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Abstract
We consider two fundamental problems in stochastic optimization: approximation algorithms for
stochastic matching, and sampling bounds in the black-box model. For the former, we improve
the current-best bound of 3.709 due to Adamczyk, Grandoni, and Mukherjee [1], to 3.224; we also
present improvements on Bansal, Gupta, Li, Mestre, Nagarajan, and Rudra [2] for hypergraph
matching and for relaxed versions of the problem. In the context of stochastic optimization, we
improve upon the sampling bounds of Charikar, Chekuri, and Pál [3].
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1 Introduction

Stochastic optimization deals with problems where there is uncertainty inherent in the input
[14]; this classical sub-area of optimization has received much attention in computer science
over the last decade, especially from the viewpoints of approximation algorithms and of
(efficiently) handling various models for the input (see, e.g., [3, 5, 10, 11, 12, 13, 15, 16]).
We make progress on two basic problems in this regard. First, matching is well-known to
be a bedrock of combinatorial optimization – a problem that has also played a key role in
the advancement of new algorithmic paradigms including parallel algorithms, randomized
algorithms, and, more recently, online algorithms in sponsored-search advertising. However,
we do not yet have a full algorithmic understanding even for various basic stochastic versions
of the problem. We advance this goal by improving upon the bounds of [2] and [1] for the
matching problem in graphs and in uniform hypergraphs. Second, a fundamental model in
this field is the black-box model: we assume that the input-distribution is represented by a
black box, from which we can sample inputs independently any number of times (in addition
to other assumptions on the input’s structure). Thus, a key question is the number of samples
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needed to solve various stochastic-optimization problems in this model, as a function of, e.g.,
the desired accuracy ε and the confidence (probability of successfully estimating to within ε).

Informally, the basic stochastic-matching problem is as follows [2, 4]. We are given a
graph G = (V,E) with a weight we ≥ 0 and a probability pe ∈ [0, 1] for each edge e; each
vertex v also has a positive integral “patience” tv. Our goal is to construct a matching
of maximum weight; however, there are a few catches. First, the edges are only present
probabilistically: each edge e is present independently with probability pe, and the presence
(or lack thereof) of any edge e can only be ascertained by probing for it – adaptively, in
any order we choose. However, if we choose to probe e = (u, v) and find that it is present,
we are forced to add it to our matching: in particular, all edges incident on e are removed
immediately if e is found to be present. Furthermore, the edges incident upon any vertex
v can only be probed for up to tv times; i.e., we cannot exceed the hard constraint of the
patience of any vertex. Under these constraints, the goal is to find a matching of maximum
expected weight, where the expectation is taken both over the stochastic existence of the
edges, and over any internal randomization of our algorithm. Intriguingly, it is not yet known
if this problem is NP -hard. The state of the art in terms of approximation is mainly from the
work of [2], who present a 3–approximation for bipartite graphs, and a 4–approximation for
general graphs. Recently, these bounds have been improved to 2.845 and 3.709 for bipartite
and general graphs respectively [1]. We present the following two improvements for the
general graphs, with Theorem 2 being a bicriteria result that allows the patience constraints
to be violated by at most 1:

I Theorem 1. There is a 3.224–approximation algorithm for the weighted stochastic matching
problem on a general graph.

I Theorem 2. There is a 2.675–approximation algorithm for the weighted stochastic matching
problem on a general graph if patience constraints are allowed to be violated by 1.

In essence, the LP-based approach of [2] uses a dependent-rounding algorithm of [7]
to first guarantee that the patience constraints are satisfied with probability one within
the context of their randomized algorithm; the probing is done on top of this setup. In
contrast, we randomly permute the edges and then probe them in this order, with probing
probabilities suggested by the LP – of course, not probing infeasible edges in the process.
An edge is infeasible if a neighboring edge has already been placed in the matching, or
if one of the two end-points has had its patience exhausted. While it is not too hard to
incorporate the matching constraints here, the patience constraints are far more complex
to handle well: e.g., direct use of Chernoff-type bounds will not help. We work to identify
extremal input-instances for our algorithm and combine this with rigorous computer-aided
calculations in order to conduct our analyses. Theorem 2 follows from a new attenuation
idea. The algorithms themselves are quite simple to implement; the main feature of our
work is a detailed analysis of the worst-case settings for our algorithms. All calculations and
proofs omitted from this preliminary version will appear in the full version.

Theorem 3 and Theorem 4 improve upon the (k + 1)–approximation of [2] for weighted
matching in k-uniform hypergraphs. Both of these algorithms use first to classify the
hyperedges as “small" or “large" based on the LP values, and treat each group separately.
The difference is as follows. The algorithm of Theorem 3 attenuates the small edges to boost
the performance of large edges; the algorithm of Theorem 4 uses a “weighted permutation”
of the hyperedges such that each large edge has a higher chance to fall behind a small edge.
Although Theorem 4 is asymptotically better, we present both theorems since their ideas
can be useful elsewhere. Note that the LP-based methods of [2] and ours cannot in general
do better than k − 1 + 1/k [6]; hence, we are close to optimal for LP-based approaches.
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I Theorem 3. There is a (k+ 1
2 +o(1))–approximation algorithm for the stochastic matching

problem on a k-uniform hypergraph, where the “o(1)” term is a function of k that vanishes
asymptotically.

I Theorem 4. For any given ε > 0, there is a (k+ ε+ o(1))–approximation algorithm for the
stochastic matching problem on a k-uniform hypergraph, where the “o(1)” term is a function
of k that vanishes asymptotically.

Finally, we significantly improve upon the sample complexity of [3] for stochastic optimiza-
tion in the black-box model. Since the bounds are somewhat technical, we defer discussion
of the actual parameters to Section 5: please see Theorems 13 and 14 for statements of the
state-of-the-art and of our improvement. The analysis of [3] has different worst-case settings,
but we show that the values of the parameters are very different in these different regimes.
This enables a careful analysis of how many samples the approach really needs. This black-
box model is quite general, and an improved sample complexity translates to more-efficient
implementations of the several applications of the work of [3] (see, e.g., [8, 9, 17]).

Preliminaries. We will often consider a uniformly random permutation π on a set of items
{e1, . . . , en}. We can assume that π is chosen as follows: for each item e, we pick independently
and uniformly at random a real number π(e) = ae ∈ [0, 1], and then sort these in increasing
order to obtain π. Note that we abuse notation by letting π denote both the permutation
and the reals chosen; however, this choice will be clear from the context.

We make use of the following form of the Chernoff bound:

I Definition 5 (Chernoff Bound.). Let X1, . . . , Xn be n independent random variables with
0 ≤ Xi ≤ 1. Let X = X1 + . . .+Xn and µ = E[X]. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ

)
, and

Pr[X ≤ (1− ε)µ] ≤ exp
(
−ε

2

2 µ
)

2 Stochastic Matching

We consider the following stochastic matching problem. The input is an undirected graph
G = (V,E) with a weight we and a probability value pe on each edge e ∈ E. In addition,
there is an integer value tv – the patience – for each vertex v ∈ V . Initially, each vertex
v ∈ V has patience tv. At any step in the algorithm, only an edge e(u, v) ∈ E such that
tu > 0 and tv > 0 can be probed. Upon probing such an edge e, one of the following happens:
(1) with probability pe, e exists; u and v get matched and are removed from G along with
their incident edges, or (2) with probability (1− pe), e does not exist; e is removed, and tu
and tv are reduced by 1. (All these edge-existence events are independent.) We seek to find
an adaptive strategy for probing edges; its performance is measured by the expected weight
of the matched edges. We prove Theorem 1 now.

Consider the following natural LP relaxation [2]: for any vertex v ∈ V , ∂(v) denotes the
edges incident to v. The LP variable ye denotes the probability that edge e(u, v) gets probed
in the adaptive strategy, and xe = yepe denotes the probability that e gets matched in the
strategy.
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maximize
∑
e∈E

wexe (2.1)

subject to
∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (2.2)

∑
e∈∂(v)

ye ≤ tv ∀v ∈ V (2.3)

xe = yepe ≥ 0, ye ≤ 1 ∀e ∈ E (2.4)

I Lemma 6 ([2]). The optimal value for the LP (2.1) is an upper bound on the performance
of any adaptive algorithm for stochastic matching.

We use (x, y) to denote the optimal solution to the LP in equation (2.1). For an edge
e(u, v), it is called safe at the time it is considered if: (1) neither u nor v is matched, and (2)
both of tu > 0 and tv > 0. Our algorithm, denoted by SM1, first fixes a uniformly random
permutation π on the set of edges E. It then inspects the edges one by one in the order of π.
If an edge e is safe, the algorithm probes it (independently) with probability ye, otherwise it
skips to the next one. For ease of analysis, we state our algorithm SM1 in a slightly different
but equivalent way in Algorithm 1.

Algorithm 1: SM1: Stochastic Matching
1 Choose a random permutation π on E.
2 For each edge e ∈ E, generate a random bit Ye = 1 independently with probability ye.
Let E′ be the set of edges with Ye = 1.

3 Follow the random order π to inspect edges in E′
4 If an edge e is safe, then probe it; otherwise, skip it.

To analyze the performance of our algorithm, we conduct an edge-by-edge analysis. Recall
that the LP variable xe = yepe denotes the probability that e is matched in the LP (2.1), and
the optimal value of the LP is exactly

∑
e∈E wepeye. The expected weight of the matching

found by our algorithm is E[SM1] =
∑
e∈E wepe Pr[e ∈ E′] Pr[e gets probed|e ∈ E′], which

is
∑
e∈E wepeye Pr[e gets probed|e ∈ E′] ≥

∑
e∈E wepeyeλ, assuming Pr[e gets probed|e ∈

E′] ≥ λ. This gives us a λ-approximation algorithm.
We now start to discuss how to compute the value of λ. Focus on a specific edge

e = e(u, v), let E(u) be the set of edges incident to u excluding e itself, i.e. E(u) = ∂(u)\{e}.
Conditioning on π(e) = x with 0 < x < 1 and Ye = 1, let Pu be the probability that e is not
blocked by any of edges in E(u) in the algorithm SM1. Here we say e is blocked by some edge
f in E(u) if f gets matched or patience constraint on u gets tight resulting from probing
f (tu = 0). We assume without loss of generality that |E(u)| ≥ tu, otherwise the patience
constraint for node u will be redundant.

A little thought gives us the following lower bound on Pu:

Pu ≥ Pu =
∑

S⊆E(u),|S|≤tu−1

x|S|
∏
f∈S

yf (1− pf )
∏
f /∈S

(1− xyf ) (2.5)

To see why this is true, let Y ′f (for any f ∈ E(u)) be the indicator random variable that
is 1 iff f gets matched when probed, i.e., Pr[Y ′f = 1] = pf . For each S ⊆ E(u), such that
|S| ≤ tu − 1, we associate an event ES that says: “(1) each edge f ∈ S falls before e in π
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with Yf = 1 and Y ′f = 0; and (2) each edge f /∈ S either falls after e in π or Yf = 0". We can
see that each ES is a sufficient condition for e being not blocked by any edge of S. Thus Pu
should be at least the probability that one or more of ES happen, which is exactly Pu.

In the following paragraphs, we carefully investigate the configuration of edges that
minimizes the value of Pu. We denote such adversarial configurations as the worst-case
structure (WS) of E(u). For each of these configurations, we have the constraints: (i)∑
f∈E(u) yfpf ≤ 1, (ii)

∑
f∈E(u) yf ≤ tu and (iii) 0 ≤ yf ≤ 1 for each f ∈ E(u). Here we

view x as a (given) parameter.

I Lemma 7. In WS, there will be at most one edge with pf = 1 and at most one edge with
0 < pf < 1. All other edges must have pf = 0.

Proof. We prove by contradiction. Assume there are two edges, say p1 = p2 = 1 in WS.
Then y1 + y2 ≤ 1 since

∑
i yipi ≤ 1. We perturb the current configuration as follows: merge

the two edges into a single edge e3 where y3 = y1 + y2 and p3 = 1. Notice that after this
perturbation, both of the values

∑
f∈E(u) yfpf and

∑
f∈E(u) yf remain unchanged. Thus

both of matching and patience constraints are maintained at u, and our perturbation gives a
feasible configuration.

The change brought by this perturbation to the value Pu is as follows: for each non-zero
term in Pu associated with some S ⊆ E(u) where e1 /∈ S, e2 /∈ S, the term (1− xy1)(1− xy2)
will be replaced with (1− x(y1 + y2)), which results in a strictly lower value of Pu. This is a
contradiction.

Now assume there are two edges a, b with 0 < pa, pb < 1 in WS. Consider the following
perturbation: for some small ε 6= 0, set p′a = pa + ε/ya and p′b = pb − ε/yb. After this
perturbation, both of

∑
f∈E(u) yfpf and

∑
f∈E(u) yf remains unchanged and the perturbed

configuration is still feasible.
Let f(ε) be the value of Pu after this update. In the expression of Pu, the terms

contributing to ε2 must be those associated with S where a, b ∈ S. Notice that

(1− p′a)(1− p′b) = (1− pa − ε/ya)(1− pb + ε/yb)

has a negative coefficient of ε2, implying that the second derivative f ′′ < 0. Therefore we
can always find a non-zero value of ε to make Pu strictly smaller. Again a contradiction. J

Let E1(u) and E0(u) be the set of edges in WS which have pf = 1 and pf = 0 respectively.
Let (ya, pa) be the potential edge taking a floating 0 < pa < 1 value. Lemma 7 tells us E1(u)
contains at most one edge in WS. Let A =

∑
f∈E1(u) yf .

Based on Lemma 7, we can update the expression of Pu as

Pu = (1− xA)(1− xya) Pr[Zu ≤ tu − 1] + (1− xA)xya(1− pa) Pr[Zu ≤ tu − 2] (2.6)

where Zu =
∑
f∈E0(u) Zf and {Zf |f ∈ E0(u)} are independent Bernoulli random variables

with Pr[Zf = 1] = xyf ,∀f ∈ E0(u). Here are two useful lemmas; the proofs will appear in
the full version.

I Lemma 8. In WS, pa = 0.

From Lemma 8, we can claim that there is no edge f that takes fractional pf value. Thus
we can further simplify the expression of Pu in equation (2.6) as

Pu = (1− xA) Pr[Zu ≤ tu − 1] (2.7)

I Lemma 9. In WS, A = 1 and Zu follows Poisson distribution with mean x(tu − 1).
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At this point, we have all the essentials to prove Theorem 1.

Proof. We have Pr[e gets probed |Ye = 1] =
∫ 1

0 PuPvdx ≥
∫ 1

0 PuPvdx, i.e., at least

H(tu, tv)
.=
∫ 1

0
(1− x)2 Pr[Zu ≤ tu − 1] Pr[Zv ≤ tv − 1]dx,

where Zu and Zv follow Poisson distributions with means E[Zu] = x(tu − 1) and E[Zv] =
x(tv − 1) respectively. The rest of the analysis splits into the following three cases.

We can numerically verify that H(tu, tv) achieves its minimum value of 0.31016 = 1/3.224
at tu = tv = 2 when 1 ≤ tu, tv ≤ 20.
For tu, tv ≥ 20, by applying the Chernoff bound, we get

H(tu, tv) ≥
∫ 1

0
(1− x)2

[
1− exp

(
−ε2

2 + ε
x(tu − 1)

)][
1− exp

(
−ε2

2 + ε
x(tv − 1

)]
dx,

where ε = ε(x) = 1
x − 1; by plugging in tu = tv = 20, we can verify numerically that this

integral is at least 0.316324.
Similarly, for 1 ≤ tu ≤ 20 while tv ≥ 20, we can verify numerically (by checking all
integers 1 ≤ tu ≤ 20) that with ε = 1

x − 1,

H(tu, tv) ≥
∫ 1

0
(1− x)2 Pr(Zu ≤ tu − 1)

[
1− exp

(
−ε2

2 + ε
x(20− 1)

)]
dx ≥ 0.312253.

This establishes the key claim that Pr[e gets probed |Ye = 1] ≥ 0.3106 for each e ∈ E. J

3 Stochastic Matching with Relaxed Patience

In this section, we consider the variant of the stochastic matching problem in which patience
constraints are allowed to be violated by at most 1, and prove Theorem 2. From the analysis
of Section 2, we observe that the edges with a large yepe value are probed with a much
higher probability than those with small ones. This indicates that small edges are the ones
that bottleneck the performance of our algorithm. Our high level idea here is to attenuate
such “large” edges in order to improve the performance of the small ones. The process
of attenuation carefully calculates a value he ∈ (0, 1], called as the attenuation factor, for
each e ∈ E. Instead of probing an edge e with probability ye as in algorithm SM1, our new
algorithm probes it with probability heye. We will show that such a strategy balances the
performance of large and small edges and improves the overall performance of SM1.

The overall picture of our algorithm, denoted SM2, is as follows. First we label each
edge e ∈ E as “large” if yepe > 1/2 or “small” if yepe ≤ 1/2. Similar to SM1, we follow
a random permutation π on the set of edges E to inspect each edge. If an edge e is safe
when considered, we probe it with probability heye; otherwise we skip it. Here he = h if e
is large and he = 1 otherwise, where h ≥ 1/2 is a parameter which we optimize later. For
ease of analysis, we state the algorithm SM2 in an alternate but essentially equivalent way
in Algorithm 2. In the spirit of Section 2, we conduct an edge-by-edge analysis. The full
analysis will appear in the full version.
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130 Improved Bounds in Stochastic Matching and Optimization

Algorithm 2: SM2: Stochastic Matching with relaxed patience
1 Choose a random permutation π of E.
2 For each edge e ∈ E, set he = h if yepe > 1/2, set he = 1 otherwise.
3 For each edge e ∈ E, generate a random bit Ye = 1 with probability heye. Let E′ be
the set of edges with Ye = 1.

4 Follow the random order π to inspect edges in E′
5 If an edge e is safe, probe it; otherwise, skip it.

4 Stochastic Hypergraph Matching

We now consider stochastic matching in a k-uniform hypergraph, i.e., a hypergraph where
all edges have size k. The standard LP can be obtained by naturally extending the LP in
(2.1) to the one below:

max
∑
e∈E

wexe :
∑
e∈∂(v)

xe ≤ 1,∀v ∈ V, xe = yepe ≥ 0, ye ≤ 1,∀e ∈ E (4.1)

Note that we do not consider the patience parameter at a vertex, as in Section 2. Here
∂(v) denotes the set of hyperedges incident to v.

4.1 An algorithm achieving (k + 1/2 + o(1)) approximation ratio
Let (x, y) be an optimal solution to the LP (4.1). At a high level, our algorithm proceeds
according to the outline below. Let c ≥ 1/2 be a parameter, which will be optimized at 1/2
later.

1. Divide the edges into two sets, the “small” edge set ES = {e|yepe ≤ c}, and the “large”
edge set EL = E \ ES .

2. Choose a random permutation π on ES .
3. Sample each edge e ∈ ES with probability ye, independent of other edges. Let E′S be the

set of edges sampled.
4. Follow the random order π to inspect if each small edge e ∈ E′S is safe or not. If e is safe,

probe it with probability he; otherwise, skip it. Here 0 < he ≤ 1 is a parameter to fix
later.

5. After inspecting all small edges, remove all the unsafe large edges from EL, and probe
the rest with probability 1 (in arbitrary order).

Roughly speaking, an edge e being “safe” means none of the edges in the neighborhood of
e are matched. Later, we will give a definition that is both stronger and exactly computable.
Based on the new definition, we compute an attenuation factor he for each e ∈ ES , such that
at the end of the algorithm, e is probed with probability exactly equal to ye/λ. Here, λ ≥ 1
is our target approximation ratio. All that remains is to analyze the performance of each
large edge e ∈ EL and show that e is probed with probability at least ye/λ. That gives us a
λ–approximation algorithm.

We redefine the notion of a small edge e being safe. Suppose π is the random order on
ES and π(e) = x, 0 < x < 1. Let NS [e] be the set of small edges in the neighborhood of e.
For each f ∈ NS [e], let Xf , Yf , Zf be three random variables such that: Xf = 1 if f falls
before e in π, Yf = 1 if f ∈ E′S and Zf = 1 if f exists in the hypergraph when probed. Note
that the collection of random variables {Xf , Yf , Zf |f ∈ NS [e]} are mutually independent.
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For each f ∈ NS [e], let Af be the event that (Xf + Yf +Zf ≤ 2) and Se = ∧f∈NS [e]Af . W e
say e is safe iff Se happens . Lemma 10 computes the probability that a small edge e is safe
in our algorithm.

I Lemma 10.

Pr[Se] =
∫ 1

0
Pr[Se|π(e) = x]dx =

∫ 1

0

∏
f∈NS [e]

(1− xyfpf )dx. (4.2)

Proof. By definition, Pr[Xf = 1|π(e) = x] = x. Note that Pr[Yf = 1] = yf , Pr[Zf =
1] = pf , and the two values are independent of π(e). Thus, given π(e) = x, Af will occur
with probability (1 − xyfpf ). Since the Af are independent for f ∈ NS [e], the proof is
completed. J

Here are two interesting points for the event Se: (1) When Se happens, e must be safe
according to our initial definition, i.e., none of the edges in its neighborhood get matched;
the contrary is not true. Thus the new definition is more strict. (2) On checking e in the
algorithm, we might not know if Se occurs or not due to some missing Zf for f ∈ NS [e]. For
instance, some f ∈ NS [e] gets blocked by some small edge f ′ ∈ NS [f ] while Xf = Yf = 1. In
this case, we do not know the value of Zf since f will not be probed. In order to continue
our algorithm, we simulate Zf by generating a random bit Zf = 1 with probability pf and
Zf = 0 otherwise. Notice that if Zf = 1, we will view e as not safe and will not probe it,
even though it might be safe according to our initial definition.

The full description and analysis of algorithm in Theorem 3 will appear in the full version.

4.2 An algorithm achieving (k + ε+ o(1)) approximation ratio
In this section, we present a randomized algorithm that achieves an approximation ratio of
(k+ ε+ o(1)) for stochastic matching on a k-uniform hypergraph, where ε is given in advance.

Let (x, y) be an optimal solution to the LP (4.1). W.L.O.G we assume 1/ε = N where N
is an integer. Let a be a constant such that 1− 1/N < a < 1. We say an edge e is large if
yepe > 1/N , otherwise we call e small. For each small edge e, we draw a random real number
xe uniformly from [0, 1]. For each large edge e, we draw a random real number xe from [0, δ]
with density a and from (δ, 1] with density (1−aδ)/(1−δ), where δ = min(1, N(1−a1/(N−1)).
Then we derive a random permutation π by sorting {xe, e ∈ E} in increasing order. Assuming
N is sufficiently large, the value δ is at most 1/N + o(1/N). Notice that N, a and δ are all
fixed constants. Based on π, we sketch our randomized algorithm below:

Algorithm 3: SM4: Stochastic Matching on a k-uniform hyergraph
1 Initially all edges are safe.
2 Follow the random order π to check each edge e ∈ E is safe or not.
3 If e is safe, then probe it with probability ye; otherwise, skip it.

The lemmas below are useful for the proof of Theorem 4.

I Lemma 11. For any c > 1/N and 0 < x < δ, we have

1− axc > (1− x/N)cN

Proof. Define F (x) = 1 − axc − (1 − x/N)cN . We can verify that: (1) F (0) = 0, and (2)
F ′(x) > 0 for any 0 ≤ x < δ. This gives the desired result. J

APPROX/RANDOM’15
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Consider an edge e = (v1, v2, · · · , vk). Suppose yepe = ce < 1−1/N and xe = x, 0 < x < δ.
For each 1 ≤ i ≤ k, let ∂′(vi) denote the set of edges incident to vi excluding e itself. Denote
by Si the event that none of edges in ∂′(vi) come before e and get matched.

I Lemma 12.
Pr[Si] ≥ (1− x/N)(1−ce)N

The proof of Lemma 12 will appear in the full version. Now we start to prove Theorem 4.

Proof.
1. Consider a small edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma 12, we see

Pr[Si] ≥ (1− x/N)N for each 1 ≤ i ≤ k. Thus by applying the FKG inequality, we get
Pr [
∧
i Si] ≥ (1− x/N)kN , which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0
(1− x/N)kNdx = 1

k + 1/N −O(kk0/k)

where k0 = (1− δ/N)N < 1 is a constant.
2. Consider a large edge e, say e = (v1, v2, · · · , vk) and xe = x. From Lemma 12, we see

Pr[Si] ≥ (1− x/N)N−1 for each 1 ≤ i ≤ k. Thus by applying FKG, we see when x ≤ δ,
Pr [
∧
i Si] ≥ (1− x/N)k(N−1), which is followed by

Pr[ e is checked as safe ] ≥
∫ δ

0
a(1−x/N)k(N−1)dx = aN

N − 1
1

k + 1/(N − 1)−O(kk0/k) > 1
k

where k0 = (1− δ/N)N−1 < 1 is a constant; we use the fact that a > 1− 1/N to get the
last inequality above. J

5 Sample Complexity of Black-Box Stochastic Optimization

In this section, we consider the following two-stage stochastic minimization program

min
x∈X

f(x) = c(x) + E
ω

[q(x, ω)]. (5.1)

An important context in which this problem arises is two-stage stochastic optimization
with recourse. In this model, a first-stage decision x ∈ X has to be made while having only
probabilistic information about the future, represented by the probability distribution π on
Ω. Then, after a particular future scenario ω ∈ Ω is realized, a recourse action r ∈ R may be
taken to ensure that the requirements of the scenario ω are satisfied. In the two-stage model,
c(x) denotes the cost of taking the first stage action x. Given a particular scenario ω and a
first-stage action x, the cost of the second stage q(x, ω) is represented as

q(x, ω) = min
r∈R
{costω(x, r)|(x, r) is a feasible solution for scenario ω}.

A natural approach to solve problems modeled by equation (5.1) is to take some number,
N , of independent samples ω1, . . . , ωN from the distribution π, and to approximate the
function f by the sample-average function

f̂(x) = c(x) + 1
N

N∑
i=1

q(x, ωi). (5.2)
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One might then hope that for a suitably chosen sample size N , a good solution x̂ to
equation (5.2) would be a good solution to f ; more precisely, x̂ ∈ X is an α-approximate
minimizer of the function f defined in (5.1), if for all x ∈ X, f(x̂) ≤ αf(x). This approach,
called the sample average approximation method (SAA), was considered by Charikar, Chekuri,
and Pál [3], who considered a setting with the following properties:

(P1) Non-negativity. c(x) ≥ 0 and q(x, ω) ≥ 0 for each x ∈ X and ω ∈ Ω.
(P2) Empty First stage. We assume there is an empty first stage action, 0 ∈ X with c(0) = 0,

q(x, ω) ≤ q(0, ω) for each x ∈ X,ω ∈ Ω.
(P3) Bounded Inflation Factor. For each x ∈ X,ω ∈ Ω, we have q(0, ω)− q(x, ω) ≤ λc(x).

In such a setting, a key result of [3] is:

I Theorem 13 ([3]). There is a constant K0 > 0 such that the following holds. Any exact
minimizer x̄ of the function f̂ defined in (5.2) constructed with K0 · λ

2

ε4 log |X| log 1
δ samples

is, with probability at least 1 − δ, an (1 + O(ε))-approximate minimizer of the function f

defined in (5.1).

Our result on improved sample complexity states as follows. The proof will appear in the
full version.

I Theorem 14. There is a constant K1 > 0 such that the following holds. Any exact
minimizer x̄ of the function f̂ defined in (5.2) constructed with N = K1 · log |X|δ ·max

[
λ2

ε2 ,
λ
ε3

]
samples is, with probability at least 1−δ, an (1+O(ε))-approximate minimizer of the function
f defined in (5.1).

This improvement, in turn, improves the runtime of the several applications that employ
this sampling framework; see, e.g., [8, 9, 17].
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