum LP solution.

2.3 Constructing the Dual Solution
We will show that Du can be partitioned into at most 4 · |S| sets such that each is a subset
of some blocking set of the form C(j, a, s). Given this, we set zC = 1 for each of the at
most 4 · |S| blocking sets C that contain one of the partitions of Du and set zC′ = 0 for the
remaining blocking sets C ′. Finally, we set z′i = 1 for each i ∈ S and z′i = 0 for i 6∈ S. This
will satisfy the 4th complementary slackness condition.

Note that the dual constraints (4) in Dual-LP for i ∈ Du will be satisfied by the z-
variables alone and that the dual constraints for i ∈ S will be satisfied by z′ alone. Finally,
we will set the ye values to satisfy the dual constraints for i ∈ Ds. The rest of the analysis
breaks into two parts: 1) finding the appropriate partition of Du into subsets of blocking
sets and 2) setting the ye variables to satisfy the dual constraints for i ∈ Ds. The second
part must be done carefully to ensure the dual constraints for i ∈ S are not too slack to
satisfy condition 2 while maintaining ye = 0 for undersaturated edges to satisfy condition 3.

2.4 Finding the Blocking Sets
Consider the subtree T ′ of T consisting only of the nodes and edges of T that are spanned by
some task i ∈ S. Since we are assuming the leaves of T are in one-to-one correspondence with
the 2 · n endpoints of the tasks, then T ′ has precisely 2 · |S| leaves. Let P be the collection of
paths in T ′ such that for every P ∈ P, the endpoints of P have degree 6= 2 in T ′ and the
internal nodes of P have degree 2. If it so happens that r has degree 2 in T ′, then we also
break the path P containing r into two paths, both containing r as one endpoint. The paths
in P form a partition of the set of edges of T ′. Figure 1 illustrates the partitioning of a tree
into paths P in this manner.

Since the number of leaves of T ′ is 2 · |S| and we only split at most one of the degree-2
paths in T ′ into two paths, then there are at most 4 · |S| paths in P . We will partition Du into
at most 4 · |S| subsets that we denote by C(P), P ∈ P. Partitioning Du is straightforward.
For each i ∈ Du we have that some e ∈ B(i) was undersaturated when i was considered in

APPROX/RANDOM’15

274 On Linear Programming Relaxations for Unsplittable Flow in Trees

the algorithm and remains undersaturated throughout the rest of the algorithm. Pick any
such edge and call it e(i). Add i to C(P) where P ∈ P is such that e(i) ∈ P .

For each P ∈ P with C(P) 6= ∅, we will identify a blocking set C containing C(P). Let
iP denote the task with least demand in C(P), let vP denote the node on P nearest to r
(which must be spanned by i since i ∈ C(P)), and let aP be the endpoint of iP such that
e(i) ∈ P (a, vP).

I Lemma 12. For this choice of iP , vP , a, we have C(P) ⊆ C(iP , vP , aP).

Proof. Consider any j ∈ C(P). We clearly have diP ≤ dj by our choice of iP . Furthermore,
since P lies below vP and since e(j) ∈ P then vP ∈ span(j).

Note that every i′ ∈ S that spans some edge of P must, in fact, span all of P by how we
decomposed T ′ into degree-2 subpaths. Let ∆ =

∑
i′∈S:P⊆span(i′) di′ be the total demand of

tasks in S routed across P . Since task j is blocked by e(j), then dj + ∆ > ce(j). Since e(j)
was undersaturated when j was blocked, then ∆ < ce(j)/2 so dj > ce(j)/2 > ∆. Note that
this argument also works for iP : diP > ∆.

To finish the proof, we have to show that if j 6= iP then j conflicts with iP somewhere on
P (aP , vP). Now, since both e(j) and e(iP) lie in P , then either e(j) ∈ span(iP) or e(iP) ∈
span(j). Suppose e(j) ∈ span(iP) (the other case is similar). Then dj + diP > dj + ∆ > ce(j)
meaning {j, iP } conflicts across e(j) ∈ P . Thus, C(P) ⊆ C(iP , vP , aP). J

2.5 Setting ye

Recall that for an edge e, the set P (e, r) consists of all edges on the path between e and r
including e itself. Also, for a vertex v we let P (v, r) denote the set of all edges lying on the
unique v − r path in the tree T .

Let F ′ be the set of all edges e ∈ E such that
∑

i∈S:e∈span(i) di ≥ ce/2. Fix any subset
F ⊆ F ′ that is minimal with respect to the property that for every task i ∈ Ds and every
endpoint a ∈ {si, ti}, if F ′ ∩B(i) ∩ P (a, r) 6= ∅ then F ∩B(i) ∩ P (a, r) 6= ∅. In other words,
we are looking at each a− r subpath for each endpoint a of a task i ∈ Ds. If i was blocked
by some edge on this subpath, then F should still contain some edge on this subpath that
blocked i.

Say that an edge e ∈ F is critical for i ∈ Ds if F ∩B(i)∩P (a, r) = {e} for some endpoint
a of i. Note that up to (but no more than) 2 edges may be critical for a single task i, one
per endpoint of i. By minimality of F , every e ∈ F is critical for at least one task in Ds.
So, for any e ∈ F we define i(e) := arg min{di : i ∈ Ds and e is critical for i} (breaking ties
arbitrarily).

We now set values to the dual variables ye, e ∈ E.

I Lemma 13. There is a y ≥ 0 such that ye = 0 for e 6∈ F and
∑

e′∈P (e,r) di(e)ye′ = 1 for
e ∈ F .

Proof. We set the values ye, e ∈ F inductively in increasing size of |P (e, r)∩ F |. If P (e, r)∩
F = {e} then we simply set ye = 1

di(e)
.

If |P (e, r) ∩ F | ≥ 2 then let e′ be the deepest edge on (P (e, r) ∩ F) \ {e}. That is,
F ∩ (P (e, r) \ {e}) = F ∩ P (e′, r). Set ye = 1

di(e)
− 1

di(e′)
; it must be that ye ≥ 0. Otherwise,

i(e′) is considered before i(e) in Algorithm 1. But then e′ ∈ B(i(e)), contradicting the fact
that e ∈ F is critical for i(e).

Finally, by our setting of ye and because
∑

e′′∈P (e′,r) di(e′)ye′′ = 1, we have∑
e′′∈P (e,r)

di(e)ye′′ = 1.

Z. Friggstad and Z. Gao 275

J

The following Lemma shows the dual constraints are now satisfied for each i ∈ Ds even if
the blocking set variables zC are ignored.

I Lemma 14. For i ∈ Ds we have
∑

e∈span(i) diye ≥ 1.

Proof. The statement holds for each i of the form i(e) for some e ∈ F by Lemma 13 (and
noting P (e, r) ⊆ span(i)). So, we suppose that i ∈ Ds is such that i 6= i(e) for all e ∈ F .

Since i ∈ Ds, there is some endpoint a of i such that P (a, r) ∩ B(i) 6= ∅. By how we
selected F , then P (a, r) ∩ B(i) ∩ F 6= ∅ as well. Let e be an edge in P (a, r) ∩ B(i) ∩ F
that is furthest from the root. The claim is that di ≥ di(e). If so, then

∑
e′∈span(i) diye′ ≥∑

e′∈P (e,r) diye′ ≥
∑

e′∈P (e,r) di(e)ye′ = 1 by Lemma 13.
There are two cases.

1. P (si, r) ∩B(i) ∩ F = {e}. Then e is critical for i. But since i(e) 6= i, it must be that by
our choice of i(e) (being the least demand task for which e is critical) that di(e) ≤ di.

2. |P (si, r)∩B(i)∩F | ≥ 2. Since e is furthest from the root, then there is some e′ 6= e with
e′ ∈ P (e, r) ∩ B(i) ∩ F . If di < di(e), then i was considered before i(e) in Algorithm 1.
But since e′ ∈ F blocks i, it would have also blocked i(e) contradicting the fact that e is
critical for i(e).

J

2.6 Putting It All Together

I Lemma 15. x and (y, z, z′) are feasible for Compact-LP and its dual and satisfy the
relaxed complementary slackness conditions.

Proof. Clearly x is a feasible solution since it is the indicator vector of the set S selected
by the greedy algorithm. Now, y, z and z′ are nonnegative by construction. We had set
z′i = 1 for each i ∈ S, so the dual constraints for i ∈ S are satisfied. We also partitioned
Du into subsets of blocking sets and set the z-value for each such blocking set to 1, so the
dual constraints for i ∈ Du are also satisfied. Finally, the the dual constraints for i ∈ Ds are
satisfied by Lemma 14.

Next we verify the relaxed complementary slackness conditions. By construction, all
xi are {0, 1}-valued. The third condition holds because ye > 0 only for edges that are not
undersaturated by S (c.f. Lemma 13).

We set zC = 1 for at most 4 · |S| blocking sets, and zC = 0 for the rest. Similarly, z′i = 1
for i ∈ S and z′i = 0 for i 6∈ S. Thus, the fourth relaxed complementary slackness conditions
hold.

The only thing left to prove is that the second relaxed complementary slackness conditions
hold. So, consider some i ∈ S. We will show

∑
e∈P (a,r) diye ≤ 1 for each endpoint a of i. Since

each e ∈ span(i) lies on some P (a, r) path for some endpoint a of i, then
∑

e∈span(i) diye ≤ 2.
Recall the definitions of F and i(e) from Section 2.5. If P (a, r) ∩ F = ∅, then we have∑

e∈P (a,r) diye = 0. Otherwise, let e be the deepest edge P (a, r) ∩ F . That is, e ∈ F and
F ∩ P (a, r) = F ∩ P (e, r). It must be that di ≤ di(e), otherwise i(e) would have been
considered before i in Algorithm 1. This is impossible because e would then have blocked
i ∈ S. Thus,

∑
e′∈P (a,r) diye′ =

∑
e′∈P (e,r) diye′ ≤

∑
e′∈P (e,r) di(e)ye′ = 1 where the last

equality is by Lemma 13. J

APPROX/RANDOM’15

276 On Linear Programming Relaxations for Unsplittable Flow in Trees

3 Approximating Rank-LP

We prove Theorem 5 as a special case of the following more general statement about packing
problems. Suppose Ax ≤ b, x ∈ {0, 1}n defines the set of feasible solutions to an integer
program over n variables where all entries of A are nonnegative. For a nonempty subset of
indices S ⊆ {1, . . . , n}, let AS and xS denote the restriction of A to the columns indexed by
S and x to the entries indexed by S. Also let rank(S) be the largest subset of S that can be
packed feasibly. Finally, let 1 denote the all-1 vector.

I Lemma 16. Let S be a collection of nonempty subsets of {1, . . . , n}. Suppose x ∈ Rn

satisfies Ax ≤ b and x ∈ [0, 1]n. Finally, suppose α is an upper bound on the integrality gaps
of all (unit-weight) linear programs max{1T · xS

i : ASxS ≤ b, xS ∈ [0, 1]|S|} for S ∈ S. Then
for every S ∈ S we have

∑
i∈S xi ≤ α · rank(S).

Proof. For any S ∈ S, xS is feasible for the unit-weight LP max{1T · xS
i : ASxs ≤ b, xS ∈

[0, 1]|S|} because A is nonnegative. By the integrality gap assumption, there is a feasible
packing of at least

∑
i∈S x

S
i /α items in S. That is,

∑
i∈S x

S
i /α ≤ rank(S). J

To prove Theorem 5, apply the integrality gap bound from Theorem 4 to Lemma 16,
with S being the collection of all intersecting collections of tasks.

4 Lower Bound

We give an example showing that the integrality gap of Rank-LP in weighted, intersecting
cases of UFP-tree can be as bad as Ω(

√
logn). Note that an upper bound of O(logn) for

weighted intersecting cases follows from the O(1) upper bound for unit-weight, intersecting
cases demonstrated in Section 2 and the reduction in Appendix A.1. This also shows that
the our averaging argument using relaxed complementary slackness cannot be adapted to
prove a constant gap for weighted intersecting instances.

For any integer h ≥ 2, we define a tree Th. Initially, consider a complete tree with height
h− 1 and branching factor 2h−1 and say leveli, 1 ≤ i ≤ h, are the vertices in level i of this
tree. Finally, we add one additional node r and connect r to the single vertex in level1 to
obtain our tree Th. We say that r is the root of T and that level0 = {r}. The number of
nodes in Th is n = 1 + 2h(h−1)−1

2h−1−1 ≤ 2h2 . Hence, h ≥
√

log2 n.
For each edge uv with u ∈ levelk−1 and v ∈ levelk, we set ce = 2h(h−k+1). Finally, for

every v ∈ levelk, 1 ≤ k ≤ h we create a single task i(v) with start node v and end node r.
We give i(v) demand di(v) = 2h(h−k+1) − 2h(h−k) and weight wi(v) = 1

2(k−1)(h−1) = 1
|levelk| .

That is, for each 1 ≤ k ≤ h we have distributed exactly one unit of weight evenly among the
tasks {i(v) : v ∈ levelk}.

Figure 2 illustrates the construction of Th for h = 3. For convenience, we define S(v) for
a vertex v of Th to be the set of tasks i where si lies in the subtree rooted at v. We begin by
establishing a lower bound on the integrality gap of Compact-LP.

I Lemma 17. The solution xi = 1
2 for all tasks i is feasible for Compact-LP on instance

Th with value h/2.

Proof. Consider the solution xi = 1
2 for each task i, which has objective function value

h/2. We first prove by reverse induction on k that the constraint for an edge e = uv with
u ∈ levelk−1, v ∈ levelk is satisfied by x. This is clearly true for k = h.

Z. Friggstad and Z. Gao 277

v

r

S(v)

Task i(v)

level0

level1

level2

level3

Figure 2 Bad instance T 3. The span of task i(v) is drawn with bold lines. The outlined group of
nodes are the starting points of tasks in S(v).

Inductively, consider k < h and suppose no child edge of v has its corresponding constraint
violated by x. Recall that there are 2h−1 children of v, each with capacity 2h(h−k). By
induction, the total fractional demand from tasks in S(v) in the solution x is at most

di(v)

2 +
∑

u child of v

cvu ≤
c(e)

2 + 2h(h−k) · 2h−1 = c(e)

so the Constraint (1) for edge e is satisfied.
Note that {i, j} is feasible for any tasks i, j. That is, suppose {i, j} violated the capacity

of some edge cuv. Then i, j ∈ S(v) and if {i, j} violates the capacity of uv, then so to does
i(v), i(w) for some child w of v. But a simple calculation shows di(v) + di(w) ≤ cuv, which
is a contradiction. This means Constraints (2) of Compact-LP are vacuous, thus trivially
satisfied. J

I Lemma 18. Every UFP-tree solution in Th has value at most 2.

Proof. Consider any edge e = (u, v) where u ∈ levelk−1 and v ∈ levelk. Note that S(v1) is
the set of all tasks where level1 = {v1}. Thus, it suffices to show the following.

Claim: If v ∈ levelk, the maximum weight of a feasible subset I ⊆ S(v) is at most 2
2(h−1)(k−1) .

We prove this claim by induction on k from h to 1. Clearly, for k = h it is true since
the weight of each task from the lowest level is 1

2(h−1)(h−1) . Inductively, consider k < h and
suppose the statement is true for all v′ ∈ levelk+1.

Case a: i(v) /∈ I.
In this case, I is a union of feasible solutions Iw ⊆ S(w) for each child w of v. By the
induction hypothesis, the weight of each Iw is at most 2

2(h−1)k . Since there are 2h−1 children
of v, then the weight of I is bounded by 2h−1 2

2(h−1)k = 2
2(h−1)(k−1) .

Case b: i(v) ∈ I.
The weight of i(v) is 1

2(h−1)(k−1) and the remaining capacity of e is 2h(h−k). By how we set
the demands and weights, it is not hard to see that the task from the lowest level have the
largest density (i.e. wi/di), which is 1

2h−1 ·
1

2(h−1)·(h−1) ≤ 1
2h(h−1) . Hence, the weight of I− i(v)

is at most 2h(h−k)

2h(h−1) ≤ 1
2(h−1)(k−1) . Adding this to wi(v) completes the proof. J

APPROX/RANDOM’15

278 On Linear Programming Relaxations for Unsplittable Flow in Trees

By Lemmas 17 and 18, the integrality gap of Compact-LP is at least h/4 = Ω(
√

logn).
To complete the proof of Theorem 6, simply note that since the all-1/2 solution is feasible
for Compact-LP then the solution x with xi = 1/18 for all tasks i is feasible for Rank-LP
by Theorem 5. Thus, the integrality gap of Rank-LP is also Ω(

√
logn).

5 Conclusion

We saw how adding only O(n ·m) constraints to the natural LP relaxation for UFP-tree
reduces the integrality gap from Ω(n) to O(logn ·min{logm, logn}). Unfortunately, we also
know that including all rank constraints does not reduce the gap to a constant. The bad
gap example we demonstrated has all tasks sharing a common endpoint. Interestingly, such
instances admit an FPTAS.

Our analysis of the upper bound of Rank-LP may not be tight. It may also be possible to
further strengthen the LP. Closing the gap between the upper and lower bound is an important
problem, especially since UFP-tree has been a testbed for more general column-restricted
packing LP ideas (e.g. [9, 11]).

It would also be interesting to determine the integrality gap of Rank-LP on unit-weight
instances of UFP-tree that are not necessarily intersecting. In UFP-path, it is known
to be O(1) [1]. If it is also constant in UFP-tree, then this immediately leads to an
O(logn)-approximation in general. On the other hand, if this gap is super-constant then
this may indicate that UFP-tree has no constant-factor approximation.

For the more general problem k-TreePacking, we gave an O(k) upper bound on the
integrality gap of Compact-LP (in Appendix B), matching the guarantee of the combin-
atorial approximation implicit in [9]. Corollary 1 means that we cannot find significantly
better approximations, but it may still be possible to get a o(k)-approximation. In particular,
there is an Õ

(
k

log2 k

)
-approximation for the Maximum Independent Set problem in degree

≤ k graphs [15] (the tilde is supressing log log k terms). Our integrality gap analysis for
Compact-LP was asymptotically tight, so other techniques must be considered to get a
slightly better approximation.

Acknowledgements. The authors thank Joseph Cheriyan and Chaitanya Swamy for many
helpful discussions.

References
1 A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese. Constant integrality gap LP

formulations of unsplittable flow on a path. In proceedings of IPCO, 2013.
2 A. Anagnostopoulos, F. Grandoni, S. Leonardi, and A. Wiese. A mazing (2 + ε)-

approximation for unsplittable flow on a path. In proceedings of SODA, 2014.
3 N. Bansal, A. Chakrabarti, A. Epstein, and B. Scheiber. A quasi-PTAS for unsplittable

flow on line graphs. In proceedings of STOC, 2006.
4 J. Batra, N. Garg, A. Kumar, T. Mömke, and A. Wiese, New approximation schemes for

unsplittable flow on a path. In proceedings of SODA, 2015.
5 P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent set

in bounded degree graphs. Theory of Computing, 7:27–43, 2007.
6 P. Bonsma, J. Schulz, and A. Wiese. A constant-factor approximation for unsplittable flow

on paths. In proceedings of FOCS, 2011.
7 S. O. Chan, Approximation resistance from pairwise independent subgroups. In proceedings

of STOC, 2013.

Z. Friggstad and Z. Gao 279

8 A. Chakrabarti, C. Chekuri, A. Kumar, and A. Gupta. Approximation algorithms for the
unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.

9 C. Chekuri, A. Ene, and N. Korula. Unsplittable flow on paths, trees, and column-restricted
packing integer programs. In proceedings of APPROX, 2009. Full version with additional
results available at http://www.cs.princeton.edu/~aene/research.html.

10 C. Chekuri, S. Khanna, and B. Shepherd. An O(
√
n)-approximation and integrality gap

for disjoint paths and unsplittable flow. Theory of Computing, 2, 137–146, 2006.
11 C. Chekuri, M. Mydlarz, and B. Shepherd. Multicommodity demand flow in a tree and

packing integer programs. ACM Trans. on Algorithms 3(3), 2007.
12 E. Chlamtáč and M. Tulsiani. Convex relaxations and integrality gaps. Handbook on

Semidefinite, Conic and Polynomial Optimization, Springer, 2012.
13 E. Chlamtáč, Z. Friggstad, and K. Georgiou. Lift-and-project methods for set cover and

knapsack. In proceedings of WADS, 2013.
14 N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximations for integral flow

and multicut in trees. Algorithmica, 18(1):3–20, 1997.
15 N. Bansal, A. Gupta, and G. Guruganesh. On the Lovász theta function for independent

sets. In proceedings of STOC, 2015.
16 A. Karlin, C. Mathieu, and C. Nguyen. Integrality gaps of linear and semi-definite pro-

gramming relaxations for knapsack. In proceedings of IPCO, 2011.
17 A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

A Reduction to Unit-Weight, Intersecting Cases

The proof of Lemma 10 uses essentially the same arguments as in [9]. We start with a general
instance of UFP-tree.

A.1 Reduction to Unit-Weight Instances

The idea is to bucket the tasks by their weight and round each bucket separately. The general
idea works for every packing problem, not just UFP-tree.

Consider a feasible LP solution x to Compact-LP. Let W be the maximum weight
of the tasks. We know the value of x is at least W because we are assuming each task is
feasible by itself. Discard all tasks i with wi ≤ W

2n and let x′ denote the restriction of x to
the remaining tasks. Since we discarded at most n tasks and since xi ≤ 1 for each tasks i,
then w′T · x′ ≥ wT · x/2 (where w′ is the restriction of w to the remaining tasks).

For a ∈ {1, . . . , dlog2 2ne}, form the “bucket” Ba = {i : 2−aW < wi ≤ 2−a+1W}. Notice
that there are O(logn) different buckets Ba and they partition the remaining tasks. For each
such a, let xa denote the restriction of x to tasks in Ba.

Now, xa is a feasible LP solution Compact-LP. If we know the integrality gap is β for
unit-weight instances, then we can find a feasible set of at least

∑
i∈Ba

xi/β tasks in Ba. The
weight of these tasks is at least (wa)T · xa/2β (where wa denotes the restriction of w to Ba)
and the best solution found among all buckets Ba has weight at least w′T · x′/2βdlog2 2ne.
Thus, the integrality gap is O(logn · β).

Note that β will depend on the input size in the coming arguments, namely β =
O(min{logm, logn}). However, since it is non-decreasing with the input size then the above
arguments remain valid.

APPROX/RANDOM’15

http://www.cs.princeton.edu/~aene/research.html

280 On Linear Programming Relaxations for Unsplittable Flow in Trees

A.2 Reduction to Intersecting Instances

Recall that we are assuming the integrality gap of unit-weight, intersecting cases is bounded
by α = O(1). We describe a recursive algorithm, with the base case being when the instance
itself is already intersecting. In this case, there is a feasible set of tasks S of size at least∑

i xi/α by assumption
Otherwise, recall that every tree T has a “centre” node v such that the number of edges

in each component of T − v is at most half the number of edges m of T . Fix such a centre
node v and let Iv be the set of tasks spanning v. The integrality gap assumption means
there is a feasible subset S of Iv with size at least

∑
i∈Iv xi/α.

Let T (1), . . . , T (b) denote the connected subtrees of T that remain after v is deleted. For
each i 6∈ Iv, the entire si − ti path is entirely contained in some T (j) so we consider the b
different UFP-tree instances defined by each T (j) and the tasks contained entirely within
T (j), say Ij . Furthermore, the restriction of x to each of these subinstances is feasible for
that instance. Finally, each T (j) has at most m/2 edges by our choice of v.

Recursively, we find a feasible set of tasks Sj of size at least
∑

i∈Ij xi/(α · log2(m/2))
from each subinstance Ij . The set ∪jSj is feasible because no two tasks contained in
different subinstances span a common edge. This gives us a feasible solution ∪jSj of size∑

i6∈Iv xi/(α · log2(m/2)).
Keep the largest of S or ∪jSj as our solution for the instance on the tree T . A quick

calculation shows that max{|S|, | ∪j Sj |} has size at least
∑

i xi/(α · log2 m·). That is, the
integrality gap of Compact-LP in unit-weight instances is at most α · log2 m = O(logm).

A.3 Reducing the Number of Edges

Combining the previous two reductions shows the integrality gap is at most O(logn · logm).
We can also bound the integrality gap by O(log2 n) by performing the following preprocessing
step before applying the previous two reductions.

Consider a node v of T that has degree at most 2 and is not an endpoint of any task. If
v has degree 2 with incident edges uv and vw, we remove v from T and add the edge uw
with capacity min{cuv, cvw}. If v is a leaf of T , then we just discard v and its incident edge
from T . In either case, the set of feasible solutions x to Compact-LP does not change.

Let m′ be the number of edges in the resulting tree, the claim is that m′ ≤ 4n. To see
this, recall that the number of edges in a tree with ` leaves and b degree 2 nodes is at most
2`+ b. The only leaves and degree 2 nodes in the resulting tree are endpoints of one of the n
tasks, so there are at most 2n leaves and degree 2 nodes. Thus, m′ ≤ 4n.

Applying the previous two reductions to this tree that we obtained, we see the integrality
gap can also be bounded by O(logn logm′), which is bounded by O(log2 n).

B Extensions to k-TreePacking

Here we briefly discuss how to modify the algorithm and analysis from Section 2 to get
integrality gap bounds for k-TreePacking. Recall that each subtree Ti in the input has at
most k leaves.

We use similar notation, for a subset S of input tasks/subtrees we let rank(S) denote the
largest subset of S that is feasible. A subset S is called intersecting if there is a vertex r
that lies on all subtrees Ti for tasks in S. In this way, Rank-LP can also be regarded as a
relaxation for k-TreePacking.

Z. Friggstad and Z. Gao 281

Because the integrality gap of Rank-LP is just 1 in intersecting, unit-weight instances
of k-TreePacking and because such instances are hard to approximate within factors close
to k (c.f. Corollary 1), we cannot hope to solve this LP within a factor that is much better
than k. We will sketch how to solve it within a factor of 4k+ 1 by adapting our approach for
UFP-tree.

First, we generalize the notion of a blocking set. For any vertex v, any i such that the
subtree Ti contains v, and any leaf node a of Ti we let C(i, v, a) denote the set containing i
and all j such 1) dj ≥ di, 2) Tj spans v, and 3) di + dj > ce for some edge e ∈ P (a, v) ∩ Tj .
Lemma 12 and its proof generalize without effort to k-TreePacking.

I Lemma 19. For any such i, v, a, rank(C(i, v, a)) ≤ 1.

Thus, we may also consider the generalization of Compact-LP to k-TreePacking. It
has O(n ·m · k) constraints. Before discussing the integrality gap upper bound, we begin by
providing a lower bound.

Proof of Lemma 8. Let T be a star with
(

k+1
2
)
leaves. Index the leaves by subsets of

{1, . . . , k+ 1} of size 2. For each 1 ≤ i ≤ k, create a subtree Ti with leaves being the k leaves
of T that correspond to pairs containing i. Set all demands, capacities, and weights to 1.

The solution xi = 1
2 is feasible for Compact-LP since each blocking set has size at most

2. However, the optimum k-TreePacking solution picks only a single subtree, as selecting
any pair of subtrees Ti, Tj would violate the capacity of the edge incident to of leaf {i, j}. J

Finally, our upper bound for k-TreePacking is the following.

I Theorem 20. The integrality gap of Compact-LP for k-TreePacking is at most 4k+ 1
in intersecting, unit-weight instances and is O(k · logn · min{logm, log(kn)}) in general
instances.

Rather than presenting the whole proof from scratch, we just mention how to generalize the
proof for UFP-tree to this setting.

The algorithm for unit-weight, intersecting instances is the same as Algorithm 1 for
UFP-tree: greedily try to add subtrees in increasing order of demand and form the sets
Du, Ds for the tasks i that are not included in the final solution S. For a subtree Ti, let
span(i) naturally denote the set of edges lying on Ti. The relaxed complementary slackness
conditions we consider are:
1. xi ∈ {0, 1} for each subtree Ti

2. xi = 1 =⇒
∑

e∈span(i)

di · ye ≤ k

3. ye > 0 =⇒
∑

i:e∈span(i)

di · xi ≥
ce

2
4.
∑

C zC +
∑

i z
′
i ≤ (2k + 1)

∑
i xi

The proof of why this suffices is the same as the proof of Lemma 11, except we choose
α = 2k

4k+1 , β = 2k+1
4k+1 .

We still set z′i = 0 for i 6∈ S and z′i = 1 for i ∈ S. The set Du is partitioned into at
most 2k · |S| sets, each of which can be shown to be contained in some blocking set C(i, v, a).
More specifically, the steps in Section 2.4 are adapted to this setting in the following way.
Construct the subtree T ′ of T consisting of edges used by tasks in S and note that Du will
have at most k · |S| leaves. Partitioning T ′ into maximal paths (again, perhaps also splitting
the path that goes through the root) produces at most 2k · |S| paths, and the tasks C(P)
that were blocked by an undersaturated edge on P can be shown to be contained in some

APPROX/RANDOM’15

282 On Linear Programming Relaxations for Unsplittable Flow in Trees

in the same way as in the proof of Lemma 12. This shows the last relaxed complementary
slackness condition holds.

The setting of the dual variables ye is essentially the same and the second complementary
slackness condition holds because this construction ensures

∑
e∈P (a,r) di · ye ≤ 1 for each

i ∈ S and each of the k leaves a of Ti. This also satisfies the third condition because positive
dual is assigned only to ye variables that are mostly saturated.

Finally, to get the O(k · logn ·min{logm, log(kn)}) bound in the general case we reduce to
the unit-weight case and lost an O(logn) as in Appendix A.1 and the reduction to intersecting
instances is the same as Appendix A.2 and loses an additional O(logm)-factor.

Finally, an easy adaptation of the preprocessing in Appendix A.3 reduces the number of
edges in the tree to at most 2nk. That is, we can merge the edges incident to a degree-2
vertex that is not an endpoint of some task and remove leaf nodes do not lie on any subtree.
This reduction produces a tree where the number of leaf nodes plus the number of internal
degree-2 nodes is at most nk, meaning it has O(nk) edges overall.

C Lift-and-Project Bounds

The definitions of the hierarchies discussed here can be found in [12], for example. Let P
denote the polytope defined by the constraints of Nat-LP. For an integer t ≥ 0, let Last

and LSt
+ denote t rounds of the Lasserre and Lovász-Schrijver SDP operators, respectively.

The following lemma is stated for k-TreePacking, but it generalizes immediately to any
relaxation of a packing integer program. It is easy to see it holds if LS2

+ is replaced by Las2

by invoking the decomposition theorem of Karlin, Mathieu, and Nguyen [16]. However, it is
interesting to note that the result still holds in the weaker Lovász-Schrijver SDP hierarchy.

I Lemma 21. Suppose x ∈ LS2
+(P). For any pairwise infeasible clique S of subtrees,∑

i∈S xi ≤ 1.

Proof. Suppose x ∈ LS2
+ and let Y � 0 be a protection matrix for x. Y is indexed by the

subtrees 1 ≤ i ≤ n and one additional index which we denote by 0. Then Y is symmetric and
Y0 = diag(Y) = (1, x) where Y0 is the first row of Y . We also claim that Yi,j = 0 whenever
{i, j} is an infeasible pair of subtrees.

Consider any distinct pair of subtrees i, j with Yi,j > 0. We can condition on xi = 1 to
get a point x′ ∈ LS1

+(P) with x′i′ = Yi,i′

Yi,i
for any subtree i′. In particular, x′i = 1 and x′j > 0.

We can further condition on x′j = 1 to get a point x′′ ∈ P that has both x′′i = x′′j = 1. Thus,
{i, j} is a feasible pair of subtrees.

Finally, we verify
∑

i∈S xi ≤ 1 for any pairwise infeasible clique of subtrees S, meaning
x is a feasible solution to Compact-LP. This follows by standard theta body theory for
graphs (e.g. Chapter 67 of [17]) since Y witnesses the inclusion of x in the theta body of
the graph H whose vertices correspond to subtrees and whose edges correspond to infeasible
pairs of subtrees. However, the argument is simple so we include it for completeness.

Consider the vector z with z0 = 1, zi = −1 for i ∈ S and zi = 0 for v 6∈ S. Because Y � 0
we have the following bound. Note, the indices in the sums on the first line below range over

Z. Friggstad and Z. Gao 283

all subtrees i but not index 0.

0 ≤ zTY z = z0Y0,0z0 + 2
∑

i

z0ziY0,i +
∑
i,j

zizjYi,j

= 1− 2
∑
i∈S

xi +
∑

i,j∈S

Yi,j

= 1− 2
∑
i∈S

xi +
∑
i∈S

xi

= 1−
∑
i∈S

xi.

The first and second equalities follow simply by definition of z and the fact that Y is
symmetric with Y0 = (1, x). The third equality uses Yi,j = 0 for distinct i, j ∈ S and
diag(Y) = (1, x). J

In fact, this proof does not require the “level 1” protection matrices for x ∈ LS2
+(P) to

be positive semidefinite.
Lemma 9 immediately follows Lemma 21 and Theorem 7. In fact, the integrality gaps

are reduced even further in special cases of UFP-path that were studied in [1, 9]. By how
we proved Theorem 5, if x is feasible for Compact-LP in a UFP-path instance then x/9 is
feasible for Rank-LP. All integrality gaps mentioned in the following corollary are known
to hold in Rank-LP, so they also hold (within a factor of 9) in the mentioned SDPs. Again,
recall that P is the polytope defined by the constraints of Nat-LP.

I Corollary 22. The integrality gap of the SDP max{wT · x : x ∈ LS2
+(P)} is O(1) in inter-

secting, unit-weight instances of UFP-tree, O(min{logm, logn}) for UFP-path instances,
and O(1) in intersecting or unit-weight instances of UFP-path.

APPROX/RANDOM’15

	Preliminaries
	A Generalization to Packing Trees
	Results and Techniques

	A Stronger, Compact LP For UFP-tree
	Duality and Complementary Slackness
	The Greedy Algorithm
	Constructing the Dual Solution
	Finding the Blocking Sets
	Setting ye
	Putting It All Together

	Approximating Rank-LP
	Lower Bound
	Conclusion
	Reduction to Unit-Weight, Intersecting Cases
	Reduction to Unit-Weight Instances
	Reduction to Intersecting Instances
	Reducing the Number of Edges

	Extensions to k-TreePacking
	Lift-and-Project Bounds

