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Abstract
A hit rate curve is a function that maps cache size to the proportion of requests that can be
served from the cache. (The caching policy and sequence of requests are assumed to be fixed.)
Hit rate curves have been studied for decades in the operating system, database and computer
architecture communities. They are useful tools for designing appropriate cache sizes, dynam-
ically allocating memory between competing caches, and for summarizing locality properties of
the request sequence. In this paper we focus on the widely-used LRU caching policy.

Computing hit rate curves is very efficient from a runtime standpoint, but existing algorithms
are not efficient in their space usage. For a stream of m requests for n cacheable objects, all
existing algorithms that provably compute the hit rate curve use space linear in n. In the
context of modern storage systems, n can easily be in the billions or trillions, so the space usage
of these algorithms makes them impractical.

We present the first algorithm for provably approximating hit rate curves for the LRU policy
with sublinear space. Our algorithm uses O

(
p2 log(n) log2(m)/ε2

)
bits of space and approximates

the hit rate curve at p uniformly-spaced points to within additive error ε. This is not far from
optimal. Any single-pass algorithm with the same guarantees must use Ω(p2 +ε−2 +logn) bits of
space. Furthermore, our use of additive error is necessary. Any single-pass algorithm achieving
multiplicative error requires Ω(n) bits of space.
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1 Introduction

Caches are a fundamental concept in the design of computer systems. They are a mechanism
for addressing the tradeoff between capacity and performance of different memory technologies.
Even the early computers of the 1950s involved several memory technologies, and the interplay
between these memories led to the foundational research on caching mechanisms in the 1960s.

The importance of caching is even more acute today. The memory hierarchy of a typical
modern computer involves three levels of CPU caches, main memory, a mixture of solid-state
and spinning disks for secondary storage, not to mention network file storage and web caches.
The performance of nearly every modern computer depends crucially on caching mechanisms
that aim to store the most appropriate data in the fastest memory.

A hit rate curve is a function that shows the performance benefit of caching as a function
of the cache size. The study of hit rate curves began in the 1960s as computer designers aimed
to optimize the price-performance ratio of their systems. One of the earliest discussions of
hit rate curves appears in Belady’s seminal 1966 paper [4] on caching and paging. Naturally,
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the question of how to efficiently compute a hit rate curve arose soon thereafter, and several
algorithms were developed in the 1970s [19, 5, 25].

Although hit rate curves are not well-known within the theoretical computer science
community, they feature prominently in the computer architecture and systems communities.
Hit rate curves have been used in memory partitioning [27, 32, 26], garbage collection
[30], program analysis [10, 31], workload phase detection [24], and cloud computing [16, 6].
CloudPhysics Inc., a datacenter performance analytics company, has recently developed a
cloud-based workload analysis system using hit rate curves [28].

There are two key reasons for the resurgence of interest in hit rate curves. The first
is the increasing computational penalty of cache misses. Over the past forty years, CPU
speeds have improved roughly a thousandfold, whereas the latency of spinning disks has
barely improved tenfold. Consequently, cache misses in storage systems are increasingly
costly from a computational standpoint: there has been a substantial increase in the number
of computational steps that are wasted while waiting to retrieve the data from disk. This
phenomenon motivates the study of more computationally intensive cache analysis to avoid
costly cache misses.

The second reason for the interest in hit rate curves is the increased amount of cache
sharing, particularly due to the use of virtualization. CPU caches are shared among cores
and threads; memory and solid-state storage devices are shared among processes and virtual
machines. The marginal utility of increasing a process’ cache allocation depends on the
resulting performance improvement, which itself is determined by that process’ hit rate curve.
Consequently, hit rate curves are a useful ingredient for effective cache allocation.

Improved algorithms for computing hit rate curves have been developed over the years,
but primarily by applied researchers rather than by theoretical algorithms researchers
[5, 22, 1, 10, 32, 13, 21, 28]. There are two main goals of these improvements. The first is
improved runtime, e.g. [13]: CPU cache analysis typically involves a fairly small data set
but very high speeds, so performing this analysis online requires very fast runtime. The
second is improved space usage, e.g. [28]: storage cache analysis typically involves extremely
large data sets but at much lower speeds, so space usage is the primary concern. Typically a
storage system cannot afford even a single bit of main memory for each block that appears
in the secondary storage. Accordingly, most of the algorithms for computing hit rate curves
in a storage context involve some sort of sampling or compression, but without rigorous
guarantees.

This paper is the first to rigorously study space-efficient algorithms for computing hit rate
curves. We focus on the LRU (Least Recently Used) caching policy. LRU and its variants
are by far the most widely used caching policy for storage systems: the Linux, MacOS
and Windows virtual memory systems all use approximations to LRU. In contrast, CPU
caches tend to use simpler policies as speed is the primary concern. One policy that could
potentially supplant LRU in a storage context is ARC [20], but its use has been hampered
by intellectual property concerns.

1.1 Our Results
Our main result is an algorithm that computes an approximate hit rate curve for the LRU
caching policy with a workload of length m involving n cacheable objects. The approximate
hit rate curve achieves additive error ε at p uniformly-spaced points. The algorithm performs
a single pass and uses O

(
p2 log(n) log2(m)/ε2

)
bits of space.

We also prove lower bounds on the space. Any single-pass algorithm that achieves additive
error ε at p uniformly-spaced points must use Ω(min

{
p2 + ε−2 + logn, n

}
) bits of space.
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Moreover, our use of additive error is necessary: any single-pass algorithm that achieves
multiplicative error requires Ω(n) bits of space.

1.1.1 Practical Impact
It is often the case that an improved theoretical understanding of a problem leads to improved
results in practice as well. That is indeed the case with the present work. Our algorithm
has been incorporated into the enterprise storage system built by Coho Data, Inc. In these
multi-terabyte storage systems, n and m are on the order of billions, whereas the hit rate
curve as displayed to the user only requires p on the order of dozens, so the space used by
our algorithm is dramatically less than previous methods. At the time of this writing, the
Coho Data system is reporting live workload statistics for over a thousand virtual machines
deployed in 30 customer environments, representing a level of workload characterization and
insight that has not been possible in the past. A discussion of the practical aspects of this
system was published in OSDI 2014 [29].

1.2 Preliminaries
In a caching system, there are n objects which can potentially be stored in the cache. Using
the terminology of disk caches, we will refer to each item as a block, and we will identify the
blocks with the integers [n] = {1, . . . , n}. Blocks are requested at discrete points in time,
which for simplicity we will always assume to be indexed by the set [m] = {1, . . . ,m}. There
is a sequence of blocks B = (b1, . . . , bm) where bt ∈ [n] for each t ∈ [m]. We will refer to B
as a sequence of requests, and say that the block bt is requested at time t. A caching policy
is a scheme for maintaining a set, called the cache, of at most k blocks. At each time step t,
the block bt is added to the cache, and some block may need to be removed to ensure that
the cache size is at most k. If block bt was already in the cache at time t then this request is
called a hit, otherwise it is called a miss.

For a fixed sequence of requests B, a fixed size k, and a fixed caching policy, the hit rate
is the fraction of requests that are a hit. The typical goal of a caching policy is to maximize
the hit rate. If a caching policy is parameterized by the size k, then the hit rate curve is the
function mapping k to the hit rate under this policy with cache size k.

The LRU caching policy can be defined concisely as: the cache consists of the k most
recently requested distinct blocks. Whenever a miss occurs, the newly requested block must
be inserted into the cache, and the least recently requested block must be removed from the
cache (assuming that the cache was already full). LRU caches satisfy the inclusion property:
for any fixed sequence of requests, the LRU cache of size k is, at each time step, a subset
of the LRU cache of any size K ≥ k. This follows directly from the definition of the LRU
caching policy. Therefore a system with a cache of size K can easily simulate, or determine
the hit rate, for any smaller cache. In the extreme case of K = n, the hit rate for every cache
size (i.e., the entire hit rate curve) can be determined. This is the key observation that was
exploited in previous algorithms [19].

1.3 The Main Idea
To understand this observation in more detail, consider a request bt at time t, let r < t

be the time of the previous request for block bt = br, and let d = |{br, . . . , bt−1}| be the
number of distinct blocks that were requested since time r. The request at time t would be a
hit if the cache size k were at least d, and a miss for any cache size k < d or if r does not
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exist. Thus, to compute the hit rate curve, it suffices to determine, for every request bt, the
number of distinct blocks that were requested since the previous request for bt. All previous
hit rate curve algorithms either compute this number using a dictionary data structure or
estimate it using statistical arguments [5, 22, 1, 10, 32, 13, 21, 28]. The statistical arguments
unfortunately do not give worst-case guarantees.

Our main idea is very natural. We estimate the number of distinct blocks that were
requested since the previous request for bt using an F0-estimator (distinct element estimator)
from the streaming algorithms literature. That is not the end of the story, of course. A
single F0-estimator would only give the number of distinct elements for a single sequence of
requests, whereas we require such an estimate for all suffixes of B. This leads to the fruitful
idea of using a sliding window F0-estimator [9, 7] which, suitably modified, can provide the
required estimate for all suffixes. Unfortunately this does not solve the problem either: the
algorithm cannot easily determine which suffix to use because it cannot afford to store the
previous request time of all blocks – that would also require Ω(n) bits of space. Ultimately,
our algorithm avoids this issue by continuously measuring the contribution from all suffixes,
and using those contributions to update the histogram in a somewhat intricate way.

1.4 Notation
To state our results precisely, let us fix some notation. Recall that we are only interested in
requests that occur at discrete points in time indexed by t ∈ {1, . . . ,m}. The set of requested
blocks between time t′ and strictly before time t is:

B(t′, t) = { bi : i ∈ [m] and t′ ≤ i < t } .

At time t, the most recent request for block bt occurred at time

R(t) = max { x : x < t and bx = bt } .

We define R(t) = −∞ if bt was not requested before time t. At time t, the number of distinct
blocks requested since the most recent request for block b is

D(t) =
{
|B(R(t), t)| (if R(t) > −∞)
∞ (otherwise).

As observed above, an LRU cache of size k has a hit at time t if and only D(t) ≤ k. The hit
rate curve is the function C : [n]→ [0, 1] for which C(k) is the hit rate for an LRU cache of
size k. Thus

C(k) = |{ t ∈ [m] : D(t) ≤ k }|/m.

In this paper we are concerned with computing the hit rate curve at p uniformly-spaced
points, where p is a parameter. For simplicity, assume that n = pw, where w is an integer
that denotes the “width” between the points. The histogram of D (with width w) is the
function H : [p]→ N where

H(i) = |{ t ∈ [m] : (i− 1)w < D(t) ≤ iw }|. (1)

The fraction of requests that are hits with a cache of size xw is
∑x
i=1 H(i)/m. The hit rate

curve at the desired p uniformly-spaced points is

C(xw) =
x∑
i=1

H(i)/m ∀x ∈ [p].
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1.5 Statement of results
Our main algorithmic result is:

I Theorem 1. There is an algorithm, parameterized by p and ε, that performs a single pass
over the input B ∈ [n]m and produces an approximate hit rate curve Ĉ satisfying

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1], (2)

where C is the true hit rate curve for B. The algorithm uses O
(
p2 log(n) log2(m)/ε2

)
bits of

space.

The accuracy guarantee of (2) is unusual in that it involves approximation in the domain
(horizontal error) and in the range (vertical error) of the function. The following theorem
shows that both horizontal and vertical error are necessary: as ε→ n−1/2 or w → n1/2, we
have s→ Ω(n).

I Theorem 2. Suppose there is an algorithm A that uses s bits of space and outputs a
function Ĉ satisfying

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1] (3)

where n = pw, p ≥ 3 and ε ≤ 1/5. Then s ≥ Ω(min
{
p2 + 1/ε2 + log(n), n

}
).

In particular, this result shows that other authors’ claims of using “constant space” [28]
cannot hold in a worst-case sense. As mentioned earlier, our use of additive vertical error
in (2) is necessary. We show in Appendix C that any algorithm with multiplicative vertical
error must use linear space.

2 Deterministic Algorithms for Hit Rate Curves

It is obvious from the definitions that the hit rate curve C can be computed exactly in
polynomial time. It is not hard to see that it can be computed in O(m logn) time and O(n)
space using a balanced tree [5, 22, 1]. In this paper we are interested in approximations to C;
in particular, we are only concerned with its value at p uniformly-spaced points. We begin
with Algorithm 1 which computes those values. This algorithm can also be implemented in
O(m logn) time and O(n) space.

Algorithm 1: Algorithm for computing the hit rate curve at p = n/w uniformly-spaced
points.

1 Input: A sequence of requests (b1, . . . , bm) ∈ [n]m
2 Initialize the vector H ∈ Np with zeros
3 for t = 1, . . . ,m do
4 If D(t) is finite then increment H[dD(t)/we] by 1
5 B H[i] satisfies condition (1).
6 Output the hit rate curve values C(xw) =

∑x
i=1 H[i]/m for x ∈ [p].

This paper considers streaming algorithms that access the request sequence B in a single
pass. Such algorithms will not be able to compute the function D from scratch, and must
update H using a compact data structure that represents D. We define an abstract data
type called a suffix-structure to encapsulate that compact representation. A suffix-structure
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supports two operations, Register(t, b), which records that block b was requested at time t,
and GetSuffixF0(t), which estimates the number of distinct blocks requested since time t.
A trivial and inefficient implementation of a suffix-structure is shown in Algorithm 2.

Algorithm 2: A trivial suffix-structure.
1 c← 0
2 Function Register(t, bt):
3 B Assert t = c+ 1
4 A[t]← bt
5 c← t

6 Function GetSuffixF0(t):
7 B Assert t ≤ c
8 Return |{A[t], A[t+ 1], . . . , A[c]}|

Next we present Algorithm 3, our algorithm that uses a suffix-structure to approximate
hit rate curves. All algorithms in this paper for computing hit rate curves are simply
instantiations of Algorithm 3 that use different suffix-structures.

Algorithm 3: An algorithm for approximating the hit rate curve at p uniformly-spaced
points, given an implementation S of a suffix-structure.

1 Input: A sequence of requests (b1, . . . , bm) ∈ [n]m
2 Initialize the vector H ∈ Np with zeros
3 B For convenience, let τi denote (i− 1)w + 1
4 for t = 1, . . . ,m do
5 B Receive request bt
6 S.Register(t, bt)
7 Let c← dt/we
8 for i = 1, . . . , c do
9 Let Xi(t+ 1)← S.GetSuffixF0(τi)

10 for i = 1, . . . , c− 1 do
11 Increment H[dXi(t)/we] by

(
Xi+1(t+1)−Xi+1(t)

)
−
(
Xi(t+1)−Xi(t)

)
12 Increment H[dXc(t)/we] by 1−

(
Xc(t+1)−Xc(t)

)
13 Output the hit rate curve approximation given by C(xw) =

∑x
i=1 H[i]/m for x ∈ [p].

Consider executing Algorithm 3 using a trivial suffix-structure. We now show that its
output differs from that of Algorithm 1 only by the presence of horizontal error.

I Lemma 3. Let C be the hit rate curve computed by Algorithm 1. Let Ĉ be the hit rate
curve computed by Algorithm 3 using a trivial suffix-structure. Then

C
(
(x− 1)w

)
≤ Ĉ(xw) ≤ C(xw) ∀x ∈ [p].

Proof Sketch. First of all, note that line 9 in Algorithm 3 satisfies

Xi(t) = |B(τi, t)| ∀i, t. (4)

So Xi(t + 1) −Xi(t) is 1 if bt 6∈ B(τi, t) and otherwise zero. From this one can infer that
the increment of line 11 is 1 precisely when the previous request for bt occured at a time in
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[τi, τi+1); otherwise the increment is zero. It follows that the update to H in Algorithm 3 is
very similar to the update in Algorithm 1. J

A formal proof appears in Appendix A.

3 Suffix-structures using black-box F0-estimators

In this section we design an improved suffix-structure using ideas from streaming algorithms.
The main idea is to use F0-estimators, which are probabilistic data structures supporting two
operations. The Insert operation takes a value x ∈ [n] and the Query operation reports a
value v satisfying

|S| ≤ v ≤ (1 + α)|S|, (5)

where S is the set of elements that were inserted so far.
The improved suffix-structure, shown in Algorithm 4, periodically creates F0-estimators,

and inserts each new block into all existing F0-estimators. Note that it only creates a new
F0-estimator at the times τi = (i− 1)w + 1 for i ≥ 1, because Algorithm 3 only ever calls
GetSuffixF0(τi) for some i.

Algorithm 4: An approximate suffix-structure, implemented using F0-estimators.
1 c← 1
2 Function Register(t, bt):
3 c← dt/we
4 if t ≡ 1 (mod w) then
5 Create the new F0-estimator K[c]
6 for i = 1, . . . , c do
7 K[i].Insert(bt)

8 Function GetSuffixF0(t):
9 Return K[dt/we].Query()

We consider only F0-estimators which satisfy the following simple properties.
Consistency: Two consecutive calls to Query (without any intervening insertions) return
the same value.
Idempotency: Reinserting an item that was previous inserted does not change the value
of Query.
Monotonicity: The values returned by Query do not decrease as more elements are
inserted.

There exist F0-estimators, e.g. [17], that satisfy these properties, for which (5) holds with
high probability for poly(m) queries, and which use s := poly(1/α, log(nm)) bits of space.
We do not discuss the exact space usage here as our algorithm of Section 4 will achieve even
better space usage.

We now analyze Algorithm 3 when executed with the approximate suffix-structure of
Algorithm 4. Our aim is to show that its output is a good approximation to the true hit rate
curve. We will use F0-estimators with accuracy parameter α = εw/2n = ε/2p.

APPROX/RANDOM’15
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3.1 Accuracy
The following theorem compares the outputs of Algorithm 3 when executed with a trivial
suffix-structure or an approximate suffix-structure.

I Theorem 4. Let C be the hit rate curve produced by Algorithm 3 using a trivial suffix-
structure. Let Ĉ be the hit rate curve produced using an approximate suffix-structure. Then

C
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C(xw) + ε ∀x ∈ [p+ 1]. (6)

I Corollary 5. Let C∗ denote the true hit rate curve. Let Ĉ refer to the hit rate curve
produced from Algorithm 3 using an approximate suffix-structure, with 2p points instead of p.
(That is, with w′ = w/2 instead of w). Then C∗ and Ĉ satisfy

C∗
(
(x− 1)w

)
− ε ≤ Ĉ(xw) ≤ C∗(xw) + ε ∀x ∈ [p+ 1].

This is the condition guaranteed by Theorem 1.

Proof. Combining (6), Lemma 3 and the definition of α yields

C∗
(
(x− 2)w′

)
− ε ≤ Ĉ(xw′) ≤ C∗(xw′) + ε ∀x ∈ [2p+ 1].

Substituting w/2 for w′ completes the proof. J

3.2 Space usage
After calling S.Register(t, bt) m times, the approximate suffix-structure will have created
dm/we F0-estimators, each of which uses s bits of space, so the total space usage is O(ms/w)
bits. This does not quite meet our goal of poly(p, 1/ε, log(nm)) bits. The algorithm can be
improved to use only O(ps/ε) bits (while still using the F0-estimators as a black box) but we
do not discuss that improvement here, as the algorithm of Section 4 achieves even better
space usage. Details of this improvement may be found in [11].

Proof of Theorem 4. Let H and Xi refer to the quantities using the trivial suffix-structure,
and let Ĥ and X̂i refer to the corresponding quantities using the approximate suffix-structure.
We require the following proposition, which is proven in Appendix B.

I Proposition 6. For any times a ≤ b and any index i, we have Xi(a) − Xi+1(a) ≥
Xi(b)−Xi+1(b).

The histogram H and the hit rate curve C are obtained by summing contributions from
each consecutive pair of cardinality values Xi and Xi+1. The same is true of Ĥ and Ĉ, using
instead the pair X̂i and X̂i+1. So, to prove (6), we will show that the contribution from the
pair X̂i and X̂i+1 to Ĉ approximately equals the contribution from the pair Xi and Xi+1 to
C.

3.3 Contribution to C

Fix any x ∈ [p] and recall that C(xw) =
∑x
j=1 H[j]/m. By considering lines 11 and 12

of Algorithm 3 we see that the pair Xi and Xi+1 can only contribute to C(xw) while
dXi(t)/we ≤ x. So, let Ti be the first time t at which dXi(t)/we > x, i.e.,

Ti = min { t : Xi(t) > xw } .
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At all times t ≥ Ti, the pair Xi and Xi+1 do not contribute to C(x). The contribution to
m · C(xw) from the pair Xi and Xi+1 is{

Xi+1(t+ 1)−Xi+1(t)−Xi(t+ 1) +Xi(t) (for t ∈ {τi+1, . . . , Ti − 1})
1−Xi(t+ 1) +Xi(t) (for t ∈ {τi, . . . , τi+1 − 1}).

Summing up, the total contribution is∑
τi≤t<τi+1−1

(
1−Xi(t+ 1) +Xi(t)

)
+

∑
τi+1≤t<Ti

(
Xi+1(t+1)−Xi+1(t)−Xi(t+1) +Xi(t)

)
= w −Xi(τi+1) +Xi(τi) +Xi(τi+1)−Xi+1(τi+1) +Xi+1(Ti)−Xi(Ti)
= w +Xi+1(Ti)−Xi(Ti). (7)

3.4 Contribution to Ĉ

Similarly, let T̂i = min{ t : X̂i(t) > xw }. Then at all times t ≥ T̂i, the pair X̂i and X̂i+1 do
not contribute to Ĉ(x). (This assertion uses the Monotonicity property.) Summing up as
before, the total contribution of the pair X̂i and X̂i+1 to m · Ĉ(xw) is

w + X̂i+1(T̂i)− X̂i(T̂i). (8)

3.4.1 Upper bound on contribution to Ĉ(xw)
The difference between the contribution of X̂i and X̂i+1 to m · Ĉ(xw) and the contribution
of Xi and Xi+1 to m · C(xw) is the difference between (8) and (7), namely

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti) +Xi(Ti). (9)

We now upper bound this quantity. First note that T̂i ≤ Ti, by (5). Then Proposition 6
shows that (9) is at most

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i) +Xi(T̂i)

≤ αXi+1(T̂i) (by (5))

≤ αXi(T̂i) (by definition of Xi and Xi+1)

≤ α(xw + 1) (since T̂i ≤ Ti and by definition of Ti). (10)

3.4.2 Lower bound on contribution to Ĉ(xw)
For the lower bound, we must consider the contribution of Xi and Xi+1 to C((x−1)w). Define
T ′i = min { t : Xi(t) > (x− 1)w } . Arguing as before, we get that the total contribution of
this pair to m · C((x− 1)w) is

w +Xi+1(T ′i )−Xi(T ′i ). (11)

The difference between (8) and (11) is

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T ′i ) +Xi(T ′i ). (12)

APPROX/RANDOM’15
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We now claim that T ′i < T̂i. By definition of T ′i , we have Xi(T ′i ) = (x − 1)w + 1. By
definition of α, we have αn = εw < w. So, by (5),

X̂i(T ′i ) ≤ (1 + α)Xi(T ′i ) ≤ (1 + α)
(
(x− 1)w + 1

)
≤ (x− 1)w + 1 + αn < xw + 1 ≤ X̂i(T̂i).

By the Monotonicity property, the claim is proven. So we may use Proposition 6 to show
that (12) is at least

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i) +Xi(T̂i)

≥ −αXi(T̂i) (by (5))

≥ −α(xw + 1) (since T̂i ≤ Ti and by definition of Ti). (13)

3.5 Proof of (6)
We now combine our previous observations to establish (6). Recall that c = dm/we is the
total number of F0-estimators. Summing (10) over all i, we obtain that

mĈ(xw) ≤ mC(xw) + αc(xw + 1) ≤ mC(xw) + 2αmx.

This proves the second inequality of (6). The first inequality of (6) follows analogously from
(13). J

4 Suffix-structures using a timestamped F0-estimator

As mentioned in Section 1, the idea of sliding window estimators [9] is very relevant for
estimating properties of the suffixes of a stream. One of the main ideas is to modify known
streaming estimators by incorporating timestamps. By restricting the estimator’s data
structure to entries with sufficiently large timestamps, one can construct an estimator for the
desired suffix of the stream. Let us now discuss that idea for the special case of F0-estimators
[9, §7.5].

Many F0-estimators rely on a {0, 1}-matrixM that is continously updated while processing
the stream [2, 14, 3, 17]. Each item b in the stream is hashed to a binary string σ, and then
M is updated based on lsb(σ), the number of trailing zeros in σ. We will call such a matrix
M a bitmatrix.

The simplest F0-estimator [2] uses a single hash function h, and the matrix M has a
single column. At any point during stream processing, Mj is set to 1 if a block b was
observed with lsb(h(b)) ≥ j. After the stream is processed, the algorithm outputs 2j∗ , where
j∗ is the greatest index of a non-zero row. This gives only a O(1) approximation. Other
algorithms refine this estimate by using additional columns and another hash function g,
which determines which column to update. The estimate could be, for example, a function of
the average of the lowest non-zero value in each column [12, 14], or the number of non-zero
elements below a certain row (Algorithm 3 in [3]). All of these algorithms can boost their
success probability by taking medians of independent, parallel instantiations.

Suppose that Algorithm 4 uses an F0-estimator of this type, and that all instantiations
of that estimator use the same hash functions h and g. Let M j denote the bitmatrix
corresponding to the jth F0-estimator. For any j ≤ j′, M j has undergone all of the updates
that M j′ has, so it follows that M j ≥M j′ in an entrywise sense. This observation leads to
following idea: instead of storing the bitmatrices for each estimator separately, we can store
a single unified matrix from which all bitmatrices can be computed.
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Algorithm 5: An implementation of a suffix-structure based on a timestamped F0-
estimator. We consider a F0-estimator that is based on a bitmatrix as described above.
The algorithm A specifies how the bitmatrix is updated on an Insert operation, and
how to produce the estimate for the Query operation. The set Q has many independent
copies of the hash functions and the resulting table. We need only |Q| = O(log(1/δ))
with δ = m−3.

Data: A collection Q of pairs (Q,H), where Q is a matrix, H is a set of hash functions
An algorithm A for estimating F0 from a bitmatrix

1 c← 1
2 Function Register(t, bt):
3 c← dt/we
4 for (Q,H) ∈ Q do
5 Update Q using bt according to A

6 Function GetSuffixF0(t’):
7 for Q ∈ Q do
8 Let r = dt′/we

9 Define the bitmatrix Mr by Mr
i,j =

{
1 if Qi,j − r ≥ 0
0 otherwise

10 Feed Mr into algorithm A to obtain estimate RQ
11 Return the median of estimates RQ

4.1 Analysis
In order to analyze Algorithm 5, we must specify A, a concrete F0-estimator. We will use
Algorithm 2 from the paper of Bar-Yossef et al. [3].1 In this algorithm, each matrix Q has
log(n) rows, and k = O(1/α2) columns. Each collection H consists of k t-wise independent
hash functions, where t is O

(
log(1/α)

)
. To update Q, for j ∈ [k], we set Qi,j = c if

lsb(hj(bt)) ≥ i. Given the bitmatrix M , the F0-estimator can produce its estimate.

I Proposition 7. The space used by Algorithm 5 is O
(
p2 log(n) log(m) log(1/δ)/ε2

)
bits.

Proof. Each Q has O(1/α2) columns, logn rows, and each cell requires logm bits space.
Thus Q requires O

(
log(n) log(m)/α2) bits of space. Each collection H requires only

O
(

log2(1/α) logn
)
bits of space, which is negligible. We have log(1/δ) such pairs (Q,H).

Thus the total space requirement is O
(
α−2 log(n) log(m) log(1/δ)

)
. Substituting α = ε/p

completes the proof. J

I Theorem 8. Algorithm 3 using Algorithm 5 as its suffix-structure satisfies (2).

Proof. Let Xi(t) be the result of GetSuffixF0(τi) at time t, which is an estimate of
|B(τi, t)|. It suffices to show that Xi(t) ∈ [1, 1 + α] · |B(τi, t)| with high probability, in which
case the argument of Theorem 1 applies.

1 It is natural to wonder why we do not use the optimal algorithm of Kane et al. [17]. The reason is
that the Kane et al. algorithm is an enhancement of the Bar-Yossef et al. algorithm that manages to
save some additional space. In contrast, our algorithm will consume extra space by adding timestamps,
which ruins the space-saving enhancements of Kane et al.
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For any i, t, by taking the median of log(1/δ) estimates of A, we have Pr[|Xi(t) −
|B(τi, t)|| > α|B(τi, t)|] ≤ δ. At time t, the algorithm computes estimates for t/w F0-
estimators, and thus O(m2) estimates are taken in total. By a union bound, the probability
that any estimate is poor is ≤ δm2. J

Combining Proposition 7 and Theorem 8 and taking δ = 1/m3 proves Theorem 1.

5 Discussion

In this paper we have presented the first single-pass, sublinear space algorithm with provable
guarantees for estimating hit rate curves for the LRU caching policy. The space usage is
O(p2 log(n) log2(m)/ε2) bits. This space usage is not far from optimal, due to our Ω(p2 +
ε−2 + log(n)) lower bound. A practical implementation of this algorithm has been deployed
in an enterprise storage system [29].

As this is the first theoretical paper on hit rate curve computation, it suggests several
directions for further algorithmic research.

It would be nice to improve either our upper bound or lower bound on the space usage.
Our suspicion is that the lower bounds can be improved.
In practice the runtime of our algorithm is very good [29], but we have not studied
the runtime from a theoretical perspective. In particular, optimizing the runtime of
Algorithm 5 seems quite interesting.
Instead of approximating the hit rate curve at p uniformly-space points, it is natural to
wonder whether the p points can be adaptively chosen during the algorithm.
It would be interesting to extend our techniques beyond just the LRU caching policy. The
algorithm of Mattson et al. [19] works for all policies that satisfy the inclusion property –
is there a single-pass streaming algorithm for all such policies?
A key operation in our algorithm is to take the difference of F0-estimators. (In fact,
we estimate |A \ B| where B ⊆ A.) There are F0-estimators that have been explicitly
designed for this purpose, e.g., [15]. It would be interesting to study whether such
specialized F0-estimators can improve our algorithm, either theoretically or practically.

Acknowledgements. We thank David Woodruff for a helpful discussion about distinct
element estimators. We thank Andrew McGregor and the anonymous reviewers for helpful
comments.
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A Proofs from Section 2

Proof. ]Proof of Lemma 3] Let H and Ĥ respectively denote the histograms computed by
Algorithms 1 and 3. Note that bt 6∈ B(t′, t) for t′ > R(t) but bt ∈ B(t′, t) for t′ ≤ R(t).
Because of (4), we have

Xi(t+1)−Xi(t) =
{

1 (if R(t) < τi ≤ t)
0 (if 1 ≤ τi ≤ R(t))

.

It follows that the increment in line 11 equals 1 if τi ≤ R(t) < τi+1 and otherwise it equals
zero. Similarly, the increment in line 12 equals 1 if τc ≤ R(t). At most one of these conditions
can hold, so for each value of t, Algorithm 3 increments at most one entry of Ĥ. Specifically,
if R(t) is finite then the algorithm increments Ĥ[dXi∗(t)/we] where i∗ = dR(t)/we.

When R(t) is finite, we have τi∗ < R(t) ≤ τi∗+1. Since Xi∗(t) = |B(τi∗ , t)| and D(t) =
|B(R(t), t)|, we derive Xi∗+1(t) ≤ D(t) ≤ Xi∗(t). However,

Xi∗(t)−Xi∗+1(t) = |B(τi∗ , t)| − |B(τi∗+1, t)| = |B(τi∗ , t) \B(τi∗+1, t)|
≤ |B(τi∗ , τi∗+1)| ≤ w.

So ⌈
Xi∗(t)
w

⌉
− 1 ≤

⌈
D(t)
w

⌉
≤
⌈
Xi∗(t)
w

⌉
.

Algorithm 1 increments H[dD(t)/we], whereas Algorithm 3 increments Ĥ[dXi∗(t)/we]. So
x∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ(xw)

≤
x∑
i=1

H[i]︸ ︷︷ ︸
C(xw)

≤
x+1∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ
(

(x+1)w
)
.

Rearranging this yields the desired inequality. J

B Proofs from Section 3

Proposition 6. For any times a ≤ b and any index i, we have Xi(a) − Xi+1(a) ≥
Xi(b)−Xi+1(b).
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Proof. Recall that Xi(t) = |B(τi, t)|. As τi < τi+1, we get Xi(t)−Xi+1(t) = |B(τi, τi+1) \
B(τi+1, t)|. Thus

Xi(a)−Xi+1(a)− (Xi(b)−Xi+1(b))
= |B(τi, τi+1) \B(τi+1, a)| − |B(τi, τi+1) \B(τi+1, b)|
≥ 0,

as B(τi+1, a) ⊂ B(τi+1, b). J

C Lower Bounds

In this section we prove lower bounds on the space needed by one-pass algorithms to compute
approximate hit rate curves. As is typical with streaming algorithms, our lower bounds are
based on communication complexity [18].

C.1 Lower Bounds for Hit Rate Curve Estimation
Our lower bounds are based on reductions from the Gap Hamming Distance (GHD) problem.
In GHDq,t,g, Alice and Bob are respectively given vectors x, y ∈ {0, 1}q. They are required
to determine whether the Hamming distance between x and y, denoted d(x, y), is less than
t− g or greater than t+ g, outputting 0 or 1, respectively. The following optimal lower bound
for GHD is known.

I Theorem 9 (Chakrabarti-Regev [8]). Any protocol that solves GHDq,q/2,g with probability
≥ 2/3 communicates Ω(min{q, q2/g2}) bits.

Proof of Theorem 2. Let c = 10 and q = n/(c + 2). Consider an instance of GHDq,q/2,g,
where g will be specified later. Alice has x ∈ {0, 1}q and Bob has y ∈ {0, 1}q. Let us say
that GHD(x, y) = 0 if d(x, y) < q/2− g, and GHD(x, y) = 1 if d(x, y) > q/2 + g.

Alice and Bob produce an input stream to the algorithm A as follows. Each stream
element is a member of [n]. The elements in [cq] ⊂ [n] are called “type-1”, and those in
[n] \ [cq] are called “type-2”. Alice first provides to A the type-1 elements, then certain type-2
elements. Specifically, she provides the sequence (1, 2, . . . , cq), then provides cq + j if xj = 1
and (c + 1)q + j if xj = 0, for j ∈ [q]. She then communicates A’s state to Bob, which
requires s bits of communication. Bob first provides to A certain type-2 elements, then the
type-1 elements. Specifically, he provides cq + j if yj = 0 and (c + 1)q + j if yj = 1, then
provides the sequence (1, 2, . . . , cq). The total length of the stream provided to A is exactly
m = 2(c+ 1)q.

Observation 1: The number of type-2 elements that occur in the stream is exactly 2q. The
number that occur twice is exactly d(x, y). Hence, the number of distinct type-2 elements
that occur in the stream is exactly 2q − d(x, y).

Observation 2: Every type-1 element appears exactly twice in the stream. The number
of distinct elements that occur between those two occurrences is exactly cq + 2q − d(x, y).
Depending on whether GHD(x, y) is 0 or 1, we have

If GHD(x, y) = 0: cq + 2q − d(x, y) > (c+ 3/2)q + g =: H

If GHD(x, y) = 1: cq + 2q − d(x, y) < (c+ 3/2)q − g =: L

The only other requests that possibly contribute to C are Bob’s type-2 elements, of which
there are only q. (Alice’s inputs contribute nothing to C.)
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Case 1: w ≤ εn. Equivalently, p ≥ 1/ε. In this case we take g = w. Let β = (c+ 3/2)q/w.
Then

L = (β − 1)w and βw < H. (14)

Suppose that Ĉ satisfies (3). If GHD(x, y) = 1 then

Ĉ(βw) ≥ C
(
(β − 1)w

)
− ε (by (3))

= C(L)− ε (by (14))

≥ cq

m
− ε (by Observation 2)

≥ c

2(c+ 1) −
1
5 >

1
4 (c ≥ 10 and ε ≤ 1/5).

On the other hand, if GHD(x, y) = 0 then

Ĉ(βw) ≤ C(βw) + ε (by (3))
≤ C(H) + ε (by (14))

≤ q

m
+ ε (by Observation 2)

≤ 1
2(c+ 1) + 1

5 <
1
4 (c ≥ 10 and ε ≤ 1/5).

Therefore Alice and Bob can distinguish whether GHD(x, y) is 0 or 1. The number of bits of
space necessary is Ω(min

{
q, q2/g2}) = Ω(min

{
n, p2}).

Case 2: w > εn. Equivalently, 1/ε > p. In this case we take g = 22εq. Set β =
1 + dp/(c+ 2)e. Then

(β − 1)w ≥ p

c+ 2w = q

βw < (2 + p
c+2 )w = ( 2

p + 1
c+2 )n ≤ ( 2

3 + 1
c+2 )n < c

c+2n = cq.

By observation 2, the type-1 elements do not contribute to C(cq). So consider any type-
2 element. If it appears twice, then the number of distinct elements between those two
appearances is at most q. By observation 1, the number of type-2 elements that appear twice
is exactly d(x, y). It follows that C(cq) = C(q) = d(x, y)/m. So, if Ĉ satisfies (3), we have

d(x, y)
m

− ε ≤ C(q)− ε ≤ Ĉ(βw) ≤ C(cq) + ε = d(x, y)
m

+ ε.

Thus
|m · Ĉ(βw)− d(x, y)| ≤ mε = 2(c+ 1)qε < g.

It follows that Alice and Bob can distinguish whether GHD(x, y) is 0 or 1. The number of
bits of space necessary is Ω(min

{
q, q2/g2}) = Ω(min

{
n, 1/ε2

}
).

The lower bound of Ω(logn) is left as an easy exercise. J

C.2 Impossibility of Multiplicative Error

Lastly, we show that any algorithm with multiplicative vertical error must use linear space,
even if it also has additive horizontal error.
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I Theorem 10. Let n = pw where w ≥ 1 is arbitrary. Let ε ∈ [0, 1) be arbitrary. Suppose
there is a single-pass algorithm A that uses s bits of space and outputs a function Ĉ satisfying

(1− ε) · C
(
(i− 1)w

)
≤ Ĉ(iw) ≤ (1 + ε) · C(iw) ∀i ∈ [p+ 1]. (15)

Then s = Ω(n).

Proof. The disjointness problem DISJ : {0, 1}n×{0, 1}n → {0, 1} is defined to be DISJ(x, y) =∏
i(1 − xiyi). Razborov’s lower bound [23, 18] implies that, even under the promise that∑
i xi =

∑
i yi = (n+ 1)/4 and

∑
i xiyi ∈ {0, 1}, any randomized communication protocol

that can decide DISJ must use Ω(n) bits of communication.

C.2.1 Reduction
Alice and Bob produce an input stream to the algorithm A as follows. Each stream element
is a member of [n]. Alice provides to A the set { i ∈ [n] : xi = 1 } in any order. She
then communicates A’s state to Bob, which requires s bits. Bob provides to A the set
{ i ∈ [n] : yi = 1 } in any order. The total length of the stream provided to A is exactly
m = (n+ 1)/2.

If DISJ(x, y) = 1 then every stream element is distinct, so C(n) = 0. On the other
hand, if DISJ(x, y) = 0 then the promise ensures that C(n) = 1/m. Let us apply (15) with
i = p + 1, and recall from the definition of C that C(pw) = C

(
(p + 1)w

)
. It follows that

Alice and Bob can decide DISJ(x, y), so Razborov’s result implies that s = Ω(n). J
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