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Abstract
This paper introduces a core calculus for pattern-matching in production rule languages: the
Calculus for Aggregating Matching Patterns (CAMP). CAMP is expressive enough to capture
modern rule languages such as JRules, including extensions for aggregation. We show how CAMP
can be compiled into a nested-relational algebra (NRA), with only minimal extension. This paves
the way for applying relational techniques to running rules over large stores. Furthermore, we
show that NRA can also be compiled back to CAMP, using named nested-relational calculus
(NNRC) as an intermediate step. We mechanize proofs of correctness, program size preserva-
tion, and type preservation of the translations using modern theorem-proving techniques. A
corollary of the type preservation is that polymorphic type inference for both CAMP and NRA
is NP-complete. CAMP and its correspondence to NRA provide the foundations for efficient
implementations of rules languages using databases technologies.
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1 Introduction

Production rules are popular for business intelligence (BI) applications, because they can
encode complex data-centric policies in a flexible manner [24]. Rules often appeal to business
users, as they are easy to understand, extend, and modify. Languages for production rules
go back to OPS5 [19], and modern specimens include JRules [24] and Drools [5]. These
languages rely heavily on pattern matching and, more recently, on aggregation.

Figure 1 shows an example production rule with aggregation. It consists of a condition
(when, Lines 2–5) and an action (then, Line 6). The condition binds variable C to a Client
working memory element (WME), and aggregates all Marketer WMEs M for whom C belongs
to M’s bag of clients. The aggregation uses the collect operator to create a bag, and binds
that bag to Ms. Finally, Line 6 creates a new WME that materializes the mapping from C to
Ms. This mapping could then be consulted in other rules, for instance: when a crucial client
event happens, then notify all responsible marketers.

While production rule languages are starting to support aggregation, they do not yet have
a good story for running aggregates on large and/or distributed data sets. Rules engines are
usually centralized, tied to their internal data representation, and not readily applicable to
other stores. Ideally, we would like to run production rules over distributed stores efficiently
and leverage existing algorithms for large-scale data processing. To accomplish this, we
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1 rule FindMarketers {
2 when {
3 C: Client();
4 Ms: aggregate { M: Marketer(clients.contains(C.id)); }
5 do { collect {M}; }
6 } then { insert new C2Ms(C, Ms); }
7 }

Figure 1 In JRules, compute a reverse mapping from clients to marketers.

translate rules to a database algebra suitable for optimization and distributed execution.
Because modern rules languages support complex data models and nesting (e.g., JRules
uses an object-oriented data model and supports nested aggregation), we target a Nested
Relational Algebra [14] (NRA). Optimization techniques for such algebras extend those
already available in relational systems, and have been used to support efficient evaluation for
a variety of nested data models, from OO [6, 14] to XML [27, 31].
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Figure 2 CAMP formalization & JRules.

This paper proposes the Calculus for Aggre-
gating Matching Patterns (CAMP), a core cal-
culus for production rule languages. The essence
of patterns is that they have two implicit inputs:
the data item that is the subject of the match,
and an environment of variables previously bound
by the match. The main novelty of CAMP is
that it exposes the data flow inherent to the pat-
tern matching of rules. Figure 2 gives an outline
for the main languages covered in the paper and
their relationships. Figure 2(b) shows the real
JRules language which is the motivation for our
work, which gets compiled and executed using a
Rete-based rules engine [20]. This paper studies
the properties of CAMP, proving that it has the same expressiveness as Nested Relational
Algebra (NRA) and Named Nested Relational Calculus (NNRC), as depicted in Figure 2(a).
The constructive proof includes a translation from CAMP to NRA, suitable as a first step
towards an efficient compiler.

From a data processing perspective, the challenges in that translation include encoding
the input datum and environment, and on the output side, encoding recoverable errors
(caused by non-matching data) to be propagated. From a rules language perspective, the
main challenge is to capture a representative yet minimal subset in CAMP. To make the
connection between CAMP and productions rules clearer, we provide a Rules language
with a syntax that parallels that of JRules and its corresponding encoding in CAMP. Our
implementation includes a way to translate JRules into that formal Rules language and runs
unit tests to check that the mechanized semantics yields the same results as the real JRules
compiler. In that context, our approach is similar to prior work on the database-supported
execution of programming languages with embedded queries, such as LINQ [11] compiled to
a relational engine using Ferry [22]. One interesting outcome of our work is to show that one
can offload the full pattern matching logic underlying production rules to a database engine.
The main contributions of the paper are as follows:

CAMP (Section 2), which captures the matching semantics for production rules with
aggregates. The calculus is simple enough for formal reasoning and expressive enough to
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support a Rules language (Section 3) that models large subsets of JRules [24].
A full translation (Section 4) from CAMP to the NRA from [14] with only a minimal
extension. This opens the door for taking advantage of the database literature for
optimizing and distributing production rule matching over large stores.
A reverse translation (Sections 5 and 6) from NRA back to CAMP, using the NNRC
from [35] as scaffolding, showing that all three languages are equally expressive.
Type systems for all three languages and proofs that the translations preserve types
(Section 7). As a corollary, polymorphic type inference for CAMP is NP-complete.
A mechanization of all the proofs of semantics preservation, program size, and type
correctness using the Coq proof assistant [16] (see peer-reviewed artifact).

2 CAMP

The Calculus for Aggregating Matching Patterns (CAMP) models the query fragment of
traditional production rules language such as OPS5 [19], JRules [24], or Drools [5]. The
query fragment in these languages is a (possibly nested) pattern that is matched against
working memory. To model this query style, CAMP patterns scrutinize an (implicit) datum
that we call it. Additionally, to support naming matched fragments of it, CAMP patterns
also refer to an (implicit) environment env that maps variables to data. CAMP expressions
all return data, the result of the query. This is often a record containing variables bound by
the pattern. Patterns can also fail if they do not match the given data. This failure is not
fatal, and can trigger alternative pattern matching attempts.

2.1 Syntax
Definition 1 presents the syntax for CAMP. Section 2.3 presents the formal semantics; here
we give an informal description.

I Definition 1 (CAMP syntax).

(patterns) p ::= d | ⊕p | p1 ⊗ p2 |map p | assert p | p1||p2
| it | let it = p1 in p2 | env | let env += p1 in p2

Going in order of presentation, d allows arbitrary (constant) data to be the result of a
CAMP pattern. The full data model is presented in Section 2.2. The next two constructs
allow unary (⊕) and binary (⊗) operators to process the result of a pattern or patterns.
The set of operators is described in Section 2.2 and includes operations for constructing and
manipulating records and bags, key components of our data model.

The map p construct maps a pattern p over the implicit data it. Assuming that it is
a bag, the result is the bag of results obtained from matching p against each datum in it.
Failing matches are skipped. The assert p construct allows a pattern p to conditionally cause
match failure. If p evaluates to false, matching fails, otherwise, it returns the empty record [ ].
The p1||p2 construct allows for recovery from match failure: if p1 matches successfully, p2 is
ignored; otherwise, if p1 fails to match, p2 is evaluated.

Finally, we come to the constructs that deal with the implicit datum being matched
and the environment. The it construct obtains the datum that is being matched. The
let it = p1 in p2 construct allows this implicit datum to be altered. Similarly, env reifies
the current environment as a record. This reified environment can then be manipulated via
standard record operators. The final construct, let env += p1 in p2, allows a pattern to
add new bindings to the environment. The result of matching p1 must be a record, which is
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interpreted as a reified environment. If the current environment is compatible with the new
one (all common attributes have equal values) then they are merged and the pattern p2 is
evaluated with the merged environment. If they are incompatible, the pattern fails. This
mimics the standard convention in pattern matching languages that multiple bindings of a
pattern variable must all bind to the same value.

As an example, the CAMP version of the JRules pattern C: Client() in Line 3 of
Figure 1 is let env += assert it.type = “Client” in let env += [C : it] in env. The pattern
first asserts that it has type “Client”. If assert succeeds, it returns the empty record, so the
first let env leaves the environment unchanged. The next part of the pattern attempts to
add [C : it] to env. That succeeds if either C is not yet bound, or C is already bound to the
same datum. The idiom let env += assert p1 in p2 is so common that we write p1 ∧ p2,
for example, it.type = “Client” ∧ let env += [C : it] in env.

The example also relies on a fundamental data model and operators. For instance, it.type
retrieves a record attribute, the = operator checks equality, and [A : d] constructs a record.
Those are shared across CAMP, NRA, and NNRC and are described next.

2.2 Data Model and Operators
Values in our data model, the set D, are atoms, records, or bags. We assume a sufficiently
large set of atoms a, b, ... including numbers, strings, Booleans and a null value written nil.
A bag is a multiset of values in D; we write ∅ for the empty bag and {d1, ..., dn} for the
bag containing the values d1, ..., dn. A record is a mapping from a finite set of attributes to
values in D, where attribute names are drawn from a sufficiently large set A,B, .... We write
[ ] for the empty record and [Ai : di] for the record mapping Ai to di.

Our data model uses bags instead of sets to naturally support aggregation. For instance,
given employee records, a projection can obtain the bag of salaries, which can then be
averaged. A set would yield the wrong result, as it would omit duplicate salaries. Other
work uses bags for similar reasons [21]. Our data model supports arbitrary nesting of bags
and records to model object-oriented rule languages such as JRules. This nesting increases
expressiveness and simplifies the treatment of aggregation, group-by, and nested queries.

Records x and y are compatible if ∀A ∈ dom(x) ∩ dom(y), x(A) = y(A). We define the
sum x+y of compatible records as their union x∪y, and leave it undefined for non-compatible
records. An operator is a pure function defined on only its explicit operands; it does not
access any implicit input (e.g., it or env in CAMP). Given operands of the correct types,
operators are total. We factor out operators from each of our three languages (CAMP, NRA,
and NNRC) to keep the languages small and focused on the essentials. Definition 2 presents
a set of basic unary and binary operators on our data model.

I Definition 2 (Operators).

(uops) ⊕ d ::= identity d | ¬d | {d} | #d | flatten d | [A :d] | d.A | d−A
(bops) d1 ⊗ d2 ::= d1 = d2 | d1 ∈ d2 | d1 ∪ d2 | d1 ∗ d2 | d1 + d2

In order of presentation, the unary operators do the following:

identity d returns d.
¬d negates a Boolean.
{d} constructs a singleton bag containing the value d.
#d returns the number of elements in a bag.
flatten d flattens a bag of bags.
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[A :d] constructs a record with a single attribute A containing the value d.
d.A accesses the value associated with attribute A in record d.
d−A returns a record with all attributes of d except A.

Each of the last three operators involves a datum d and a statically given attribute A.
Once the attribute is fixed, they are unary operators on the datum. For instance, d.type is
the unary operator for retrieving attribute type of data d.

In order of presentation, the binary operators do the following:
d1 = d2 compares two data for equality.
d1 ∈ d2 returns true if and only if d1 is an element of bag d2.
d1 ∪ d2 returns the union of two bags.
d1 ∗ d2 concatenates two records, favoring d1 if there are overlapping attributes.
d1 + d2 returns a singleton bag containing the concatenation of the two records if they

are compatible, and returns ∅ otherwise.
In [35], the record concatenation operators are denoted × and ./, but we use ∗ and +

instead to reserve × and ./ for the NRA cross product and join on bags (see Section 4.1).
Some of the operators, such as bag and record construction, are fundamental, since we need
them to properly manipulate our data model. But since operators are simple functions, it
is easy to add more. For instance, # counts elements of a bag, and we could easily add
other unary reduction operators for summation or finding a minimum. Note that even record
concatenation with d1 + d2 is total, returning the empty bag if the records are incompatible.
We defer the discussion of type errors, which can be detected statically, to Section 7.

2.3 Semantics

The syntax and an informal description of CAMP were given in Section 2.1. Figure 3 presents
a big-step operational semantics for CAMP. A mechanization of these semantics using the
Coq proof assistant [16] is available in the companion artifact for this paper.

The relation σ ` p@ d ⇓r d? relates an environment (record) σ, a pattern p, and a datum
d (the implicit datum it) with an output d?. The subscript r on the relation stands for
“rules”, to distinguish the semantics from those of NRA and NNRC presented later in the
paper. The output is a member of the lifted data domain D? = D + err, representing either
the returned datum or match failure.

The ⇓r relation is partial; malformed patterns and patterns that are given the wrong
type of data may not admit any derivations. This is distinct from match failure, which is
recoverable, and is internalized in the relation. Section 7 will present a type system for
CAMP with a soundness result guaranteeing that well-typed patterns matching appropriately
typed data can always derive a result (possibly err, indicating match failure).

The rules for constants and operators are standard. The rules for map conspire to
evaluate the given pattern over each element of the datum. Pattern match failures are
ignored and the rest of the results are gathered as the result. The Assert and OrElse rules
allow patterns to explicitly cause and recover from an err. To enable easy sequencing with
let env, assert true returns an empty record.

The data that is being matched is obtained via it, and temporarily replaced using
let it = p1 in p2, where p2 is evaluated with it set to the result of evaluating p1.

The environment is obtained using env, which reifies it as a record. New bindings are
added to the environment using let env += p1 in p2. If p1 evaluates to a record that is
compatible (defined in Section 2.2) with the current environment, they are joined and used as
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(Constant)
σ ` d0 @ d ⇓r d0

σ ` p1 @ d ⇓r d1 σ ` p2 @ d ⇓r d2 d1 ⊗ d2 = d3
(Binary Op)

σ ` p1 ⊗ p2 @ d ⇓r d3

σ ` p@ d ⇓r d0 ⊕ d0 = d1
(Unary Op)

σ ` ⊕p@ d ⇓r d1

σ ` p@ d ⇓r err σ `map p@ s ⇓r s0
(Map err)

σ `map p@ {d} ∪ s ⇓r s0

(Map ∅)
σ `map p@ ∅ ⇓r ∅

σ ` p@ d ⇓r d0 σ `map p@ s ⇓r s0
(Map)

σ `map p@ {d} ∪ s ⇓r {d0} ∪ s0

σ ` p@ d ⇓r true
(Assert True)

σ ` assert p@ d ⇓r [ ]
σ ` p@ d ⇓r false

(Assert False)
σ ` assert p@ d ⇓r err

σ ` p1 @ d ⇓r d1
(OrElse 1)

σ ` p1 || p2 @ d ⇓r d1

σ ` p1 @ d ⇓r err σ ` p2 @ d ⇓r d2?
(OrElse 2)

σ ` p1 || p2 @ d ⇓r d2?

(it)
σ ` it @ d ⇓r d

(env)
σ ` env @ d ⇓r σ

σ ` p1 @ d ⇓r d1 σ ` p2 @ d1 ⇓r d2?
(Let it)

σ ` let it = p1 in p2 @ d ⇓r d2?

σ ` p1 @ d ⇓r σ1 σ + σ1 ` p2 @ d ⇓r d2?
(Let env)

σ ` let env += p1 in p2 @ d ⇓r d2?

σ ` p1 @ d ⇓r σ1 ¬compatible(σ, σ1)
(Let env err)

σ ` let env += p1 in p2 @ d ⇓r err

err propagation:

σ ` p@ d ⇓r err
σ ` ⊕p@ d ⇓r err
σ ` p⊗ p2 @ d ⇓r err
σ ` p1 ⊗ p@ d ⇓r err
σ ` assert p@ d ⇓r err
σ ` let it = p in p2 @ d ⇓r err
σ ` let env += p in p2 @ d ⇓r err

Figure 3 CAMP semantics. σ ` p@ d ⇓r d?

the environment for evaluating p2 (recall that “+” is defined only for compatible records).
Incompatibility results in match failure.

Figure 3 also presents six rules enabling err propagation, written in compressed form.
The antecedent of the given rule separately implies all six of the consequents.

To illustrate, consider the JRules pattern M: Marketer(clients.contains(C.id));
from Line 4 in Figure 1. This corresponds to the CAMP pattern in Equation 1:

it.type = “Marketer” ∧ env.C.data.id ∈ it.data.clients ∧ let env += [M : it] in env (1)

In words: if it is a record whose type attribute is “Marketer”, and if the environment already
has a binding for C with a data.id attribute that is an element of the bag it.data.clients, then
bind it to M in the environment and return the enriched environment reified as a record.

3 Rules

This section describes CAMP Rules, a set of rules macros on top of the CAMP core calculus
from Section 2, which we also implemented in the Coq proof assistant [16]. As shown in
Figure 2, the rules macros bridge the gap between CAMP and real-world production rule
languages such as JRules [24]. This section provides practical context for this work, describing
the connection between CAMP rules and JRules.

3.1 JRules
This paper grew out of our work on IBM’s “Operational Decision Manager: Decision Server
Insights” product, or ODM Insights for short [29], a middleware for integrating event
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548 A Pattern Calculus for Rule Languages

processing with analytics. Figure 4 depicts the architecture of ODM Insights. Everything
is driven by events, which are (possibly nested) objects in motion. When ODM Insights
receives an incoming event, it routes it to an event processor. An event processor is a rule
engine that can read individual entities from a shared store, and can also consult the result of
analytics. An entity is a (possibly nested) object at rest, for instance, a JSON document [18].
The store holds all the entities. The event processor reacts to an event with two kinds of
side effects: it can write to the store (to modify an existing entity or create a new entity),
and it can send zero or more output events (also known as actions). On each firing, the
event processor accesses at most a handful of entities. In contrast, the analytics processor
periodically scans all the entities in the store to derive global insights useful to guide future
actions. When the out-of-band analytics finish, the resulting insights become available so
the reactive event processors can consult them.

Rules

Analytics

processor

Event

processor

Store

Event

Action

ODM

Insights

Compile

Receive

Send

Read Write Scan

Consult

Figure 4 ODM Insights.

Another important goal was to integrate the au-
thoring experience: code for the event processor is
written in JRules with extensions for spatiotemporal
concepts. As state-of-the-art production rule tech-
nology did not offer a way to program the analytics,
we needed to find a way to use production rules
for queries over a large, and possibly distributed,
data store. To fill this gap, this paper shows how to
translate rules to NRA, for which there are known
evaluation techniques over large stores.

To demonstrate that CAMP accurately models a real-world production rule language,
we implemented a compiler from JRules to CAMP rules. Our compiler reuses the front-end
of the JRules compiler to get an abstract syntax tree, then traverses that tree to generate
CAMP rules in Coq, along with a corresponding test harness. For a given rule, the test
harness runs both the JRules engine and the translated Coq code against the same test input
and compares the two results. With this technique, we tested several examples, to confirm
that the JRules engine and the CAMP rules return the same result (modulo permutation
over the collection of items being returned). While this testing does not have the rigor and
completeness of mechanized proofs, it connects our mechanized theory to the real world.

3.2 Basic Production Rules in CAMP
Rules r are an intermediate language that bottoms out in CAMP patterns p from Definition 1.
Rules r are defined via macros – meta-level functions that statically compute CAMP patterns
p. For now, we will focus on basic rules drawn from the grammar r ::= when p; r | return p.
Aggregation and negation are covered in Section 3.3.

The input to a JRules rule consists of a working memory. Our translation to CAMP
encodes this as an environment mapping WORLD to a bag of working memory elements.
We define the macro WW (p) := let it = env.WORLD in p to apply a pattern over the
working memory. Each working memory element is a typed object. We encode each such
object as a record with two attributes, type (a string) and data (a record). This simple
encoding of objects does not account for subtyping, but suffices for our purposes.

A production rule engine finds all ways in which a rule can match. We express this using
a when macro, mapping each pattern over working memory as follows:

Jwhen p; rK = flatten (WW (map (let env += p in JrK)))

In words: for each working memory element, attempt pattern p. If it succeeds, add the
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1 when {
2 C: Client();
3 M: Marketer(
4 clients.contains(C.id));
5 } then {
6 insert new C2M(C, M);
7 }

Figure 5 JRules with no aggregation.

when it.type = “Client”
∧ let env += [C : it] in env;

when it.type = “Marketer”
∧ env.C.data.id ∈ it.data.clients
∧ let env += [M : it] in env;

return [type : “C2M”]∗
[data : [client : env.C]∗

[marketer : env.M]]

Figure 6 CAMP rule for Figure 5.

p1 ∧ p2 := let env += assert p1 in p2

WW (p) := let it = env.WORLD in p

mapall p := let env += [x : map p] in
(
(#(env.x) = #it) ∧ env.x

)
x is fresh

mapsnone p := #(map p) = 0

Figure 7 Auxiliary definitions for rules.

resulting bindings to env and run the translated tail rule JrK. This results in a bag of bags,
where the inner bags are either empty for non-matches or singletons for matches. The final
flatten returns the matches.

The output of a production rule consists of actions. We encode this in CAMP by returning
a singleton bag containing the result of the action caused by a rule. This is done via a
return macro: Jreturn pK = {p}. The rule macros defined so far (WW, when, return,
and ∧ from Section 2.1) suffice to translate production rules without aggregation or negation.
Figures 5 and 6 show a JRules program and the CAMP rule for it. Note that the when
clause from JRules yields two when macros in the CAMP rule, each performing its own
implicit loop over working memory. Since CAMP rules do not have side effects, we model
the insertion by returning the computed value.

3.3 Rules with Aggregation and Negation
This section completes the language of rules macros from Section 3.2. Figure 7 presents
definitions used in the semantics for rule macros. We already saw ∧ and WW. The other
two definitions, mapall and mapsnone, help encode aggregation and negation, respectively.

The mapall macro is similar to map, but ensures that the given pattern matches on all
the data in the bag. Unlike map, which allows (and ignores) errs, mapall propagates any
such errs. It does this by counting: if there are any errs, the result of map will be smaller
than its input. To avoid recomputing the map, it stores its result in the environment, using
a variable x that is fresh, meaning not used elsewhere in the program. The mapsnone
macro also employs map. By counting to check that the resulting bag is empty it ensures
that the given pattern does not match any data in the bag.

Definition 3 defines a rule as a sequence of patterns, each marked to indicate how the
pattern should be interpreted. Patterns that are meant to (implicitly) be matched against
each datum in working memory are signaled using when. In contrast, global introduces
patterns that should be run against the working memory itself (reified as a bag of data).
Patterns marked with not are tested to ensure that they do not successfully match against
any working memory data. A rule sequence is always terminated with return.
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550 A Pattern Calculus for Rule Languages

Jwhen p; rK = flatten (WW (map (let env += p in JrK)))
Jglobal p; rK = let env += WW (p) in JrK

Jnot p; rK = WW (mapsnone p) ∧ JrK

Jreturn pK = {p}

[WORLD : w] ` JrK @ nil ⇓r d?
(Rule Evaluation)

r @ w ⇓r d?

aggregate(r,⊕, p) := let it = JrK in ⊕mapall (let env += it in p)

Figure 8 Evaluating rules against working memory.

I Definition 3 (Rules).

(rules) r ::= when p; r | global p; r | not p; r | return p

Figure 8 presents a translation from rules to patterns. Rule evaluation proceeds by evalu-
ating the translated pattern in an environment with WORLD bound to the desired working
memory. Note that the translated pattern ignores the initial input, only accessing the working
memory. Figure 8 also defines an aggregate macro with three parameters: a rule r, a reduc-
tion (unary) operator ⊕, and a transformer pattern p. First, the pattern for r is executed. Sec-
ond, the result of r is transformed by mapalling the transformer pattern p. Finally, the results
of p are aggregated using ⊕. This is meant to be used with patterns marked global, enabling
nested aggregation over working memory. Consider the JRules code from Lines 4–5 of Fig-
ure 1: Ms:aggregate {M:Marketer(clients.contains(C.id));} do collect{M};. The CAMP
rule for it is global[Ms : aggregate(when p1; return env, identity, env.M)];, where p1 is
defined by Equation 1 at the end of Section 2.3. Note the use of when nested inside global
to match all working memory elements again for aggregation.

4 CAMP to NRA

This section describes how to translate production rules to nested relational algebra (NRA).
Since production rule languages support nesting both code and data, we use NRA which
generalizes the well-known relational algebra (RA). In some cases, this generalization actually
enables simplification. For instance, instead of RA’s projection with attribute assignments,
NRA offers a general map operator; and instead of RA’s global table names, NRA can place
tables with attributes of a top-level database record.

4.1 Nested Relational Algebra
We use the NRA from [14] with a bag semantics and extended with a conditional default
operation. We consider a core set of queries, sufficient to express the full algebra. Richer
queries (e.g., joins, unnest) can be built on top of this core.

I Definition 4 (NRA syntax).

(queries) q ::= d | In | ⊕q | q1 ⊗ q2 | χ〈q2〉(q1) | σ〈q2〉(q1)
| q1 × q2 | ./d〈q2〉(q1) | q1 || q2
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In this grammar, d returns constant data, In returns the context value (usually a bag
or a record), and ⊕ and ⊗ are unary and binary operators from Section 2.2. χ is the map
operation on bags (in simple cases, map degenerates to conventional relational projection π),
σ is selection, × is Cartesian product, and ./d is the dependent join which evaluates q2 with
the context set one at a time to the results of q1 and concatenates pairs of records resulting
from q1 and q2. (Dependent join is written q1〈q2〉 in [14] and MapConcat{q2}(q1) in [31].)
Sub-queries in subscripts with angle brackets 〈...〉 are dependent, applied one at a time to
the results of their sibling in the query plan.

The last operator, which we call default, is the only operator not originally proposed
in [14], and is used to encode error propagation in CAMP. It evaluates its first operand and
returns its value, unless that value is ∅, in which case it returns the value of its second operand
(as default). For NRA to be equivalent to NNRC (a well-known correspondence [34]), some
form of conditional must be included. Prior work included a similar default operation for
null values, testing if the first data is null. Since we chose not to complicate our presentation
with three-valued logic to implicitly propagate null values, we will instead use ∅ for errors.

4.2 Semantics

Figure 9 presents the semantics for NRA. The subscript a on the relation ⇓a stands for
algebra. Previous work [14] used a denotational semantics; we chose a big-step operational
semantics for consistency with CAMP. 1

Evaluating a query q against input data d is written q @ d. The In query returns that
data, whereas the constant query returns the specified constant. Unary and binary operators
evaluate the provided queries, and then evaluate the operator on the result(s).

A map query, χ〈q2〉(q1), is evaluated recursively using the two rules Map and Map ∅. The
Map rule evaluates the query q1, producing a bag s1. One element is transformed using q2
and the result is unioned with the result of mapping q2 over the rest of s1 (expressed as a
constant query). The Map ∅ rule terminates this recursion with ∅.

Selection queries, σ〈q2〉(q1), are evaluated recursively, similar to map queries. Each element
in the bag produced by q1 is kept only if applying the predicate q2 returns true.

Product queries, q1× q2, require a double recursion. The Prod rule evaluates both q1 and
q2 to produce bags s1 and s2. Elements d1 and d2 are chosen from them, and their product
is unioned with the product of d1 with the remainder of s2 and the product of the remainder
of s1 with all of s2.

Dependent join queries, ./d〈q2〉(q1), first evaluate q1 to produce a bag s1. For each element
d1 of s1, they evaluate q2 with the context data set to d1, yielding a bag s2. The result is a
bag consisting of all the record concatenations d1 × d2 of records resulting from q1 and q2.
Like product queries, dependent join queries use double recursion, with the main difference
being that the inner recursion (over q2) depends on the outer recursion (over q1) by using its
result as the context data.

Finally, the last query provided is the default query q1||q2. The rules for this query are
straightforward, evaluating q1 and looking at the result. If it is an empty bag, q2 is evaluated
and its result returned, otherwise the result of q1 is returned.

1 Our mechanization actually defines the semantics for all three languages via a computational denotational
semantics. However, we chose to use a more conventional style for presentation.
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(Constant)
d0 @ d ⇓a d0

(ID)
In @ d ⇓a d

q @ d ⇓a d0 ⊕d0 = d1
(Unary Operator)

⊕q @ d ⇓a d1

q1 @ d ⇓a d1 q2 @ d ⇓a d2 d1 ⊗ d2 = d3
(Binary Operator)

q1 ⊗ q2 @ d ⇓a d3

q1 @ d ⇓a ∅
(Map ∅)

χ〈q2〉(q1) @ d ⇓a ∅

q1 @ d ⇓a {d1} ∪ s1 q2 @ d1 ⇓a d2 χ〈q2〉(s1) @ d ⇓a s2
(Map)

χ〈q2〉(q1) @ d ⇓a {d2} ∪ s2

q1 @ d ⇓a {d1} ∪ s1 q2 @ d1 ⇓a true σ〈q2〉(s1) @ d ⇓a s2
(Select True)

σ〈q2〉(q1) @ d ⇓a {d1} ∪ s2

q1 @ d ⇓a {d1} ∪ s1 q2 @ d1 ⇓a false σ〈q2〉(s1) @ d ⇓a s2
(Select False)

σ〈q2〉(q1) @ d ⇓a s2

q1 @ d ⇓a ∅
(Select ∅)

σ〈q2〉(q1) @ d ⇓a ∅
q1 @ d ⇓a ∅

(Product ∅1)
q1 × q2 @ d ⇓a ∅

q2 @ d ⇓a ∅
(Product ∅2)

q1 × q2 @ d ⇓a ∅

q1@d⇓a {d1}∪s1 q2@d⇓a {d2}∪s2 {d1}×s2@d⇓a s3 s1×({d2}∪s2) @d⇓a s4
(Prod)

q1 × q2 @ d ⇓a {d1 ∗ d2} ∪ s3 ∪ s4

q1 @ d ⇓a {d1} ∪ s1 q2 @ d1 ⇓a {d2} ∪ s2 ./d
〈s2〉({d1}) @ d ⇓a s3 ./d

〈q2〉(s1) @ d ⇓a s4
(DJ)

./d
〈q2〉(q1) @ d ⇓a {d1 ∗ d2} ∪ s3 ∪ s4

q1 @ d ⇓a ∅
(DJ ∅1)

./d
〈q2〉(q1) @ d ⇓a ∅

q1 @ d ⇓a {d1} ∪ s1 q2 @ d1 ⇓a ∅ ./d
〈q2〉(s1) @ d ⇓a s2

(DJ ∅2)
./d

〈q2〉(q1) @ d ⇓a s2

q1 @ d ⇓a d1 d1 6= ∅
(Default ¬Null)

q1 || q2 @ d ⇓a d1

q1 @ d ⇓a ∅ q2 @ d ⇓a d2
(Default Null)

q1 || q2 @ d ⇓a d2

Figure 9 NRA Semantics. q @ d ⇓a d

4.3 Translating CAMP to NRA

There are two key mismatches between the evaluation of CAMP (introduced in Section 2) and
the evaluation of NRA that must be addressed by any translation. CAMP is parameterized
by both an environment and input data whereas NRA is parameterized only by input data.
Additionally, the output of CAMP is part of the lifted domain D? = D + err, allowing any
CAMP pattern to return a recoverable error. In contrast, NRA always returns data and has
no concept of recoverable errors.

Figure 10 presents a compiler from CAMP to NRA that addresses both of these mismatches.
The translation assumes (and preserves) a special encoding of both input and output to allow
the semantics of a CAMP pattern to be expressed in NRA. The input of a compiled pattern
is always a record with two components, E and D, storing the current environment and
data. The output is always a bag. This bag is guaranteed to be either empty (representing a
recoverable error) or a singleton of the data.

We will explain the translation starting with the simpler cases, not in the order presented.
The rule for constants is trivial. The translations of it and env are a simple lookup, since
they are both components of the input record.

Unary and binary operators ensure proper error propagation by taking advantage of the
invariant that the returned data is a bag with zero or one elements. Mapping an operation
over such a bag evaluates it on the data if present, and propagates the error otherwise
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JdK = {d}
J⊕pK = χ〈⊕In〉(JpK)

Jp1 ⊗ p2K = χ〈In.T1⊗In.T2〉
(
χ〈[T1:In]〉(Jp1K)× χ〈[T2:In]〉(Jp2K)

)
Jmap pK =

{
flatten

(
χ〈JpK〉

(
ρD/{T} ({[E : In.E] ∗ [T : In.D]})

))}
Jassert pK = χ〈[ ]〉

(
σ〈In〉(JpK)

)
Jp1||p2K = Jp1K||Jp2K

JitK = {In.D}
Jlet it = p1 in p2K = flatten

(
χ〈Jp2K〉

(
ρD/{T} ({[E : In.E] ∗ [T : Jp1K]})

))
JenvK = {In.E}

Jlet env += p1 in p2K = flatten
(
π〈Jp2K〉(

π〈[E:In.E2]∗[D:In.D]〉(
ρE2/{T2}(π〈In∗[T2:In.E+In.E1]〉(

ρE1/{T1} ({In ∗ [T1 : Jp1K]})))))
)

ρB/{A} (q) = χ〈In−A〉

(
./d〈χ〈[B:In]〉(In.A)〉(q)

)
Figure 10 Compiling CAMP to NRA.

(mapping ∅ to ∅). Binary operators store the two partial results in a record, then extract the
components and apply the operator.

The translations of assert and orElse (p1||p2) take advantage of the translation mapping
err to ∅. The selection operator is used for assert, along with a map that, in case of success,
replaces true with the expected empty record.

To simplify the translation of the remaining patterns (map, let it, and let env),
we introduce a derived operation, unnesting. ρB/{A} (q) in Figure 10 unnests the nested
bag stored in record attribute A, and renames its elements to attribute B. Given a bag{[
A : {a1, ..., an}, Ci : ci

]}
, unnest returns the bag

{[
B : a1, Ci : ci

]
, ...,

[
B : an, Ci : ci

]
}, using

an intermediate bag
{[
B : a1, A : {a1, ..., an}, Ci : ci

]
, ...,

[
B : an, A : {a1, ..., an}, Ci : ci

]}
cre-

ated via a dependent join, then subtracting out the superfluous A attribute. This intermediate
step is why we use a temporary name and have ρ rename as it unnests.

With unnesting in hand, let us look at the translation of map p from CAMP, which
assumes that the current input data is a bag. In the NRA translation, that means that In.D
is a bag. The compiler cannot, however, use the NRA map operation directly (χ〈JpK〉(In.D)),
as this would not preserve an important invariant of our translation: the input to a compiled
pattern must be a record with the data and the environment. Instead, the map translation
creates a singleton bag out of a record containing the environment (E) and the data bag.
For the data it uses a temporary name, T . Unnesting allows us to obtain the required input
data, a bag of records, each with the (appropriate part of the) data and the environment.
This input can now be used with map (χ). Since the result is a bag of singleton bags, we
finish the translation by flattening the result down to a bag of the data, and then lifting it
back into a singleton bag (to preserve the output invariant).

The let it and let env translations use the unnesting operation to similar effect. Note
that the translation of p1 is a bag with at most one element, so the map accomplishes the
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required sequencing and error propagation automatically. The let env rule needs to use
unnesting twice: once to calculate and unnest the environment returned by p1, and once to
unnest the concatenation of that environment with the current environment. Note that this
concatenation is done using the + operation, which returns ∅ if the environments are not
compatible. This is exactly the desired semantics, since ∅ in NRA represents err in CAMP.

4.4 Correctness
Theorem 5 asserts that the translation from CAMP to NRA in Figure 10 preserves semantics.
A CAMP pattern that evaluates to d becomes an NRA query that evaluates to {d} and a
CAMP pattern that evaluates to err becomes an NRA query that evaluates to ∅.

I Theorem 5 (Correctness of compiler from CAMP to NRA).

σ ` p@ d1 ⇓r d2 ⇐⇒ JpK @ ([E : σ] ∗ [D : d1]) ⇓a {d2}
σ ` p@ d1 ⇓r err ⇐⇒ JpK @ ([E : σ] ∗ [D : d1]) ⇓a ∅

This theorem is verified by the accompanying mechanization. The proof is straightforward,
relying on the invariants that the translation assumes and ensures. Due to the computational
nature of our mechanized semantics, much of the apparent complexity of the proofs is reduced
to simple computation. We also prove that given a CAMP pattern, the translated NRA
query is at most a constant factor larger.

5 NRA to NNRC

Having introduced CAMP and a translation from CAMP to NRA, we now wish to go in
the other direction, showing how to translate NRA back to CAMP. Rather than go directly
from NRA to CAMP, we stage the translation through the named nested-relational calculus
(NNRC), which provides a more declarative model and is well known to have the same
expressivity as NRA [34]. This section introduces NNRC and a translation from NRA to
NNRC. Section 6 completes the cycle, introducing a translation from NNRC back to CAMP.

Staging through NNRC allows us to split apart different aspects of the translation. As we
will see in Section 5.3, all of the dependent queries in NRA get translated into a single NNRC
construct, the comprehension. Section 6, which introduces a translation from NNRC back to
CAMP, can then focus on the comprehension, without needing to separately handle all the
dependent constructs provided by NRA. Taking this detour also allows us to mechanize the
well-known equivalence between NRA and NNRC (staging the translation through CAMP).

5.1 Named Nested Relational Calculus
We assume a sufficiently large set of variables {x, y, ...}. The calculus is similar to the one
used in [35], with a bag semantics.

I Definition 6 (NNRC syntax).

(exprs) e ::= x | d | ⊕e1 | e1 ⊗ e2 | let x = e1 in e2 | {e2 | x ∈ e1} | e1 ? e2 : e3

In this grammar, x is a variable, d is constant data and ⊕ and ⊗ are unary and binary
operators, as defined in Section 2.2. The let expression allows for dependent sequencing:
expression e1 is evaluated and its result bound to x in the environment, which is then used
to evaluate e2. The bag comprehension {e2 | x ∈ e1} first evaluates expression e1, producing
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σ(x) = d
(Variable)

σ ` x ⇓c d
(Constant)

σ ` d ⇓c d
σ ` e ⇓c d0 ⊕ d0 = d1

(Unary Operator)
σ ` ⊕e ⇓c d1

σ ` e1 ⇓c d1 σ ` e2 ⇓c d2 d1 ⊗ d2 = d3
(Binary Operator)

σ ` e1 ⊗ e2 ⇓c d3

σ ` e1 ⇓c d1 (x : d1, σ) ` e2 ⇓c d2
(Let)

σ ` let x = e1 in e2 ⇓c d2

σ ` e1 ⇓c ∅
(For ∅)

σ ` {e2 | x ∈ e1} ⇓c ∅
σ ` e1 ⇓c {d} ∪ s (x : d, σ) ` e2 ⇓c d0 σ ` {e2 | x ∈ s} ⇓c s0

(For)
σ ` {e2 | x ∈ e1} ⇓c {d0} ∪ s0

σ ` e1 ⇓c true σ ` e2 ⇓c d2
(If True)

σ ` e1 ? e2 : e3 ⇓c d2

σ ` e1 ⇓c false σ ` e3 ⇓c d3
(If False)

σ ` e1 ? e2 : e3 ⇓c d3

Figure 11 NNRC Semantics. σ ` e ⇓c d

a bag, then expression e2 is evaluated with x bound to the current element. The result of
the comprehension is a bag of these results. The conditional e1 ? e2 : e3 first evaluates e1; if
the result is true, it evaluates e2, otherwise it evaluates e3.

5.2 Semantics

An environment σ is a mapping from a finite set of variables to values. We write (x : d, σ)
for the environment σ extended with variable x mapped to data d. Figure 11 describes the
semantics of NNRC expressions using the judgment σ ` e ⇓c d, meaning: under environment
σ, expression e evaluates to d. The subscript c on the relation ⇓c stands for calculus. Unlike
CAMP and NRA, expressions are not queries over input data, but are parameterized solely
by their environment.

The rule for variables looks up the given variable in the environment and returns
the associated data. Constant expressions return the given constant, irrespective of the
environment. Unary and binary operator expressions evaluate the given expressions in the
current environment, and then apply the given operator to the results.

Let expressions evaluate the first expression in the current environment and then evaluate
the second expression in an environment enriched with a binding from the given variable to
the result of evaluating the first expression.

Comprehensions, {e2 | x ∈ e1}, are similar to let expressions, except that e1 returns a
bag, and e2 is evaluated with x bound to each element of that bag in turn. Rule For encodes
this recursion, evaluating e1 and then picking an element of the resulting bag and running e2
on it. The result is unioned with the evaluation of a comprehension of e2 over the remainder
of the bag. Rule For ∅ enables this recursion to terminate.

The rules for the final type of expression, the conditional, are straightforward. The first
expression is evaluated and its result used to determine which branch to evaluate.

5.3 Translation from NRA to NNRC

When compiling NRA queries to NNRC expressions, there are two main problems that need
to be addressed: the different contexts and the need for variable names.
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JdKx = d

JInKx = x

J⊕qKx = ⊕JqKx
Jq1 ⊗ q2Kx = Jq1Kx ⊗ Jq2Kx

Jχ〈q2〉(q1)Kx = {Jq2Kt | t ∈ Jq1Kx} t is fresh
Jσ〈q2〉(q1)Kx = flatten ({Jq2Kt ? {t} : ∅ | t ∈ Jq1Kx}) t is fresh
Jq1 × q2Kx = flatten ({{t1 ∗ t2 | t2 ∈ Jq2Kx} | t1 ∈ Jq1Kx}) t1 is fresh ∧ t2 is fresh

J./d〈q2〉(q1)Kx = flatten ({{t1 ∗ t2 | t2 ∈ Jq2Kt1} | t1 ∈ Jq1Kx}) t1 is fresh ∧ t2 is fresh
Jq1 || q2Kx = let t = Jq1Kx in ((t = ∅) ? Jq2Kx : t) t is fresh

Figure 12 Compiling NRA to NNRC.

NRA queries and NNRC expressions run in different contexts. NRA queries do not have
an environment, but are run against specified data. In contrast, NNRC expressions have
only an environment and no other implicit data. The translation from NRA queries to
NNRC expressions needs to store the input data for the query in the environment of the
compiled expression. We parameterize the translation with the variable used for this mapping
(subscript x in Figure 12).

The compiler also needs a way to manufacture variable names for use with NNRC let
expressions and comprehensions. To simplify the presentation, we assume that we have a way
to generate sufficiently fresh variables (variables that are distinct from any other variables
used in the expression). We call such variables fresh. We revisit this in Section 5.4.

Figure 12 presents a compiler from NRA queries to NNRC expressions. Since NNRC
provides declarative comprehensions, the compiler resembles a denotational semantics for
NRA. The translation translates the identity query, In, as returning the value of x, the
variable that holds the current data. The rest of the translation ensures that this association
is preserved. Constants are translated to constants, and the sub-queries of unary and binary
operator queries are translated and the specified operator reapplied.

The map query, χ〈q2〉(q1), is expressed as a straightforward comprehension using a fresh
variable t. The selection query σ〈q2〉(q1) is similarly translated to a comprehension. The
body of the comprehension either returns a singleton bag containing the element of the bag
returned by q1 or ∅. The result is thus a bag of (empty or singleton) bags, which is flattened
using the flatten operator.

Both the product q1 × q2 and the dependent join ./d〈q2〉(q1) are expressed as two nested
comprehensions. The resulting bag of bags is then flattened. The crucial difference between
them is which data is used in the translation of q2 in the inner comprehension. For the
product, the same data, bound to x, is used. For the dependent join, the variable used in the
outer comprehension is used, so the translation uses the current element of q1 as the current
data. This difference succinctly captures the dependency.

The final type of query, the default query, is translated into a conditional expression that
inspects the result t of q1, and evaluates q2 if it is ∅ or returns t otherwise.

The usage of let expressions when translating default is the main reason we extend the
traditional NNRC with let expressions. Existing work generally assumes that all the data
is a bag. In that case, the let expression is not needed, since in that case we can express
let x = e1 in e2 as flatten ({e2 | x ∈ {e1}}). However, that works only if we assume that e2
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returns a bag (otherwise the flatten may not even be well-typed). Since we did not want to
limit the data our programs manipulate, we elected to add in let expressions to handle the
case where the data may not be a bag.2

5.4 Correctness
The accompanying mechanization proves Theorem 7: our translation preserves semantics.
NRA query q against data d evaluates to the same result (or lack thereof) as its translation
into NNRC, Jq1Kx, with an environment that associates x with the input d.

I Theorem 7 (Correctness of compiler from NRA to NNRC).

If σ(x) = d1 then q @ d1 ⇓a d2 ⇐⇒ σ ` JqKx ⇓c d2

The proof of Theorem 7 is straightforward, taking advantage of the previously mentioned
similarity between the denotational semantics of NRA and the translation to NNRC. The
proof essentially formalizes and verifies that correspondence.

The main additional challenge in the mechanization relates to the use of fresh variables.
In Figure 12 we assumed the existence of fresh, which produces a “sufficiently unique”
variable. In the mechanized semantics, this is formalized as a variety of freshness functions
that produce variables fresh with respect to the relevant parts of sub-expressions and the
input variable. The proof then verifies that each picked variable is indeed sufficiently fresh.
Full details are included in the accompanying mechanization.

The mechanization also establishes that the compiler in Figure 12 produces a pattern
at most a constant times larger than the input NRA. As a consequence, the compiler can
clearly be observed to run in time polynomial in the input size.

6 NNRC to CAMP

This section completes the cycle from Figure 2, showing how to compile NNRC, as defined
and presented in Section 5, back into the CAMP language from Section 2. This establishes
the equivalence of all the languages, exhibiting compilers from CAMP to NRA to NNRC
and back to CAMP. All these compilers cause at most a linear increase in code size, so the
result of a full cycle of compilation yields a program semantically equivalent to the original
and at most a constant times larger.

6.1 Translation from NNRC to CAMP
Figure 13 presents a compiler from NNRC to CAMP. Compilation is mostly straightforward,
using CAMP’s environment (env) as a target for NNRC’s environment (σ). Since NNRC
does not represent a query over data, the compilation does not need it except as part of
the translation scheme. In particular, a compiled NNRC expression returns the same result
regardless of the input data to the pattern (verified in the mechanization).

We need to be careful of shadowing (i.e., an inner variable definition hiding the previous
definition for a variable with the same name), however, as the two languages’ environments
have different semantics when a variable appears twice. In CAMP, adding a variable to the
environment ensures that its value is equal to the value of the previous binding for that

2 Note that our compilation of CAMP to NRA (Section 4.3) actually enforces this restriction, since it
lifts all data into a singleton bag. Nonetheless, we prefer the more general presentation.
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JxK = env.x
JdK = d

J⊕eK = ⊕JeK

Je1 ⊗ e2K = Je1K⊗ Je2K

Jlet x = e1 in e2K = let it = Je1K in let env += [x : it] in Je2K

J{e2 | x ∈ e1}K = let it = Je1K in mapall (let env += [x : it] in Je2K)
Je1 ? e2 : e3K = let env += [x : Je1K] in x is fresh

((¬¬env.x) ∧ Je2K) || ((¬env.x) ∧ Je3K)

Figure 13 Compiling NNRC to CAMP.

variable. To resolve this, we disallow shadowing, and assume that all comprehensions and let
bindings in an NNRC expression use distinct variable names. It is always possible to rename
the variables used in comprehensions and let expressions so that they are all distinct. This is
verified by our mechanization.

Compiling variables, data, and operators is straightforward, using env to explicitly access
the environment as needed. The let expression uses an outer let it to handle the required
dependent sequencing, and then uses let env to add the calculated data to the environment,
bound to the requested variable. As this variable is assumed unique (in the program), the
compatibility clause of let env will always be satisfied.

Comprehensions ({e2 | x ∈ e1}) are compiled similarly to let sequencing expressions,
except that mapall3 is used to map Je2K over each element in the collection produced by
Je1K, with the variable x bound to the appropriate element.

Compiling the conditional expression e1 ? e2 : e3 is slightly more complicated, as the
pattern language only provides a (single-branched) orElse pattern (p1||p2), which handles
errors. We use a let env pattern to evaluate and remember the compiled first expression.
We assert that it evaluated to true and sequence the true branch e2 with that assertion. If
the assertion fails, that branch will not be executed. If this series of patterns fails, we use
the orElse pattern to recover. In this case, either the initial assertion failed (e1 either failed
to match or did not return true), or e2 failed. To distinguish among these possibilities, the
recovery branch of the orElse first checks that the negation of (the remembered value of)
e1 is true. If it is true, then e3 is evaluated. Since this branch ensures that e1 evaluates to a
Boolean (since the negation operation is defined only on Booleans), we use double negation
to enforce that property for the first branch as well.

When using this let statement we need to be careful that we always pick a “fresh”
(sufficiently unique) variable name. As we discussed earlier in the context of shadowing, the
environment used by CAMP enforces that variables bound multiple times are all bound to
the same data. This is not the semantics that we want. To avoid problems with duplicate
variables in the source NNRC, we employed alpha-renaming. To avoid a similar type of
problem in our compilation, we assume a way to generate a fresh variable name that does
not conflict with any other variable name. This is used both in our translation of conditional
expressions, and in our previous definition of mapall.

3 Recall that mapall as well as the ∧ operation were defined in Figure 7.
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6.2 Correctness

The mechanization proves Theorem 8, verifying that the compiler is correct.

I Theorem 8 (Correctness of compiler from NNRC to CAMP). Assuming that σ is well-formed
(formalized in the accompanying mechanization):

σ ` e ⇓c d ⇐⇒ σ ` JeK @ d0 ⇓r d

Note that d0 is unconstrained, as a compiled NNRC expression does not access it.4

The proof is staged: we first prove correct a naive compiler that does not use let env or
fresh variables, instead performing redundant computation. We then prove it produces a
pattern semantically equivalent to the pattern produced by the compiler in Figure 13, where
redundant computation is avoided to ensure the compiler preserves the original complexity.
Semantics preservation of our compiler follows by composing these results.

Once more, formalizing these proofs requires a proper treatment of freshness. To do this,
the mechanization formalizes the concept of free and bound variables, and provides a way
to obtain a new variable that is not in a provided set. Ensuring that all required freshness
conditions are met is a major challenge of the proofs and mechanization, requiring many
well-formedness conditions to be defined on the environment and verified as preserved by the
induction. Our mechanization also provides a method “unshadow” that renames variables in
an NNRC expression to ensure that all bound variables are distinct (both within expression
and from a provided environment). The mechanization proves that this transformation
preserves semantics. Thus, our actual compiler runs “unshadow” and compiles the result,
allowing all NNRC expressions to be compiled.

We have also mechanized a proof that the compiler in Figure 13 produces a pattern at
most a constant times larger than the input NNRC. The compiler also clearly runs in time
polynomial in the input size, although this property is not mechanized.

7 Type Checking

This paper has introduced a new language, CAMP, as well as formalized variants of existing
languages, NRA and NNRC. All the semantics presented were partial; ill-typed programs
may not evaluate. All of our compilers were careful to translate ill-typed programs into
ill-typed programs. The correctness theorems all guarantee that a translation can evaluate
successfully if and only if the original could evaluate successfully.

This section introduces types for data and operators (Section 7.1) and formalizes the
type systems for CAMP (Section 7.2), NRA (Section 7.3), and NNRC (Section 7.4). Each
type system is sound: well-typed programs always evaluate to a result. Note that in the
case of CAMP, a recoverable error is a valid result of pattern matching. Furthermore, as
formalized in Section 7.5, all of our compilers are type-preserving. Well-typed programs are
compiled to well-typed programs (with an associated type) and vice versa.

Section 7.6 applies this result to type inference for the languages. In particular, this lets
us build on related work [35] to equip CAMP with a polymorphic type inference algorithm,
and prove that polymorphic type inference for CAMP is NP-complete.

4 This is of course verified by the accompanying mechanization.
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7.1 Types for Data Model and Operators
Our types for data include primitive types NIL, INT, BOOL, and STRING. The type of a
(homogeneous) bag with elements of type τ is written {τ}, punning the notation used for
data bags. Similarly, [Ai : τi] is the type of a record with attributes Ai, each with data of
type τi. We use the notation d :d τ to mean that data d has type τ .

As with data records, we define a notion of compatibility for record types. Two type
records are considered compatible if any overlapping attributes have the same type. Note
that two records can have compatible types but incompatible data, causing recoverable match
failure. We define ∗ and + as for data records: [Ai : τAi

] ∗ [Bj : τBj
] concatenates two record

types, favoring the types of A’s attributes in case of conflict. Compatible concatenation,
[Ai : τAi

] + [Bj : τBj
], also concatenates the record types, but is defined only if the two

records are compatible.
The types of the unary operators, written ⊕ :o τ1 → τ2, written here for a given value d

of type τ , are as follows:

identity d :o τ → τ

¬d :o BOOL→ BOOL

{d} :o τ → {τ}
#d :o {τ} → INT

flatten d :o {{τ}} → {τ}
[A :d] :o τ → [A : τ ]
d.A :o [A : τ,Bi : τi]→ τ

d−A :o [A : τ,Bi : τi]→ [Bi : τi]

The types of the binary operators, written ⊗ :o τ1 → τ2 → τ3, given here for two given
values d1 and d2 of types τ1 and τ2 respectively, are as follows:

d1 = d2 :o τ → τ → BOOL
d1 ∈ d2 :o τ → {τ} → BOOL
d1 ∪ d2 :o {τ} → {τ} → {τ}
d1 ∗ d2 :o [Ai : τAi ]→ [Bj : τBj ]→ [Ai : τAi ] ∗ [Bj : τBj ]
d1 + d2 :o [Ai : τAi

]→ [Bj : τBj
]→ {[Ai : τAi

] + [Bj : τBj
]}

7.2 CAMP Type System
Figure 14 presents a type system for CAMP. Where the CAMP semantics use a data
environment σ, the CAMP type system uses a type context Γ. And where the CAMP
semantics use an input datum it, the types of CAMP constructs are functions from an input
type τ0. We employ the same environment reification at the type level as we did for data,
allowing the context Γ to be reified as a record type. The environment and type context can
thus be related via a data typing relation, σ :d Γ.

Most of the type rules are standard. We assume that err can be given any type, and
so the rules do not need to account for recoverable errors, since err unifies with the type
ascribed when a pattern does not have a recoverable error.

The Assert rule has an empty record type since assert returns an empty record if the
assertion holds. The env rule reifies the context as a record type, just like the semantics reify
the environment. The Let env rule checks the type of the second pattern with a context
enriched by the bindings in the type record that type the first expression. Recall that the
“+” operator ensures that these new bindings are compatible with the current context.

Theorem 9 asserts that the type system for CAMP given in Figure 14 is sound with
respect to the semantics given in Figure 3. Given a well typed pattern, evaluating that
pattern with an environment and input data that are appropriately typed will always yield a
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d :d τ
(Constant)

Γ ` d :r τ0 → τ

Γ ` p :r τ0 → τ1 ⊕ :o τ1 → τ2
(Unary Operator)

Γ ` ⊕p :r τ0 → τ2

Γ ` p1 :r τ0 → τ1 Γ ` p2 :r τ0 → τ2 ⊗ :o τ1 → τ2 → τ3
(Binary Operator)

Γ ` p1 ⊗ p2 :r τ0 → τ3

Γ ` p :r τ0 → τ1
(Map)

Γ `map p :r {τ0} → {τ1}
Γ ` p :r τ0 → BOOL

(Assert)
Γ ` assert p :r τ0 → [ ]

Γ ` p1 :r τ0 → τ1 Γ ` p2 :r τ0 → τ1
(OrElse)

Γ ` p1||p2 :r τ0 → τ1
(it)

Γ ` it :r τ0 → τ0

Γ ` p1 :r τ0 → τ1 Γ ` p2 :r τ1 → τ2
(Let it)

Γ ` let it = p1 in p2 :r τ0 → τ2
(env)

Γ ` env :r τ0 → Γ

Γ ` p1 :r τ0 → [Ai : τAi ]
(
Γ + [Ai : τAi ]

)
` p2 :r τ0 → τ2

(Let env)
Γ ` let env += p1 in p2 :r τ0 → τ2

Figure 14 Type rules for CAMP. Γ ` p :r τ0 → τ1

result – data or a recoverable error. If the result is data, then it will be appropriately typed.
The proof proceeds by induction and is included in the mechanization.

I Theorem 9 (Soundness of type system for CAMP).

if (Γ ` p :r τ0 → τ1) ∧ (σ :d Γ) ∧ (d0 :d τ0) then ∃d1?, (σ ` p@ d0 ⇓r d1?) ∧ (d1? :d τ1)

7.3 NRA Type System
Figure 15 presents a type system for NRA (defined in Section 4.1). A well-typed query
has an input type τ0 and an output type τ1, written q :a τ0 → τ1. Note how the difference
between product and dependent join manifests as the difference in the input type of q2. This
is analogous to their different translations to NNRC in Figure 12.

The type system for NRA given in Figure 15 is sound with respect to the semantics
given in Figure 9. Well typed queries, when applied to appropriately typed input data, will
always evaluate successfully with appropriately typed output data. This is formalized by
Theorem 10, which is verified in the accompanying mechanization.

I Theorem 10 (Soundness of type system for NRA).

if (q :a τ0 → τ1) ∧ (d0 :d τ0) then ∃d1, (q @ d0 ⇓a d1) ∧ (d1 :d τ1)

7.4 NNRC Type System
Figure 16 presents a type system for the third language under discussion, NNRC (introduced
in Section 5.1). This type system uses a type context to type an expression, similarly to
CAMP. Unlike our system for CAMP, however, we do not need to reify contexts as records.
Instead, we treat contexts as ordered lists. Adding x with type τ to the context Γ, written
(x : τ,Γ), always succeeds, masking any previous binding for x. An NNRC environment σ
has type Γ, written σ : Γ, if corresponding elements have the same variables, and the data in
σ is typed by the corresponding type in Γ.

This type system for NNRC (Figure 16) is sound with respect to the semantics for NNRC
given in Figure 11. Evaluating a well typed expression in an appropriately typed context
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(ID)
In :a τ0 → τ0

d :d τ
(Constant)

d :a τ0 → τ

q :a τ0 → τ1 ⊕ :o τ1 → τ2
(Unary Operator)

⊕q :a τ0 → τ2

q1 :a τ0 → τ1 q2 :a τ0 → τ2 ⊗ :o τ1 → τ2 → τ3
(Binary Operator)

q1 ⊗ q2 :a τ0 → τ3

q1 :a τ0 → {τ1} q2 :a τ1 → τ2
(Map)

χ〈q2〉(q1) :a τ0 → {τ2}
q1 :a τ0 → {τ1} q2 :a τ1 → BOOL

(Select)
σ〈q2〉(q1) :a τ0 → {τ1}

q1 :a τ0 → {[Ai : τAi ]} q2 :a τ0 → {[Bj : τBj ]}
(Product)

q1 × q2 :a τ0 → {[Ai : τAi ] ∗ [Bj : τBj ]}

q1 :a τ0 → {[Ai : τAi ]} q2 :a [Ai : τAi ]→ {[Bj : τBj ]}
(DJ)

./d
〈q2〉(q1) :a τ0 → {[Ai : τAi ] ∗ [Bj : τBj ]}

q1 :a τ0 → {τ1} q2 :a τ0 → {τ1}
(Default)

q1 || q2 :a τ0 → {τ1}

Figure 15 Type rules for the Nested Relational Algebra. q :a τ0 → τ1

(Variable)
Γ ` x :c Γ(x)

d :d τ
(Constant)

Γ ` d :c τ
Γ ` e :c τ1 ⊕ :o τ1 → τ2

(Unary Operator)
Γ ` ⊕e :c τ2

Γ ` e1 :c τ1 Γ ` e2 :c τ2 ⊗ :o τ1 → τ2 → τ3
(Binary Operator)

Γ ` e1 ⊗ e2 :c τ3

Γ ` e1 :c τ1 (x : τ1,Γ) ` e2 :c τ2
(Let)

Γ ` let x = e1 in e2 :c τ2

Γ ` e1 :c {τ1} (x : τ1,Γ) ` e2 :c τ2
(For)

Γ ` {e2 | x ∈ e1} :c {τ2}

Γ ` e1 :c BOOL Γ ` e2 :c τ Γ ` e3 :c τ
(If)

Γ ` e1 ? e2 : e3 :c τ

Figure 16 Type rules for the Named Nested Relational Calculus. Γ ` e :c τ

will always succeed with appropriately typed data. This is formalized by Theorem 11, which
is verified in the accompanying mechanization.

I Theorem 11 (Soundness of type system for NNRC).

if (Γ ` e :c τ) ∧ (σ :d Γ) then ∃d, (σ ` e ⇓c d) ∧ (d :d τ)

7.5 Type Preservation

As mentioned earlier, all our compilers are semantics preserving. In addition to preserving
output data upon successful evaluation, they also preserve errors. A compiled program
evaluates successfully if and only if the source program does.

All the compilers presented in this paper also preserve types. This is formalized in
Theorem 12 and verified in the accompanying mechanization. This theorem asserts that the
compilers preserve types in both directions: well-typed source programs guarantee well-typed
compiled programs and well-typed compiled programs can only result from well-typed source
programs. The forwards direction is the more traditional type preservation result, and ensures
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that type-checking the source program suffices. We will discuss the backwards direction in
Section 7.6.

I Theorem 12 (Type Preservation). Assuming that Γ is well-formed (formalized in the
accompanying mechanization):

CAMP↔NRA : Γ ` p :r τ0 → τ1 ⇔ JpK :a [E : Γ, D : τ0]→ {τ1}
NRA ↔NNRC: if Γ(x) = τ0 then q :a τ0 → τ1 ⇔ Γ ` JqKx :c τ1
NNRC↔CAMP: Γ ` e :c τ1 ⇔ Γ ` JeK :r τ0 → τ1

The accompanying mechanization formalizes the definition of well-formedness, which is
needed to ensure that the context does not interfere with the variables introduced by the
translations. We have chosen to omit these details from the paper, leaving them to the
accompanying mechanization. The empty context is always well-formed.

For all of the compilations, when proving type preservation, it is helpful to prove that
the typing rules are generally invertible. For the translation from CAMP to NRA, it is also
helpful to derive an (invertible) type rule for the unnesting operator from Figure 10:

q : τ0 → {[A : {τA}, Ci : τCi ]} (Unnest)
ρB/{A} (q) : τ0 → {[B : τA, Ci : τCi ]}

In Section 6.1 we observed that the translation from NNRC to CAMP produces a pattern
that ignores the input. This is apparent in the type preservation theorem, which allows
the input type of an NNRC expression compiled to CAMP to be ascribed any type. This
polymorphic type expresses that the CAMP pattern never looks at the input.

7.6 Type Inference
The results in Theorem 12 are bidirectional. The forwards direction is a typical statement of
type preservation. As a statement about type checking, the backwards direction of these
theorems are not very interesting. Why type check the results of a compilation when we
could just type check the source? However, the bidirectionality of Theorem 12 allows us to
connect not just type checking between the languages, but also type inference. Because our
compilers all run in polynomial time and space, Theorem 12 ensures that type inference for
one language can be used for another.

In particular, we can use this to build on related work and derive a polymorphic type
inference algorithm for CAMP. Given a CAMP pattern p, we compile it to NRA using the
compiler introduced in Section 4.3. We then compile the resulting NRA to NNRC using
the compiler from Section 5.3. We then apply the polymorphic type inference algorithm
for NNRC introduced by Van den Bussche and Vansummeren [35] and use Theorem 12 to
recover the type of the original CAMP pattern. (Note that if a compilation from CAMP to
NRA is well-typed, it must have a bag type, so the theorem indeed allows us to read any
possible inferred type “backwards” to CAMP.)

Theorem 12 allows us to take advantage of Van den Bussche and Vansummeren’s NP-
completeness result for polymorphic type inference [35], proving that polymorphic type
inference for CAMP is NP-complete using a standard reduction argument. Starting with an
NNRC expression, the compiler introduced in Section 6.1 can, in polynomial time, compile
it to a CAMP pattern that is polynomial in the size of the original expression. Thus, any
polynomial time polymorphic type inference algorithm for CAMP would yield a polynomial
time polymorphic type inference algorithm for NNRC. Since polymorphic type inference for
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NNRC is NP-complete, this means that polymorphic type inference for CAMP (and NRA)
is also NP-complete.

8 Related Work

Production rule languages hark back to Forgy’s seminal work on OPS5 [19]. OPS5 already
has most of the features we formalize in CAMP, notably matching against a working memory
using patterns in the context of a subject value and an environment of bound variables.
Production rule systems are usually implemented with (variants of) the Rete algorithm [20],
which relies on its own internal representation of rules and objects. Modern production rule
languages and systems include Drools [5] and JRules [24], which extend the ideas from OPS5
with aggregation and support Java objects in working memory. In contrast to OPS5, Drools,
and JRules, we show how to translate rules to NRA enabling the use of algorithms for scalable
evaluation of aggregates [33], as well as execution over either a relational store or a map-
reduce framework [8]. Recently proposed distributed extensions for rules languages [10, 30]
do not consider support for aggregation and do not address scalability issues.

Datalog is without a doubt the most studied rules language in the database area and
the relationship between Datalog and the relational algebra has been studied in depth [4].
As in production systems, Datalog relies on declarative logic-based rules, but with fixpoint
semantics and restrictions (e.g., actions can only insert new facts) that guarantee termination.
CAMP focuses on capturing production rules semantics, including pattern matching for
complex objects, with negation and aggregation. Similarly to production rules, existing
Datalog extensions included complex objects [2], negation [3], and aggregation [15, 28].
The .QL project at Semmle seems closest to our approach in that it includes both a type
system [17] and investigates compilation into SQL for execution [32]. To the best of our
knowledge, translations of (fragments of Datalog) to NRA have not been investigated and
could represent an interesting direction for future work.

Our formalization uses the NRA originally developed in [1, 6, 14, 31] and NNRC [34, 35].
Cluet and Moerkotte show how to translate nested queries on object-oriented data into
NRA [14] and extensions to relational optimization; Abiteboul and Beeri explore the expressive
power of NRA [1], and Ré et al. translate XQuery to NRA [31]. While some of the details
of NRA differ between these papers, they all extend the relational algebra with dependent
operators and in particular a form of dependent join to handle nested data and queries.
Tannen et al. introduce NNRC as a language for nested relations, and demonstrate its
equivalence to NRA [34]. Van den Bussche and Vansummeren present a polymorphic type
inference algorithm for NNRC [35], but not for NRA.

There have been few attempts at mechanized proofs for aspects of database languages
and implementation [7, 12, 26]. Malecha et al. [26] and Benzaken et al. [7] mechanize the
relational algebra in Coq. In contrast to our work, neither of these handles nesting nor
formalizes a type system. Cheney and Urban formalize a subset of XQuery in Isabelle [12].
While they handle nesting and formalize a type system, they do not use relational algebra.

Many programming languages feature pattern matching. Patterns without nested objects
are at the center of Prolog [13]. Pattern matching is also central to functional languages with
algebraic data types. Haskell, for example, extends this with support for views extending
matching to other types [37]. Matchete unifies matching on algebraic types with other pattern
languages such as regular expressions [23]. Stratego matches an implicit datum for program
transformation [36]. While algebraic types can nest and are thus closer to production rule
languages, patterns in languages like Haskell scrutinize only one datum at a time. In contrast,
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JMatch offers pattern matching for Java and combines it with iteration [25]. Thorn takes this
further, allowing pattern matching in many control constructs [9]. However, those control
constructs exist outside the pattern, less tightly integrated with matching as in production
rule languages.

9 Conclusion

This paper introduces CAMP, a calculus that captures the essence of pattern matching and
aggregation in production rule languages. It presents translations from CAMP to NRA to
NNRC and back to CAMP, thus demonstrating that they are all equally expressive. This is
important, because it shows a way to implement production rule languages over (nested)
relational stores, while taking advantage of database techniques for efficient, distributed,
and incremental execution. This paper includes theorems for correctness, type preservation,
and size preservation of all translations, and the accompanying mechanization includes
machine-checked proofs for all theorems. This not only validates our new results for CAMP,
but also adds rigor to folklore results on NRA and NNRC that had not previously been
mechanized.
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