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Abstract
Human experiences are stored in episodic memory and are the basis for developing semantic
narrative structures and many of the narratives we continually compose. Episodic memory has
only recently been recognized as a necessary module in general cognitive architectures and little
work has been done to examine how the data stored by these modules may be formulated as
narrative structures. This paper regards episodic memory as fundamental to narrative intelligence
and considers the gap between simple episodic memory representations and narrative structures,
and proposes an approach to generating basic narratives from episodic sequences. An approach
is outlined considering the Soar general cognitive architecture and Zacks’ Event Segmentation
Theory.
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1 Introduction

Since Tulving’s pioneering work on episodic memory [33] it has become apparent that any
general model of human cognition must account for memory for temporally and causally
situated data just as well as memory for the general facts of semantic memory. It has been
observed that we perform extensive narrative sense-making over the data we experience
in an effort to gather meaning from our raw experiences [9]; this activity is central to our
lives. This ability to cast our experience in narrative terms has been referred to as narrative
intelligence [20, 3] and develops through our formative years. Sharing features of both
narrative comprehension and narrative generation, narrative intelligence is important to our
planning, social interaction, and coping with challenges [23]. This has led to a surge of interest
in narrative processes for artificial intelligence [20]; nonetheless, cognitive architectures aimed
at modeling human intelligence have been slow to implement support for episodic memory
and have as-yet showed few signs of approaching narrative cognition.

1.1 Narrative Intelligence, Comprehension, and Generation
Mateas’ definition of narrative intelligence has already been invoked as a guiding concept: the
ability to cast our experience in narrative terms. We are here concerned with this sophisticated
process, which simultaneously draws from and defies frameworks that attempt to delineate
story comprehension from story generation. The input to our model is a stream of experiential
data; the process of parsing and selecting from this data, for which Event Segmentation
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Figure 1 Baddeley’s revised working memory model, including the episodic buffer [2].

Theory (EST) will be applied, can be seen as narrative comprehension insomuch as top-
down processing occurs to recognize matching narrative patterns. Inasmuch as bottom-up
processing is performed upon the received data, a process central to the gating mechanisms of
EST, it is similar to some plan-based narrative generation systems which receive a repertoire
of actions and use that repertoire to generate a sequence of states as a narrative (e.g. [29]).
This reciprocation between narrative comprehension and narrative generation bears striking
similarity to the driving tension of cognitive narrative pointed out by Ochs and Capps in
their landmark study of personal narratives, described as “the oscillation between narrators’
yearning for coherence of life experience and their yearning for authenticity” [23, p. 24]. For
cognitive narrative the distinction between narrative comprehension and narrative generation,
principle to some notions of intelligence for narrative [17], may need reevaluation.

Importantly, while the joint pair of narrative comprehension and generation are of major
relevance to this paper, the distinct process of story telling, by which narratives are prepared
and committed via some media for purposes that include communication, falls beyond our
consideration of cognitive narrative and can be regarded as an activity occurring subsequent
to (and using the products of) the processes here proposed.

2 Memory, Segmentation, and Narrative

Narrative exists in the human mind as a particularly important form of mental technology.
It’s utilization includes experiential sense-making, imputing of causality, categorization and
evaluation of events, complex communication, and planning [10]. Narrative cognition is
inextricably involved with human memory, particularly the episodic and semantic long-
term memory systems. Semantic memory supplies the scripts, schemas, and genres by
which top-down processes influence narrative cognition [32, 27], and so plays a vital role
in mature narrative intelligence. Evidence from developing narrative intelligence within
children suggests that the acquisition of these semantic structures is one of the significant
forms of progress as children grow [34][23, ch. 2]. However, the same evidence indicates
that however poor, some degree of narrative ability precedes the significant acquisition of
semantic narrative structures and that one of the functions of increasing experience is the
construction of the scripts and schema that will allow for improved top-down contributions
to narrative intelligence. This suggests that narrative intelligence may begin with episodic
memory before being augmented with contributions from semantic memory.
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4 From Episodic Memory to Narrative in a Cognitive Architecture

Episodic memory is the system responsible for storage of both personal experiences
and any other time-situated events attended to second-hand, for example through media
or personally communicated stories. It is also implicated for prospective memory used to
consider the future [31]. As a distinct memory system it was first proposed by Endel Tulving
in 1972 [33]; since that time it has been widely researched. Of particular note is work
by Baddeley, who augmented his 1970 model of working memory with an episodic buffer
(Figure 1). This episodic buffer was proposed for use in short-term memory complementary
to the conventionally understood episodic long-term memory [2]. The role of Baddeley’s
short-term episodic buffer is as a holding area for retrieved episodes to be integrated cross-
modally with data from other sources, such as perception or semantic processing. From a
narrative perspective, this may be where stories are constructed through blending with other
elements in working and semantic memory, and is likely where narratives are manipulated
for many of the afore-mentioned functions of narrative cognition.

The term “episode” excites a notion of scene, events, and change that would seem naturally
compatible with most definitions of narrative. However, event recognition itself is an ongoing
challenge in computer science. In practice, implementations of episodic memory usually
operate as the storage and chronological indexing of system states. In essence, these systems
take a snapshot of each state and give it a time label. While narratively intelligent humans
are capable of looking at a photo (e.g. of a sport scene) and reconstructing a narrative
situation to describe the events surrounding the scene, for these computational systems there
has been no obvious way to produce from a life-long sequence of such snapshots a discrete
set of narratives.

2.1 Event Segmentation Theory
Event Segmentation Theory (EST) [35, 13, 27] suggests an approach to the problem of
dividing a non-delineated sequence of states into events that could become the constituents of
narratives. In humans, event segmentation is an ongoing process occurring simultaneously at
multiple time/action granularities. According to EST, event segmentation occurs as an effect
of ongoing perceptual prediction. During the process of perception two structures participate
in parsing the situation and forming predictions: long-term knowledge is brought to bear in
the form of event schemata, which are similar to Schanks’ and Abelson’s scripts [32] and
represent the way actions or events normally unfold in similar situations; and working-memory
is brought to bear by event models, which are an interpretation of the specific situation
at hand. In addition, behavioral models may be used so that predictions can be made
based on the presumed goals of the actors in a situation, and world models that account for
physical expectations (e.g. the trajectory of an object in free motion). The interplay between
the semantic and episodic long-term memory systems in this process is cyclical: semantic
memory provides the structures and models to help make episodes from experience, while
these episodes are committed to episodic memory where, over time, they help distill further
knowledge of semantic structures.

As perception occurs, the mind selects from its knowledge of usual event schemas and
uses assumptions about the goals and processes at work in the attended situation to generate
expectations of what will happen next. As long as these predictions are mostly fulfilled, the
current event model is assumed to continue and no segmentation occurs. However, when
the predictions are wrong by some margin of significance, the current event is considered
to end and a new event begin in the process of selecting or generating a new event model.
These explanations of event segmentation have been supported by evidence from studies
of segmentation of event boundaries in written and video narratives [35]. Narratives are
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Figure 2 The Soar cognitive architecture [14].

constructed as segmentation occurs at broader granularities over episodic memory, to the
point of eventually contributing to production of the life-long autobiographical memories
that “make up our own personal narrative of who we are and what we have experienced” [27,
ch. 8].

3 An Approach with the Soar Cognitive Architecture

Although it has been explored in a neural network framework [28], EST has yet to be applied
in a symbolic architecture. Soar [15] (see Figure 2) is a general cognitive architecture with
development overseen by John Laird and is one of the most popular cognitive architectures
in current use, with deployments ranging from robotic intelligence to complex battlefield
simulation to military training of human soldiers. In addition to an AI system, Soar represents
a theory of general human cognition [22]. Soar is a rule-based system in which perception is
represented as a graph structure in either working memory or long-term memory. Soar is
also agent-based, meaning that instances of Soar run as individual agents independent of,
but often interacting with, each other. A given application can call upon large numbers of
Soar agents, each running as its own process with its own long-term memory and working
memory systems. Soar agents make decisions based on the matching of rules, which depend
on the agent’s perception of the current state of the world and of its personal state. As a
symbolic architecture Soar is well-suited to capturing top-down information such as explicit
scripts or subjects of high-level complexity like narrative, whereas it can be difficult to obtain
narrative training sets that are both suitably representative and sufficiently sizable for the
needs of connectionist models.

Soar’s episodic memory modules (epmem) depicted in the top right corner of Figure 2
were added relatively recently and are our central focus. Soar’s epmem works by storing
snapshots of the working memory state (i.e. the Soar agent’s awareness) at each time step,
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6 From Episodic Memory to Narrative in a Cognitive Architecture

attaching to each snapshot a unique index representing the time of the memory. Once Soar
has recalled an episodic memory it is possible to increment forward or backward through the
neighboring episodes. Retrieval of episodic memory occurs as queries are issued searching for
matching or partially matching features in the graph-structure knowledge representation.
Results are given a match score based on how much of the query-graph matches the graphs
in an episode, and the best match is returned.

The aim of this project is to outline the addition of rudimentary narrative intelligence
within the Soar theory of cognition; we propose to start with narrative intelligence on the
most basic of levels, not aspiring beyond child-level narrative intelligence at this point. With
this starting point groundwork is laid for future work refining the model.

The implementation proposed proceeds as follows: Soar provides sensory input which is
represented in working memory and stored over time as episodes in epmem. These provide
the information stream required by EST to make the predictions that result in discrete
events. These events are the building blocks of narratives.

3.1 Predictions
At the heart of EST is the making of predictions, which may receive input from a variety
of sources including scripts and schema, behavioral character models, genre expectations,
and other inputs from semantic memory. As has been previously mentioned the resources
available for these processes develops with the experience of the agent. As this exploration
considers naive agents with a minimum of prior knowledge it is desirable to have universal
heuristics that can form the basis for prediction across domains. Making the simplification
that a world consists of agentive and non-agentive components we consider two heuristics.
Both of these stand to be superseded as knowledge is gained by the agent.

The heuristic of inertia pertains to non-agentive components of the world, such as spatial
configurations. The agent may predict that its environment will continue to exhibit the same
features that it now exhibits.

The heuristic of auto-simulation applies to agentive components of the world and takes
one of the simplest approaches to a theory of mind by assuming that a perceived agent will
act in the same way as the perceiver.

Simplistic as they are, these heuristics provide a ground case to create predictions in any
situation, the violation of which delineates the events necessary to form narratives. The
result is a stream of events that is, in the worst case of a rapidly and inscrutably changing
environment, identical to epmem. With any stability of environment or shared rationality of
the agents the product will be an abstraction over the episodes.

3.2 Linking events into narratives
Many definitions of narrative allow for single-event narratives, as when a toddler recalls
repeatedly that today “I fell down.” Such interpretation draws no distinction between event
and narrative, a point of ambiguity further promulgated by Zacks’ explanations of EST. The
distinction here proposed is not one of structure but of function. EST provides events as a
natural kind by which we perceive the world, just as we discern discrete objects. According
to EST this perception can occur reflexively. Narrative – particularly personal narrative –
is, on the contrary, deliberate and negotiated, the product of an ongoing decision-making
process [23] that grows more sophisticated as the narrator matures [4].

Because the aim of this paper is to suggest a means for narrative intelligence that can
serve as a (child-like) basis for future work, it is sufficient to allow for single-event narratives
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while admitting that among the most prominent future work will be the reasoning processes
by which more sophisticated narratives can be created from the events produced by EST.
These narratives will develop alongside the addition of semantic-memory narrative structures
that will influence the top-down processing of EST.

3.3 Considering a Domain: Eaters
While Soar applications are fully capable of recording the richness of real-world perception
(e.g. in robotic applications), generating the events with EST which are requisite for narrative
generation requires that the system be capable of making useful predictions, which in turn
requires rules capturing the complexity of the domain. Games make useful simplified
domains. Currently, Soar comes with several game domains that can make testing-grounds
for introductory exploration of this approach; we take as an example the Eaters domain [21].

The Eaters game is a two-dimensional Pacman-like game in which one or more colorful
“eaters” navigate within a randomly generated maze with the goal of achieving the high score
by consuming food pellets of lesser or greater point-values. The eaters are capable of two
types of action: moving one space at a time in any of the four cardinal directions, which type
of movement has no cost, or jumping up to two squares away, which costs the equivalent of a
lesser food pellet. By jumping, an Eater can pass over an obstacle but never consumes food
over which it has jumped. When eaters collide, they are each randomly transported elsewhere
in the world and their scores are averaged with each other. Each Eater agent has a limited
range of vision and discovers the world as it moves. This feature of partial-observability
is desirable for mechanisms that rely upon prediction, as does an EST-based approach to
narrative intelligence.

3.3.1 Heuristic Prediction in Eaters
Even within so simple a domain as Eaters prediction is still possible and interesting. Because
of the partially-observed nature of the domain a natural opportunity for prediction is in
world-state itself; for this the heuristic of inertia applies. It happens in Eaters that in
randomly generated maps pellets of the same type continue in vertical rows, and that walls
may turn but never stagger (do not proceed diagonally or in stair-case formations). The
heuristic of inertia means that if the agent has a normal food pellet in front of it as it moves
forward, it will predict there to be another food pellet in front after it moves; if not, an
event is produced segmenting experience from the previous “normal pellet above” sequence of
events. Later reasoning could use this event as a cue to infer that another agent has traversed
this path. Likewise, once another Eater has been sighted by an aggressive agent, the heuristic
of auto-simulation may come in to play to expect the other Eater to approach. If this doesn’t
occur, the event might be used in future reflection for the altering of expectations about the
unseen portions of the map, or about the schema (“aggressive”) of the other agent.

3.3.2 Top-down Narrative Structures in Eaters
A variety of narrative structures could readily be encoded into semantic memory to influence
understanding in Eaters. Some such influences could directly influence the production rules
applied in Soar by altering the event model being applied. Different event models could
include a model for exploration which might apply the afore-mentioned heuristics; prediction
error could cue changing to hunting models in which expectations are drawn from heuristics
that anticipate perceptual changes that indicate passage of another Eater (e.g. following a
trail and expecting pellets to be absent as the trail continues).
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8 From Episodic Memory to Narrative in a Cognitive Architecture

3.3.3 Eaters’ Narratives
The store of events produced by EST includes segments indicating such things as when
a trail of pellets concluded at a wall, or when another eater became visible. In addition
to the consideration of these individual events as comprising narratives in their own right,
sequences of these events become candidates to be narratives that should be regarded as
on a higher hierarchical level than are individual events. Once again the role of top-down
structures is important to this production of more complex narratives: as purported by
Zacks [35], the changing of event models represents, itself, a key event (e.g. when the agent
switches from an exploration model to a hunting model). While the brief model that has
been laid out is capable of providing a simple set of event-narratives, these narratives stand
to become increasingly interesting and useful as mechanisms for learning semantic structures
are introduced.

One of the key features of perception, and hence EST, is the hierarchical nature of
perception. Simplified domains like Eaters offer data at a relatively shallow level of abstraction;
one way of achieving hierarchical levels of events – and hence higher-level narratives – is
by reflection upon episodic memory, by which process broader narrative structures can be
applied and recognized. Continuing the Eaters example, reviewing epmem (which contains
copies of each state of working memory) can make a place for the application of meta-
heuristics, like expecting the heuristic of inertia to apply (say) 70% of the time. This
mechanism of heuristics over epmem sequences (rather than singular working memory state)
is both naturally precedented by the concept of narrative intelligence, which implies extended
temporal breadth, and significant for establishing the recursive nature of narrative.

4 Discussion and Conclusions

The approach to narrative intelligence proposed in this thesis is a preliminary one; it is child-
level at best, and awaits further contributions to realize crucial narrative-learning methods
that will provide narrative structures, schema, and semantic memory components that are
crucial to the next stages of narrative cognition. Such structures proposed by researchers
like Propp form the basis of modern narratology and continue to be explored [25, 6, 5].
This model does, however, provide a base-level account for the development of personal
narratives from experience. The contribution of this work is to take steps toward a theory
of cognitive narrative that bridges the gap between perception and narrative cognition and
is, therefore, a comprehensive starting-point for agentive systems. However child-like (even
toddler-like) these minimal narratives may be at the start, the function that can provide them
will meet needs of both quality and quantity. A system that is able to continually produce
narratives from its experiences has the potential to offer the sort of statistical data valuable
for categorization and norm detection, both considered some of the fundamental purposes of
cognitive narrative in humans [8]. It also offers a promising starting-place for automated
generation of scripts within a domain, which could be a useful complement to crowd-sourced
script generation that can be costly and unpredictable [18]. Together, these capabilities may
serve in support of advanced cognition like goal-based reasoning [30], whereby consideration
of narrative schema could provide resources for adaptation or change of goals in dynamic
scenarios.

A major question highlighted by the Eaters example with primary relevance to a system’s
episodic memory has to do with the timing of experiential reflection and personal narrative
generation. Although the Eaters example suggests narratives being produced concurrently
with perception, much more truthful to work like Ochs’ and Capps’[23] is narrative generation
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that occurs as reflection upon the contents of memory. Indeed, multiple revisits to whatever
primitive narratives are produced around perception time will be essential to acquiring higher
narrative forms.

Regardless of the episodic memory implementation, a system that produces experiential
narratives will also capture qualities of coherence that are desirable in a narrative system.
Insofar as narrative is defined as being concerned with having a “continuant subject,” [17]
experiential narratives minimally satisfy that by providing the experiencer as subject. This
fact is not insignificant for applications in Human-Computer Interactions, Expressive AI,
or Affective Computing, where “self” for continuity of subject may provide resources for
desirable development of personality and style within an agent [12] and ultimately for the
development of life story [27].

An event/prediction-based model of cognitive narrative also extends an invitation to
insights from the dramatic arts, whose perspective of narrative as affective is highly relevant
to the predictions of EST in response to suspense [24], some of which have already applied
Soar [19, 11].

A concluding line of work worth mentioning would be observer-systems which would
consider primarily other agents as the subject of their predictions and narratives. Such
systems would enhance the quality of the narratives generated by developing narratives based
on human or expert-system performance and would be important steps toward tasks such as
automated sports commentary [1], summarization [26, 16], and theory of mind [7]. One of the
severe challenges facing the development of effective observer systems is having an approach
to narrative intelligence that can be generalized across domains. The development of general
story-generation algorithms suitable for general cognitive architectures is one strategy for
approaching such useful systems; hopefully the approach discussed here is a step in that
direction.

Eventually narrative intelligence will be an instrument for general intelligence, at which
time we could expect that agents with greater narrative intelligence would have a competitive
advantage in games like Eaters. As an introductory exploration, the chief product of the
approach proposed are the narratives themselves, preliminary to more advanced functions of
intelligence.
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