
Confluence of Orthogonal Nominal Rewriting
Systems Revisited
Takaki Suzuki, Kentaro Kikuchi, Takahito Aoto, and
Yoshihito Toyama

RIEC, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
{takaki, kentaro, aoto, toyama}@nue.riec.tohoku.ac.jp

Abstract
Nominal rewriting systems (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay, 2007)
have been introduced as a new framework of higher-order rewriting systems based on the nominal
approach (Gabbay & Pitts, 2002; Pitts, 2003), which deals with variable binding via permutations
and freshness conditions on atoms. Confluence of orthogonal nominal rewriting systems has been
shown in (Fernández & Gabbay, 2007). However, their definition of (non-trivial) critical pairs has
a serious weakness so that the orthogonality does not actually hold for most of standard nominal
rewriting systems in the presence of binders. To overcome this weakness, we divide the notion
of overlaps into the self-rooted and proper ones, and introduce a notion of α-stability which
guarantees α-equivalence of peaks from the self-rooted overlaps. Moreover, we give a sufficient
criterion for uniformity and α-stability. The new definition of orthogonality and the criterion offer
a novel confluence condition effectively applicable to many standard nominal rewriting systems.
We also report on an implementation of a confluence prover for orthogonal nominal rewriting
systems based on our framework.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Nominal rewriting, Confluence, Orthogonality, Higher-order rewriting,
α-equivalence

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.301

1 Introduction

Expressive formal systems such as systems of predicate logics, λ-calculi, process calculi, etc.
need variable binding. Nominal rewriting [5][3] is a framework that extends first-order term
rewriting by a binding mechanism. Studies of nominal rewriting are preceded by extensive
studies of a nominal approach to terms and unifications [6][13][17]. A distinctive feature
of the nominal approach is that α-conversion and capture-avoiding substitution are not
relegated to meta-level—they are explicitly dealt with at object-level. This makes nominal
rewriting significantly different from classical frameworks of higher-order rewriting systems
such as Combinatory Reduction Systems [8] and Higher-Order Rewriting Systems [9] based
on ‘higher-order syntax’.

Confluence is a fundamental property of rewriting systems. As expected, the first results
on confluence of nominal rewriting systems (NRSs for short) are generalisations of two
classical results on confluence, namely Rosen’s criterion (orthogonal systems are confluent)
and Knuth-Bendix’s criterion (terminating and locally confluent systems are confluent) [3].
We notice, however, that the confluence criterion in [3] for orthogonal NRSs is not applicable
to standard NRSs—as the orthogonality in [3] contains the emptiness of the root overlaps of
equivariant rules obtained from the same rule (self-rooted overlaps), which does not hold if

© Takaki Suzuki, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 301–317

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.301
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

302 Confluence of Orthogonal Nominal Rewriting Systems Revisited

the system contains a rewrite rule with binders (cf. Remark at the end of Subsection 3.2).
Moreover, in contrast to the first-order case, one cannot skip the joinability check of self-
rooted overlaps (cf. Example 19)—thus, if one relaxes the definition of orthogonality to omit
such overlaps, then confluence is not guaranteed.

The contributions of this paper are summarised as follows:

Our rewrite relation does not allow α-equivalent terms on the result of rewriting. Accord-
ingly, we come to study confluence properties of rewriting modulo α-equivalence, which
enables us to perform fine-grained analysis where confluence modulo and Church-Rosser
modulo are different properties. Such an approach was suggested in [19, page 220].

We overcome the above-mentioned defect of the orthogonality in [3] by introducing
a notion of α-stability, which guarantees α-equivalence of peaks from the self-rooted
overlaps. We prove Church-Rosser modulo α-equivalence for the class of orthogonal
nominal rewriting systems that are uniform and α-stable.

We introduce a notion of abstract skeleton preserving (ASP) as a sufficient criterion for
uniformity and α-stability. To show the α-stability of ASP rewrite rules, we prove some
lemmas on the system of α-equivalence in the nominal setting, which seem to be new.

We report on an implementation of a confluence prover for nominal rewriting systems
based on our criterion, that is, orthogonality and ASP. To check the emptiness of the
proper overlaps, we use equivariant unification [2] with one permutation variable.

While a rewrite system in [5][3] is defined as an infinite set of rewrite rules that is closed
under equivariance, we define a rewriting system as a finite set of rewrite rules. Instead of
appealing to the property of equivariance, we specify a permutation as a parameter in each
rewrite relation. (The idea of specifying a permutation as a parameter is found also in [4].)
This allows us to make a discussion on avoiding capture of a free atom (cf. the latter part of
Example 10) without referring to the property of equivariance.

As regards related work, Vestergaard and Brotherston [18][19] study a confluence proof
of λ-calculus with variable names, not in the nominal setting, where α-conversion is seriously
taken into account. Their definition of confluence is that of the reflexive transitive closure
of →α ∪ →β . Formalisation of a confluence proof of first-order orthogonal term rewriting
systems has been studied, e.g. in [11]. Our proof of Church-Rosser modulo α-equivalence
can be seen as an extension of an inductive confluence proof of first-order orthogonal term
rewriting systems (e.g. [16, Section 4.7] and [7]).

The organisation of the paper is as follows. In Section 2, we explain basic notions and
notations of nominal rewriting. In Section 3, we discuss problems on confluence in nominal
rewriting, and prove confluence of a class of nominal rewriting systems. In Section 4, we give
a sufficient criterion for the class, and conclude in Section 6.

2 Nominal rewriting

Nominal rewriting [5][3] is a framework that extends first-order term rewriting by a binding
mechanism. In this section, we redefine nominal rewriting systems as finite sets of rewrite
rules, and introduce a notion of rewrite relation that is related to but different from the rewrite
relation defined in [5][3]. In the subsequent sections, we will study confluence properties on
our notion of rewrite relation.

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 303

2.1 Nominal terms
First, we introduce notions and notations concerning nominal terms.

A nominal signature Σ is a set of fixed arity function symbols ranged over by f, g,
We fix a countably infinite set X of variables ranged over by X,Y, Z, . . . , and a countably
infinite set A of atoms ranged over by a, b, c, . . . , and assume that Σ, X , and A are pairwise
disjoint. Unless otherwise stated, different meta-variables for objects in Σ, X , or A denote
different objects. A swapping is a pair of atoms, written (a b). Permutations π are bijections
on A such that the set of atoms for which a 6= π(a) is finite. Permutations are represented
by lists of swappings applied in the right-to-left order. For example, ((b c)(a b))(a) = c,
((b c)(a b))(b) = a, ((b c)(a b))(c) = b. We write Id for the identity permutation, π−1 for the
inverse of π, and π ◦ π′ for the composition of π′ and π.

Nominal terms, or simply terms, are generated by the grammar

t, s ::= a | π·X | [a]t | f t | (t1, . . . , tn)

and called, respectively, atoms, moderated variables, abstractions, function applications
(which must respect the arity of the function symbol) and tuples. We abbreviate Id·X as
X if there is no ambiguity. We write f () as simply f . An abstraction [a]t is intended
to represent t with a bound. The set of free atoms occurring in t, denoted by FA(t), is
defined as follows: FA(a) = {a}; FA(π·X) = ∅; FA([a]t) = FA(t) \ {a}; FA(f t) = FA(t);
FA((t1, . . . , tn)) =

⋃
i FA(ti). We write V (t)(⊆ X) for the set of variables occurring in t. A

linear term is a term in which any variable occurs at most once.

I Example 1. A nominal signature for the λ-calculus has two function symbols lam and
app with arity 1 and 2, respectively. The nominal term app(lam([a]lam([b]app(a,X))), a)
represents the λ-term (λa.λb.aX)a in the usual notation. Here X is a (meta-level) variable
which can be instantiated by another term possibly with free atoms a and b. For this term t,
we have FA(t) = {a} and V (t) = {X}. J

Positions are finite sequences of positive integers. The empty sequence is denoted by ε. The
set of positions in a term t, denoted by Pos(t), is defined as follows: Pos(a) = Pos(π·X) = {ε};
Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)}∪{ε}; Pos((t1, . . . , tn)) =

⋃
i{ip | p ∈ Pos(ti)}∪{ε}.

The subterm of t at a position p ∈ Pos(t) is written as t|p. For each X ∈ V (t), we define
PosX(t) = {p ∈ Pos(t) | ∃π. t|p = π·X}, and the set of variable positions in t is defined by
PosX (t) =

⋃
X∈V (t) PosX(t). The set of atom positions in t is defined by PosA(t) = {p ∈

Pos(t) | ∃a ∈ A. t|p = a}, and we define PosXA(t) = PosX (t) ∪ PosA(t).
A context is a term in which a distinguished function symbol � with arity 0 occurs. The

term obtained from a context C[] by replacing each � at positions pi by terms ti is written
as C[t1, . . . , tn]p1,...,pn or simply C[t1, . . . , tn].

Next, we define two kinds of permutation actions, which operate on terms extending a
permutation on atoms. These actions are used to define substitution, α-equivalence and
rewrite relation for nominal rewriting systems. The first permutation action, written π·t, is
defined inductively by: π·a = π(a); π·(π′·X) = (π ◦ π′)·X; π·(t1, . . . , tn) = (π·t1, . . . , π·tn);
π·([a]t) = [π·a](π·t); π·(f t) = f π·t. The second permutation action, written tπ, is defined
by: aπ = π(a); (π′·X)π = (π ◦ π′ ◦ π−1)·X; (t1, . . . , tn)π = (tπ1 , . . . , tπn); ([a]t)π = [aπ](tπ);
(f t)π = f tπ. The difference consists in the clause for moderated variables. In particular,
when π′ = Id, π is suspended before X in the first action as π·(Id·X) = (π ◦ Id)·X = π·X,
while in the second action π has no effect as (Id·X)π = (π ◦ Id ◦ π−1)·X = Id·X.

A substitution is a map σ from variables to terms such that the set {X ∈ X | σ(X) 6= X}
is finite. Substitutions act on variables, without avoiding capture of atoms. We write tσ for

RTA 2015

304 Confluence of Orthogonal Nominal Rewriting Systems Revisited

∇ ` a#b

∇ ` a#[a]t

∇ ` a#t
∇ ` a#f t

∇ ` a#t
∇ ` a#[b]t

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#(t1, . . . , tn)

π−1·a#X ∈ ∇
∇ ` a#π·X

Figure 1 Rules for freshness constraints.

∇ ` a ≈α a

∇ ` t ≈α s
∇ ` [a]t ≈α [a]s

∇ ` t ≈α s
∇ ` f t ≈α f s

∇ ` (a b)·t ≈α s ∇ ` b#t
∇ ` [a]t ≈α [b]s

∇ ` t1 ≈α s1 · · · ∇ ` tn ≈α sn
∇ ` (t1, . . . , tn) ≈α (s1, . . . , sn)

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ ` π·X ≈α π′·X

Figure 2 Rules for α-equivalence.

the application of σ on t. Note here that by replacing X of a moderated variable π·X in t
by σ(X), a permutation action π·(σ(X)) occurs. For a permutation π and a substitution σ,
we define the substitution π·σ by (π·σ)(X) = π·(σ(X)).

2.2 α-equivalence and nominal rewriting systems
The distinctive feature of nominal rewriting is that it is equipped with a mechanism to
avoid accidental capture of free atoms on the way of rewriting. This is partly achieved by
α-conversion built in the matching process of the LHS of a rule and a redex involving also
permutations (cf. Example 10).

In this subsection, we first recall the notion of α-equivalence in the nominal setting. This
is different from α-equivalence in the traditional sense in that equivalence between terms is
discussed under assumptions on the freshness of atoms in variables.

A pair a#t of an atom a and a term t is called a freshness constraint. Intuitively, this
means that a does not occur as a free atom in t, including the cases where the variables
in t are instantiated by other terms. A finite set ∇ ⊆ {a#X | a ∈ A, X ∈ X} is called a
freshness context. For a freshness context ∇, we define V (∇) = {X ∈ X | ∃a. a#X ∈ ∇},
∇π = {aπ#X | a#X ∈ ∇}, and ∇σ = {a#σ(X) | a#X ∈ ∇}.

The rules in Figure 1 defines the relation ∇ ` a#t, which means that a#t is satisfied
under the freshness context ∇. It can be seen that a /∈ FA(t) whenever ∇ ` a#t. An example
using the last rule is {c#X} ` a#((a b)(b c))·X, since ((a b)(b c))−1·a = ((b c)(a b))(a) = c.

The rules in Figure 2 defines the relation ∇ ` t ≈α s, which means that t is α-equivalent to
s under the freshness context ∇. ds(π, π′) in the last rule denotes the set {a ∈ A | π·a 6= π′·a}.
For example, ds((a b), Id) = {a, b}.

I Example 2. Consider the nominal signature for the λ-calculus in Example 1, and suppose
∇ = {a#X, b#X}. Then we have the following derivation:

a#X ∈ ∇
∇ ` a#X

b#X ∈ ∇
∇ ` b#X

∇ ` (a b)·X ≈α X
b#X ∈ ∇
∇ ` b#X

∇ ` [a]X ≈α [b]X
∇ ` lam([a]X) ≈α lam([b]X)

J

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 305

The following properties are shown in [3].

I Proposition 3 ([3]).
1. ∇ ` a#t if and only if ∇ ` π·a#π·t.
2. ∇ ` t ≈α s if and only if ∇ ` π·t ≈α π·s.
3. If ∇ ` a#t and ∇ ` t ≈α s then ∇ ` a#s.
4. ∀a ∈ ds(π, π′).∇ ` a#t if and only if ∇ ` π·t ≈α π′·t.

I Proposition 4 ([3]). For any freshness context ∇, the binary relation ∇ ` − ≈α − is a
congruence (i.e. an equivalence relation that is closed under any context C[]).

For terms with no variables, this relation coincides with usual α-equivalence (i.e. the
relation reached by renamings of bound atoms) [6].

Now we define nominal rewrite rules and nominal rewriting systems.

I Definition 5 (Nominal rewrite rule). A nominal rewrite rule, or simply rewrite rule, is a
triple of a freshness context ∇ and terms l and r such that V (∇) ∪ V (r) ⊆ V (l). We write
∇ ` l→ r for a rewrite rule. A rewrite rule ∇ ` l→ r is left-linear if l is linear. We define
V (∇ ` l→ r) = V (∇) ∪ V (l) ∪ V (r) and (∇ ` l→ r)π = ∇π ` lπ → rπ.

I Example 6. Using the nominal signature for the λ-calculus in Example 1, the η-rule can
be represented by the following rewrite rule (we omit the braces on the LHS of `):

a#X ` lam([a]app(X, a)) → X (Eta)

This rule is left-linear. J

I Definition 7 (Nominal rewriting system). A nominal rewriting system, or simply rewriting
system, is a finite set of rewrite rules. A rewriting system is left-linear if so are all its rewrite
rules.

I Example 8. We extend the signature in Example 1 by a function symbol sub with arity 2.
By sub([a]t, s), we represent an explicit substitution t〈a := s〉. Then, a nominal rewriting
system to perform β-reduction is defined by the rule (Beta):

` app(lam([a]X), Y) → sub([a]X,Y) (Beta)

together with a rewriting system Rσ to execute substitution:

Rσ =


` sub([a]app(X,Y), Z) → app(sub([a]X,Z), sub([a]Y,Z)) (σapp)
` sub([a]a,X) → X (σvar)
` sub([a]b,X) → b (σvarε)

b#Y ` sub([a]lam([b]X), Y) → lam([b]sub([a]X,Y)) (σlam)

In a standard notation, the system Rσ is represented as follows:

Rσ =


` (XY)〈a := Z〉 → (X〈a := Z〉)(Y 〈a := Z〉) (σapp)
` a〈a := X〉 → X (σvar)
` b〈a := X〉 → b (σvarε)

b#Y ` (λb.X)〈a := Y 〉 → λb.(X〈a := Y 〉) (σlam)

J

RTA 2015

306 Confluence of Orthogonal Nominal Rewriting Systems Revisited

In [5][3], nominal rewrite systems are defined as infinite sets of rewrite rules that are
closed under equivariance, i.e., if R is a rule of a rewrite system R then so is Rπ for any
permutation π. In the present paper, we define rewriting systems as finite sets of rewrite
rules that may not be closed under equivariance. Accordingly, our rewrite relation is defined
with a permutation as a parameter unlike in the definition of rewrite relation in [5][3]. In the
following, ` is extended to mean to hold for every member of a set or a sequence on the RHS.

I Definition 9 (Rewrite relation). Let R = ∇ ` l → r be a rewrite rule. For a freshness
context ∆ and terms s and t, the rewrite relation is defined by

∆ ` s→〈R,π,p,σ〉 t
def⇐⇒ ∆ ` ∇πσ, s = C[s′]p, ∆ ` s′ ≈α lπσ, t = C[rπσ]p

where V (l) ∩ (V (∆) ∪ V (s)) = ∅. We write ∆ ` s→〈R,π〉 t if there exist p and σ such that
∆ ` s→〈R,π,p,σ〉 t. We write ∆ ` s→R t if there exists π such that ∆ ` s→〈R,π〉 t. For a
rewriting system R, we write ∆ ` s→R t if there exists R ∈ R such that ∆ ` s→R t.

I Example 10. Using the rule (Beta) in Example 8, we see that the term representing
(λa.λb.ba)b rewrites to (λb.ba)〈a := b〉, that is, we have

` app(lam([a]lam([b]app(b, a))), b)→〈Beta,Id,ε,σ〉 sub([a]lam([b]app(b, a)), b)

where σ is the substitution [X := lam([b]app(b, a)), Y := b]. The resulting term rewrites
further to a normal form lam([c]app(c, b)) in four steps with rules of the system Rσ. Here
we give a detail of the first step with rule (σlam) to see how capture of a free atom is avoided.

Let s = sub([a]lam([b]app(b, a)), b). Since the rule has a freshness context ∇ = {b#Y },
to apply (σlam) to s at the position p = ε, it is necessary to find a permutation π and a
substitution σ that satisfy ` ∇πσ and ` s ≈α (sub([a]lam([b]X), Y))πσ. Here one cannot
simply take π = Id, because then σ(Y) = b from the condition for ≈α, which contradicts
` ∇πσ. So we take, e.g. π = (b c) and σ = [X := app(c, a), Y := b] to satisfy the conditions,
and get (lam([b]sub([a]X,Y)))πσ = lam([c]sub([a]app(c, a), b)) as the result of rewriting. J

In the following, a binary relation ∆ ` − ./ − (./ is →R, ≈α, etc.) with a fixed freshness
context ∆ is called the relation ./ under ∆, or simply the relation ./ if there is no ambiguity.
If a relation ./ is written using → then the inverse is written using ←. Also, we write ./= for
the reflexive closure, and ./∗ for the reflexive transitive closure. We use ◦ for the composition
of relations.
I Remark. In [5, page 113][3, page 946], the rewrite relation, which we denote by ∆ `
s −−−→

FGM R t, is defined in the following way. For a given rewrite rule R = ∇ ` l → r,
∆ ` s −−−→

FGM R t holds if
1. V (R) ∩ (V (∆) ∪ V (s)) = ∅.
2. s = C[s′] for some context C[] and term s′, such that ∆ ` ∇σ, ∆ ` s′ ≈α lσ for some σ.
3. ∆ ` t ≈α C[rσ].
Hence, −−−→

FGM R differs from our →R in the following two points. First, the rules of a rewrite
system in [5][3] are closed under equivariance, so that the rewrite relation is defined without
a permutation as a parameter. Secondly, α-equivalent terms are allowed on the result of
rewriting. Consequently, under the same freshness context, we have −−−→

FGM R = →〈R,Id〉 ◦ ≈α.

3 Confluence of nominal rewriting systems

Having defined basic notions on nominal terms and nominal rewriting systems, we now set
out to investigate confluence properties on the rewrite relations of nominal rewriting systems.

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 307

To be exact, we study confluence properties modulo the equivalence relation ≈α in terms of
abstract reduction systems [10].

I Definition 11. Let R be a nominal rewriting system.
1. →R is confluent modulo ≈α if ∆ ` s (←∗R ◦ →∗R) t implies ∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.
2. →R is Church-Rosser modulo ≈α if

∆ ` s (←R ∪ →R ∪ ≈α)∗ t implies ∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.
3. →R is strongly compatible with ≈α if ∆ ` s (≈α ◦ →R) t implies ∆ ` s (→=

R ◦ ≈α) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a stronger property
than confluence modulo ∼ [10]. So we aim to prove Church-Rosser modulo ≈α for some class
of nominal rewriting systems. The strong compatibility with ≈α also plays an important
role in proving Church-Rosser modulo ≈α through results in [10].

3.1 Self-rooted and proper overlaps

In the study of confluence, the notion of overlaps is important because they are useful for
analysing how peaks ∆ ` s→R t and ∆ ` s→R t′ occur. In this subsection, we introduce
two kinds of overlaps and give some examples.

First, we define unification for nominal terms. Let P be a set of equations and freshness
constraints {s1 ≈ t1, . . . , sm ≈ tm, a1#u1, . . . , an#un} (where ai and aj may denote the
same atom). Then, P is unifiable if there exist a freshness context Γ and a substitution θ
such that Γ ` s1θ ≈α t1θ, . . . , smθ ≈α tmθ, a1#u1θ, . . . , an#unθ; the pair 〈Γ, θ〉 is called a
unifier of P . It is known that the unification problem for nominal terms is decidable [17].

I Example 12. Consider the nominal signature for the λ-calculus in Example 1, and let
P = {lam([a]app(X, a)) ≈ lam([a]Y), a#X}. Then, 〈{a#X}, [Y := app(X, a)]〉 is a unifier
of P . J

I Definition 13 (Overlap). Let Ri = ∇i ` li → ri (i = 1, 2) be rewrite rules. We assume
without loss of generality that V (R1) ∩ V (R2) = ∅. If ∇1 ∪ ∇π2

2 ∪ {l1 ≈ lπ2
2 |p} is unifiable

for some permutation π2 and a non-variable position p, then we say that R1 overlaps on
R2, and the situation is called an overlap of R1 on R2. If R1 and R2 are identical modulo
renaming of variables and p = ε, then the overlap is said to be self-rooted. An overlap that is
not self-rooted is said to be proper.

I Example 14. Let R1 and R2 be the rules (Eta) a#X ` lam([a]app(X, a)) → X and
(Beta) ` app(lam([a]Y), Z)→ sub([a]Y,Z) from Examples 6 and 8, respectively. Then, R1
overlaps on R2, since {a#X}∪{lam([a]app(X, a)) ≈ (app(lam([a]Y), Z))Id |11(= lam([a]Y))}
is unifiable as seen in Example 12. This overlap is proper. J

I Example 15. There exist self-rooted overlaps of the rule (Beta) on its renamed variant,
since {app(lam([a]Y), Z) ≈ (app(lam([a]X),W))π} is unifiable for any permutation π. In the
case of π(a) = b, we take 〈{a#X, b#X}, [Y := X,Z := W]〉 as a unifier (cf. Example 2). J

In first-order term rewriting, self-rooted overlaps do not matter, and only proper overlaps
need to be analysed. However, in the case of nominal rewriting, that is not enough as seen
in the next subsection.

RTA 2015

308 Confluence of Orthogonal Nominal Rewriting Systems Revisited

3.2 Problems on confluence of nominal rewriting systems
In this subsection, we discuss problems on confluence in nominal rewriting that are not
present in first-order term rewriting.

A standard confluence criterion in rewriting theory is the one by orthogonality.

I Definition 16 (Orthogonality). A nominal rewriting system R is orthogonal if it is left-linear
and for any rules R1, R2 ∈ R, there exists no proper overlap of R1 on R2.

This definition of orthogonality is different from the one in [3] (cf. Remark at the end of
this subsection).

Unlike in first-order term rewriting, orthogonality is not enough to guarantee confluence
of a nominal rewriting system.

I Example 17. Consider the nominal rewriting system Ruc-η with the only rewrite rule:

` lam([a]app(X, a)) → X (Uncond-eta)

The system Ruc-η is orthogonal, but is not Church-Rosser (even confluent) modulo ≈α, since
` lam([a]app(a, a)) →〈Uncond-eta,Id〉 a and ` lam([a]app(a, a)) →〈Uncond-eta,(a b)〉 b. The latter
follows from ` lam([a]app(a, a)) ≈α lam([b]app(b, b)) = (lam([a]app(X, a)))(a b)[X := b] (the
third condition of rewrite relation in Definition 9). J

The above kind of rules can be excluded by the uniformity condition introduced in [3].
Intuitively, uniformity means that if an atom a is not free in s and s rewrites to t then a is
not free in t. Here we employ the following definition of uniformity which is equivalent to
the one in [3].

I Definition 18 (Uniformity). A rewrite rule ∇ ` l→ r is uniform if for any atom a and any
freshness context ∆, ∆ ` ∇ and ∆ ` a#l imply ∆ ` a#r. A rewriting system is uniform if
so are all its rewrite rules.

The rule (Uncond-eta) in Example 17 is not uniform, since ` a#lam([a]app(X, a)) but
not ` a#X. Uniform rewriting systems have many good properties, which we use in the
proof of confluence in the next section.

Our definition of orthogonality together with uniformity does not guarantee confluence of
a nominal rewriting system, as seen in the next example.

I Example 19. We extend the signature in Example 1 by a function symbol uc-eta-exp
with arity 1. Consider the nominal rewriting system Ruc-η-exp with the only rewrite rule:

` uc-eta-exp(X) → lam([a]app(X, a)) (Uncond-eta-exp)

The system Ruc-η-exp is orthogonal and uniform. Uniformity follows from the observation
that for any atom a′ and any freshness context ∆, if ∆ ` a′#uc-eta-exp(X), which is
equivalent to ∆ ` a′#X, then ∆ ` a′#lam([a]app(X, a)). We see, however, that Ruc-η-exp is
not Church-Rosser (even confluent) modulo ≈α, since ` uc-eta-exp(a) →〈Uncond-eta-exp,Id〉
lam([a]app(a, a)) and ` uc-eta-exp(a)→〈Uncond-eta-exp,(a b)〉 lam([b]app(a, b)), where the res-
ulting two terms are normal forms in Ruc-η-exp and not α-equivalent. J

So orthogonality together with uniformity is still not enough to guarantee confluence of a
nominal rewriting system. In the next section, we consider another condition that excludes
rewrite rules like the rule (Uncond-eta-exp) in Example 19.

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 309

I Remark. It is claimed in [3] that terminating uniform nominal rewrite systems are confluent
if all non-trivial1 critical pairs are joinable, and that orthogonal uniform nominal rewrite
systems are confluent. However, the latter criterion is not applicable to standard nominal
rewrite systems: In [3], a critical pair is said to be trivial if it is obtained from the root
overlap of the same (renamed) rewrite rule or obtained from a variable overlap2, where
overlaps are considered without permutations unlike in our Definition 13, and a nominal
rewrite system is said to be orthogonal if it is left-linear and has no non-trivial critical pair.
Then, for example, a critical pair obtained from the root overlap of the two rules (Beta) and
(Beta)π (cf. Example 15) is non-trivial, and so any rewrite system with the rule (Beta), which
also has (Beta)π by equivariance, is not orthogonal in the sense of [3]. The same can be said
of many other rewrite rules and systems.

3.3 Confluence proof of orthogonal nominal rewriting systems
In the previous subsection, we discussed problems on confluence that are peculiar to nominal
rewriting. In this subsection, we prove confluence (Church-Rosser modulo ≈α) for a class of
nominal rewriting systems with one more condition besides uniformity and orthogonality.
The proof can be considered as an adaptation of inductive confluence proofs of first-order
orthogonal term rewriting systems found, e.g. in [16, Section 4.7] and [7]. We omit some of
(the details of) the proofs, which are available at [15].

First, we define a notion of parallel reduction using a particular kind of contexts.

I Definition 20. The grammatical contexts, ranged over by G[], are the contexts defined by

G[] ::= a | π·X | [a]� | f � | (�1, . . . ,�n)

Let R be a nominal rewriting system. For a given freshness context ∆, we define the relation
∆ ` − −→q R − inductively by the following rules:

∆ ` s1 −→q R t1 · · · ∆ ` sn −→q R tn
∆ ` G[s1, . . . , sn]−→q R G[t1, . . . , tn]

(context)
∆ ` s→〈R,π,ε,σ〉 t R ∈ R

∆ ` s−→q R t
(head)

where n (≥ 0) depends on the form of G[]. We define ∆ ` σ−→q R δ by ∀X.∆ ` Xσ−→q RXδ.

I Lemma 21. 1. ∆ ` s−→q R s.
2. If ∆ ` s−→q R t then ∆ ` C[s]−→q R C[t].
3. If ∆ ` s→〈R,π,p,σ〉 t then ∆ ` s−→q R t.
4. If ∆ ` s−→q R t then ∆ ` s→∗R t.

Instead of showing the diamond property of −→q R as in usual confluence proofs, we prove
strong local confluence modulo ≈α (Lemma 27), which together with strong compatibility
with ≈α (Lemma 22) yields Church-Rosser modulo ≈α of −→q R (and hence of →R).

I Lemma 22 (Strong compatibility with ≈α). Let R be a uniform nominal rewriting system.
If ∆ ` s′ ≈α s−→q R t then there exists t′ such that ∆ ` s′ −→q R t′ ≈α t.

Proof. By induction on the derivation of ∆ ` s−→q R t. For the details, see [15]. J

1 As mentioned soon, the definition of non-trivial here is different from the standard one.
2 This definition is not very standard, but it is not the point here.

RTA 2015

310 Confluence of Orthogonal Nominal Rewriting Systems Revisited

The key lemma to strong local confluence modulo ≈α is Lemma 25, which corresponds to
Lemma 4.7.7 of [16, page 122] in the first-order case. To show it, we first prove the following
two technical lemmas.

I Lemma 23. Let R be a nominal rewriting system, and let R = ∇ ` l → r ∈ R and
R̂ = ∇̂ ` l̂ → r̂ ∈ R (we assume V (R) ∩ V (R̂) = ∅). Suppose that l′ is a proper subterm
of lπ for some π where l′ is not a moderated variable, and that there exist σ, π̂, σ̂,∆, s that
satisfy ∆ ` ∇πσ, ∆ ` s ≈α l′σ, ∆ ` ∇̂π̂σ̂ and ∆ ` s ≈α l̂π̂σ̂. Then R is not orthogonal.

Proof. Let p be the position of the subterm l′ of lπ, i.e., lπ|p = l′. Since ∇̂ ∪ ∇π̂−1◦π ∪ {l̂ ≈
lπ̂
−1◦π|p(= l′π̂

−1)} is unifiable with a unifier 〈∆, π̂−1·(σ̂ ∪ σ)〉, R is not orthogonal. J

I Lemma 24. Let R be a uniform rewriting system. Then, if ∆ ` ∇σ, ∆ ` s ≈α π·Xσ and
∆ ` s−→q R t then there exists δ such that ∆ ` ∇δ, ∆ ` t ≈α π·Xδ, ∆ ` σ −→q R δ and for
any Y 6= X, Y σ = Y δ.

Now we prove the announced lemma.

I Lemma 25. Let R be an orthogonal uniform rewriting system, and let ∇ ` l → r ∈ R.
Suppose that l′ is a proper subterm of lπ for some π. Then, if ∆ ` ∇πσ, ∆ ` s ≈α l′σ and
∆ ` s−→q R t then there exists δ such that ∆ ` ∇πδ, ∆ ` t ≈α l′δ, ∆ ` σ−→q R δ and for any
X /∈ V (l′), Xσ = Xδ.

Proof. By induction on l′. The case where l′ is a moderated variable π′·X follows from
Lemma 24. For the other cases, we first show that the last rule used in the derivation of
∆ ` s −→q R t can not be (head). Suppose otherwise. Then by the definition of rewrite
relation, we have ∆ ` ∇̂π̂σ̂ and ∆ ` s ≈α l̂π̂σ̂ for some π̂, σ̂ and ∇̂ ` l̂ → r̂ ∈ R. However,
by Lemma 23, this contradicts the orthogonality of R. Hence, the last rule used in the
derivation of ∆ ` s−→q R t is (context). The rest of the proof is by case analysis according to
the form of l′. For the details, see [15]. J

Now we introduce a notion of α-stability for proving Lemma 27. This notion as well as
uniformity may be introduced independently from the study of confluence as a notion that
yields well-behaved rewriting. Here we consider a version in which the redex position is ε.

I Definition 26 (α-stability). A rewrite rule R = ∇ ` l → r is α-stable if ∆ ` s ≈α s′,
∆ ` s →〈R,π,ε,σ〉 t and ∆ ` s′ →〈R,π′,ε,σ′〉 t′ imply ∆ ` t ≈α t′. A rewriting system R is
α-stable if so is every rewrite rule R ∈ R.

The rule (Uncond-eta-exp) in Example 19 is not α-stable, since, as we saw,
` uc-eta-exp(a)→〈Uncond-eta-exp,Id,ε,[]〉 lam([a]app(a, a)) and
` uc-eta-exp(a) →〈Uncond-eta-exp,(a b),ε,[]〉 lam([b]app(a, b)), but not ` lam([a]app(a, a)) ≈α
lam([b]app(a, b)). In the next section, we give a sufficient criterion for α-stability.

Now we show that −→q R is strongly locally confluent modulo ≈α for a class of orthogonal
nominal rewriting systems.

I Lemma 27 (Strong local confluence modulo ≈α). Let R be an orthogonal rewriting system
that is uniform and α-stable. If ∆ ` s−→q R t and ∆ ` s−→q R t′ then there exist u and u′

such that ∆ ` t−→q R u, ∆ ` t′ −→q R u′ and ∆ ` u ≈α u′.

Proof. By induction on s. We distinguish cases according to the last rules used in the
derivations of ∆ ` s−→q R t and ∆ ` s−→q R t′.
1. Both rules are (head). If they are by the same rewrite rule R ∈ R, then we use the

α-stability of R. Otherwise, this case contradicts the orthogonality of R.

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 311

2. Both rules are (context). The claim follows from the induction hypothesis.
3. One is (context) and the other is (head). It can be shown that the claim holds by using

Lemma 24 or Lemma 25. For the details, see [15].
J

We are now ready to show that →R is Church-Rosser modulo ≈α.

I Theorem 28 (Church-Rosser modulo ≈α). Let R be an orthogonal nominal rewriting system
that is uniform and α-stable. Then, →R is Church-Rosser modulo ≈α.

Proof. By Lemma 22, −→q R is strongly compatible with ≈α, and by Lemma 27, −→q R is
strongly locally confluent modulo ≈α. Hence by the results in [10], −→q R is Church-Rosser
modulo ≈α. Since →R⊆−→q R⊆→∗R by Lemma 21, →R is Church-Rosser modulo ≈α. J

4 Criterion for uniformity and α-stability

In this section, we consider a sufficient criterion for uniform and α-stable nominal rewriting
systems. The main reason why a rewrite rule R does not keep α-stability is that some free
atom occurring in a term is bounded through a rewrite step by R. However, such irrelevant
rewrite steps can be avoided by adding an appropriate constraint to the freshness context of
R. We introduce the notion of abstract skeleton preserving for characterising this constraint
and show it gives a sufficient criterion for uniformity and α-stability.

Throughout this section, different meta-variables for atoms may denote the same atom.

4.1 Abstract skeleton
The abstract skeleton of a nominal term is defined as a subterm abstracted with the binders
occurring on the path from the root position ε to the position of the subterm.

I Definition 29 (Abstract skeleton). For a nominal term t and a position p ∈ Pos(t), skel(p, t)
is defined as follows:

skel(ε, s) = s

skel(1q, [a]s) = [a]skel(q, s)
skel(1q, f s) = skel(q, s)

skel(iq, (s1, . . . , sn)) = skel(q, si)

skel(p, t) is called an abstract skeleton at p of t. skel(p, t) = [a1] . . . [an]s is non-duplicating if
i 6= j implies ai 6= aj . We define Skel(t) = {skel(p, t) | p ∈ Pos(t)}.

I Example 30. Figure 3 shows the abstract skeletons at the leaf positions of the left and
the right hand sides of the rule (σlam) in Example 8. J

For each X ∈ V (t), we define SkelX(t) = {skel(p, t) | p ∈ PosX(t)}. We also define
SkelX (t) = {skel(p, t) | p ∈ PosX (t)}, SkelA(t) = {skel(p, t) | p ∈ PosA(t)}, and SkelXA(t) =
SkelX (t) ∪ SkelA(t).

The following lemmas are useful for discussing the freshness context and the α-equivalency
of the term through the decomposed parts. (For the proofs, see [15].)

I Lemma 31. ∆ ` a#tσ ⇐⇒ ∀u ∈ SkelXA(t).∆ ` a#uσ

I Lemma 32. ∆ ` tσ ≈α tπρ ⇐⇒ ∀u ∈ SkelXA(t).∆ ` uσ ≈α uπρ

RTA 2015

312 Confluence of Orthogonal Nominal Rewriting Systems Revisited

sub([a]lam([b]X), Y) lam([b]sub([a]X,Y))
sub

(,)

[a]

lam

[b]

X

Y

lam

[b]

sub

(,)

[a]

X

Y

[a]

[b]

X Y

[b]

[a]

X

[b]

Y

[a][b]X Y [b][a]X [b]Y

Figure 3 Abstract skeletons of sub([a]lam([b]X), Y) and lam([b]sub([a]X,Y)).

4.2 Abstract skeleton preserving rewrite rules
In this subsection, we introduce the notions of abstract skeleton preserving rules and systems.
First, we restrict rewrite rules to the following ones.

I Definition 33 (Standard). A nominal rewrite rule ∇ ` l→ r is standard when:
(S1) For every moderated variable π·X appearing in l or r, π = Id,
(S2) FA(r) ⊆ FA(l),
(S3) Every abstract skeleton [a1] . . . [an]t ∈ Skel(l) ∪ Skel(r) is non-duplicating.
A nominal rewriting system R is standard if so is every rewrite rule R ∈ R.

All examples of rewrite rules we treated so far are standard.
We now define the abstract skeleton preserving nominal rewriting systems.

I Definition 34 (Abstract skeleton preseving). A nominal rewrite rule ∇ ` l→ r is abstract
skeleton preserving (ASP for short) if it is standard and

∀[a1] . . . [am]X ∈ SkelX(r).∃[b1] . . . [bn]X ∈ SkelX(l).∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇

where ds({ai}i, {bj}j) is the set of atoms such that a ∈ {a1, . . . , am} and a /∈ {b1, . . . , bn},
or a /∈ {a1, . . . , am} and a ∈ {b1, . . . , bn}. A nominal rewriting system R is abstract skeleton
preserving (ASP for short) if so is every rewrite rule R ∈ R.

It is easy to judge whether a standard rewrite rule is ASP or not. The rule (Uncond-eta)
in Example 17 and the rule (Uncond-eta-exp) in Example 19 are not ASP. All the other
rewrite rules we treated so far are ASP.

In the rest of this section, we show that the ASP property gives a sufficient criterion
for the uniformity and the α-stability of nominal rewriting systems. First we prove the
uniformity of ASP rewrite rules.

I Lemma 35. An ASP rewrite rule is uniform.

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 313

Proof. We show that for any ASP rewrite rule R = ∇ ` l→ r, if ∆ ` ∇ and ∆ ` a#l then
∆ ` a#r. Suppose ∆ ` ∇ and ∆ ` a#l. From the latter, we have ∀u ∈ SkelXA(l).∆ ` a#u
by Lemma 31. Similarly, the conclusion ∆ ` a#r is equivalent to ∀u ∈ SkelXA(r).∆ ` a#u.
We show ∆ ` a#u for u ∈ SkelA(r) and for u ∈ SkelX (r), respectively.
1. u ∈ SkelA(r). Then u has the form [a1] . . . [am]b. If a ∈ {a1, . . . , am} or b 6= a, then

∆ ` a#[a1] . . . [am]b holds. Otherwise, we have a = b ∈ FA(r). Since R is standard,
a ∈ FA(l); contradicting ∆ ` a#l.

2. u ∈ SkelX (r). Then u has the form [a1] . . . [am]X. If a ∈ {a1, . . . , am} then ∆ `
a#[a1] . . . [am]X holds. Otherwise, it is enough to show ∆ ` a#X. Since R is ASP, there
exists [b1] . . . [bn]X ∈ SkelX(l) such that ∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇. Since we have
∀u ∈ SkelXA(l). ∆ ` a#u, it holds that ∆ ` a#[b1] . . . [bn]X. Thus, if a /∈ {b1, . . . , bn}
then ∆ ` a#X. If a ∈ {b1, . . . , bn}, then we have a ∈ ds({ai}i, {bj}j) because now we
discuss the case of a 6∈ {a1, . . . , am}. Hence, a#X ∈ ∇ holds. Since we suppose ∆ ` ∇,
∆ ` a#X is obtained.

J

4.3 α-stability of abstract skeleton preserving rewrite rules
Next, we prove the α-stability of ASP rewrite rules. For this, we need to derive α-equivalence
of respective reducts s′ and t′ of terms s, t, from α-equivalence of s and t. The idea is to use
Lemma 32 and infer α-equivalence via abstract skeletons. Recall abstract skeletons of the rule
(σlam) in Example 30. Here, an abstract skeleton [a][b]X in LHS changes to [b][a]X in RHS.
Thus, [a][b]X ≈α [c][d]X ′ should imply [b][a]X ≈α [d][c]X ′. But generally, this is not true;
for example, we have ` [a][a]a ≈α [a][b]b but 6` [a][a]a ≈α [b][a]b. This can be guaranteed,
however, for non-duplicating skeletons (cf. Lemma 36). Another abstract skeleton Y in LHS
changes to [b]Y in RHS in Example 30. Again, ` Y ≈α Y ′ does not imply ` [b]Y ≈α [b]Y ′
in general. Fortunately, the freshness constraint of the rule (σlam) contains b#Y . Thus, it
suffices to guarantee b#Y, b#Y ′ ` Y ≈α Y ′ implies b#Y, b#Y ′ ` [b]Y ≈α [b]Y ′, which is
indeed the case (cf. Lemma 37). The proofs of the following lemmas are found in [15].

I Lemma 36. Let two terms [a1] . . . [an]s and [b1] . . . [bn]t be both non-duplicating. Then,

∆ ` [a1] . . . [ai] . . . [aj] . . . [an]s ≈α [b1] . . . [bi] . . . [bj] . . . [bn]t
=⇒ ∆ ` [a1] . . . [aj] . . . [ai] . . . [an]s ≈α [b1] . . . [bj] . . . [bi] . . . [bn]t

I Lemma 37. Let two terms [a1] . . . [an]s and [b1] . . . [bn]t be both non-duplicating, and let
∆ ` ai#s, bi#t. Then,

∆ ` [a1] . . . [ai−1][ai][ai+1] . . . [an]s ≈α [b1] . . . [bi−1][bi][bi+1] . . . [bn]t
⇐⇒ ∆ ` [a1] . . . [ai−1][ai+1] . . . [an]s ≈α [b1] . . . [bi−1][bi+1] . . . [bn]t

I Lemma 38. If ∆ ` tσ ≈α tπρ then ∀a ∈ FA(t). a = π·a.

I Theorem 39. ASP nominal rewriting systems are uniform and α-stable.

Proof. We show that if R is ASP then every R = ∇ ` l→ r ∈ R is α-stable, that is,

∆ ` s ≈α ŝ ∧∆ ` s→〈R,π,ε,σ〉 t ∧∆ ` ŝ→〈R,π̂,ε,σ̂〉 t̂ =⇒ ∆ ` t ≈α t̂.

Considering Rπ as R and π̂ ◦ π−1 as π̂, we can take π = Id without loss of generality. (Note
that if R is ASP then so is Rπ.) Thus from here on we take Id as π̂. From the definition of

RTA 2015

314 Confluence of Orthogonal Nominal Rewriting Systems Revisited

the rewrite relation,

∆ ` s→〈R,π,ε,σ〉 t ⇐⇒ ∆ ` ∇πσ, ∆ ` s ≈α lπσ, t = rπσ

∆ ` ŝ→〈R,Id,ε,σ̂〉 t̂ ⇐⇒ ∆ ` ∇σ̂, ∆ ` ŝ ≈α lσ̂, t̂ = rσ̂

From the assumption and the transitivity, we have ∆ ` ∇πσ, ∆ ` ∇σ̂ and ∆ ` lσ̂ ≈α lπσ.
Now our aim is to show ∆ ` rσ̂ ≈α rπσ. Here, we have

∆ ` lσ̂ ≈α lπσ ⇐⇒ ∀u ∈ SkelXA(l).∆ ` uσ̂ ≈α uπσ (from Lemma 32) (1)
∆ ` rσ̂ ≈α rπσ ⇐⇒ ∀v ∈ SkelXA(r).∆ ` vσ̂ ≈α vπσ (from Lemma 32)

We show ∆ ` vσ̂ ≈α vπσ for v ∈ SkelA(r) and for v ∈ SkelX (r), respectively.
1. v ∈ SkelA(r). Then v has the form [a1] . . . [am]b.

a. b ∈ {a1, . . . , am}. First we show ∆ ` [ai]ai ≈α [π·ai]π·ai. It is clear when ai = π·ai.
When ai 6= π·ai, from ∆ ` π·ai#ai and ∆ ` (ai π·ai)·ai ≈α π·ai it follows. Moreover,
for aj(6= ai), ∆ ` aj#ai and ∆ ` π·aj#π·ai hold. Since v and π·v are non-duplicating,
applying Lemma 37 to ∆ ` [ai]ai ≈α [π·ai]π·ai repeatedly, we obtain
∆ ` [a1] . . . [ai−1][ai][ai+1] . . . [am]ai ≈α [π·a1] . . . [π·ai−1][π·ai][π·ai+1] . . . [π·am]π·ai
Thus ∆ ` vσ̂ ≈α vπσ follows.

b. b /∈ {a1, . . . , am}. It is clear that b ∈ FA(r). Since R is standard, b ∈ FA(l). From
∆ ` lσ̂ ≈α lπσ and Lemma 38 it holds that b = π·b. Thus, ∆ ` b ≈α π·b. Moreover,
∆ ` aj#b and ∆ ` π·aj#π·b for every aj . Since v and π·v are non-duplicating,
applying Lemma 37 to ∆ ` b ≈α π·b repeatedly, we obtain ∆ ` vσ̂ ≈α vπσ.

2. v ∈ SkelX (r). Then v has the form [a1] . . . [am]X. Since R is ASP, there exists
[b1] . . . [bn]X ∈ SkelX(l) such that ∀a ∈ ds({ai}i, {bj}j). a#X ∈ ∇. By (1), we have ∆ `
([b1] . . . [bn]X)σ̂ ≈α ([b1] . . . [bn]X)πσ, that is, ∆ ` [b1] . . . [bn]Xσ̂ ≈α [π·b1] . . . [π·bn]Xσ.
Now, let {c1, . . . , ck} = {a1, . . . , am}∩{b1, . . . , bn}. Then ∀a ∈ ds({bj}j , {ch}h).a#X ∈ ∇
and ∀a ∈ ds({π·bj}j , {π·ch}h). a#X ∈ ∇π. From ∆ ` ∇σ̂ and ∆ ` ∇πσ, we obtain
∀a ∈ ds({bj}j , {ch}h).∆ ` a#Xσ̂ and ∀a ∈ ds({π·bj}j , {π·ch}h).∆ ` a#Xσ. Similarly,
∀a ∈ ds({ai}i, {ch}h).∆ ` a#Xσ̂ and ∀a ∈ ds({π·ai}i, {π·ch}h).∆ ` a#Xσ. Therefore,

∆ ` [b1] . . . [bn]Xσ̂ ≈α [π·b1] . . . [π·bn]Xσ
⇐⇒ ∆ ` [c1] . . . [ck]Xσ̂ ≈α [π·c1] . . . [π·ck]Xσ (from Lemmas 36 and 37)
⇐⇒ ∆ ` [a1] . . . [am]Xσ̂ ≈α [π·a1] . . . [π·am]Xσ (from Lemmas 36 and 37)
⇐⇒ ∆ ` vσ̂ ≈α vπσ

J

By Theorems 28 and 39, we have the following corollary.

I Corollary 40. Let R be an orthogonal nominal rewriting system that is ASP. Then, →R
is Church-Rosser modulo ≈α.

I Example 41. The rewriting system Rσ in Example 8 is left-linear and has no proper
overlaps, and hence orthogonal. Moreover, all its rewrite rules are ASP. Hence, →Rσ is
Church-Rosser modulo ≈α by Corollary 40. J

5 Implementation and Experiments

We have implemented a confluence prover for NRSs proving that input NRSs are CR modulo
≈α, based on Corollary 40. We note that recently some confluence provers for TRSs and
CTRSs are emerged (e.g. [1, 20, 14]) and the competition of confluence provers have been

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 315

Table 1 Summary of experiments.

NRS LL non-PO ASP result time (ms)
1 Rσ X X X CR 3
2 NNF of f.o.-formulas without DNE X X X CR <1
3 Ruc-η-exp X X × Failure <1
4 PNF of f.o.-formulas (Example 44 [3]) X × X Failure 20
5 NNF of f.o.-formulas X × X Failure <1
6 {Beta} ∪ Rσ X × X Failure 8
7 {Beta} ∪ {Eta} ∪ Rσ X × X Failure 3
8 β-reduction (Example 43 [3]) X × X Failure 29
9 η-expansion (Introduction [3]) X X X CR <1
10 structural substitution for λµ-term ([12]) X X X CR 17
11 fragment of ML ([3]) X × X Failure 152
12 {a#X ` f(X)→ [a]X} X X X CR <1
13 {` f(X)→ [a]X} X X × Failure <1
14 {a#X ` X → [a]X}

X X X CR <1
(Proof of Lemma 56 [3])

15 Non-joinable trivial critical pair
X X × Failure <1

(Proof of Lemma 56 [3])
16 PNF of f.o.-formulas with additional rules

X × X Failure 33
(Example 44 [3])

17 Substitution for λ-term
X × X Failure 27

(Example 43 [3])
18 {Eta} X X X CR <1
19 Ruc-η X X × Failure <1

held annually3. In contrast, no confluence provers for NRSs has been known previously, up
to our knowledge.

In order to prove confluence of an NRS R based on Corollary 40, we have to show that
(1) R is orthogonal and (2) R is abstract skeleton preserving (ASP). It is straightforward
to check (2), as the standardness is just a syntactical restriction and ∇ ` a#X is easily
checked for any freshness constraint ∇, a ∈ A and X ∈ X . For (1), one has to check (1-a)
left-linearity and that (1-b) there’s no proper overlaps. The checking of (1-a) is easy. For
(1-b), we have to check whether ∇1 ∪∇π2

2 ∪ {l1 ≈ l
π2
2 |p} is unifiable for some permutation

π2, for given ∇1,∇2, l1, l2|p—this problem is different from nominal unification problems as
π2 is not fixed. Fortunately, the problem can be directly reduced to a problem of equivariant
unification [2], which has been known to be decidable. From the equivariant unification
algorithm in [2], we obtain a constraint of π2 for unifiability, if the problem is equivariantly
unifiable. Our system reports concrete critical pairs generated from this constraint, if there
is a proper overlap.

We have tested our confluence prover with 19 NRSs, collected from the literature, and
constructed during our study. The summary of our experiments is shown in Table 1. The
columns below ‘NRS’, ‘LL’, ‘non-PO’, ‘ASP’ , ‘result’ ‘time (ms)’ show the input NRS,
left-linearity, non-existence of proper overlaps, ASP, the result of the confluence prover and

3 Confluence Competition (CoCo) http://coco.nue.riec.tohoku.ac.jp/

RTA 2015

316 Confluence of Orthogonal Nominal Rewriting Systems Revisited

execution time in millisecond, respectively. Here, PNF (NNF) denotes rules for computing
prenex normal forms (resp. negation normal forms), and DNE denotes double negation
elimination (not (not X)→ X). The symbol ‘X’ denotes that the property holds, and the
symbol ‘×’ denotes that the property does not hold, which have been checked by the prover.
Among 19 examples, our prover succeeded in proving confluence of 7 examples. All tests
have been performed in a PC equipped with Intel Core i7-4600U processors of 2.1GHz and a
memory of 8GB.

All details of the experiments are available on the webpage http://www.nue.riec.
tohoku.ac.jp/tools/experiments/rta15nrs/.

6 Conclusion

Using our notion of rewrite relation with a permutation as a parameter, we have presented a
proof of Church-Rosser modulo ≈α for the class of orthogonal nominal rewriting systems
that are uniform and α-stable. Moreover, we have introduced a notion of abstract skeleton
preserving as a sufficient criterion for uniformity and α-stability. We have also implemented
a confluence prover based on our result on Church-Rosser modulo ≈α for abstract skeleton
preserving rewriting systems.

As continuations of this work, we are going to study confluence of nominal rewriting
systems with proper overlaps in both terminating and non-terminating cases. In such studies,
it will be necessary to investigate joinability check of critical pairs with permutation variables.
This is left as future work.

Acknowledgements. We would like to thank the anonymous referees for useful comments.
This research was supported by JSPS KAKENHI Grant Numbers 25330004, 25280025 and
15K00003.

References
1 T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proceedings of RTA’09, LNCS 5595, pages 93–102. Springer-Verlag, 2009.
2 J. Cheney. Equivariant unification. Journal of Automated Reasoning, 45:267–300, 2010.
3 M. Fernández and M. J. Gabbay. Nominal rewriting. Information and Computation,

205:917–965, 2007.
4 M. Fernández and M. J. Gabbay. Closed nominal rewriting and efficiently computable

nominal algebra equality. In Proceedings of LFMTP’10, EPTCS 34, pages 37–51, 2010.
5 M. Fernández, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proceedings of

PPDP’04, pages 108–119. ACM Press, 2004.
6 M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.

Formal Aspects of Computing, 13:341–363, 2002.
7 D. Kesner. Confluence. Course material, http://www.pps.univ-paris-diderot.fr/

~kesner/enseignement/master1/semantique/ConfluenceSP-4.pdf.
8 J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:

introduction and survey. Theoretical Computer Science, 121:279–308, 1993.
9 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical

Computer Science, 192:3–29, 1998.
10 E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equivalence rela-

tion. In Proceedings of RTA’98, LNCS 1379, pages 17–31. Springer-Verlag, 1998.
11 A. C. R. Oliveira and M. Ayala-Rincón. Formalizing the confluence of orthogonal rewriting

systems. In Proceedings of LSFA’12, EPTCS 113, pages 145–152, 2012.

http://www.nue.riec.tohoku.ac.jp/tools/experiments/rta15nrs/
http://www.nue.riec.tohoku.ac.jp/tools/experiments/rta15nrs/
http://www.pps.univ-paris-diderot.fr/~kesner/enseignement/master1/semantique/ConfluenceSP-4.pdf
http://www.pps.univ-paris-diderot.fr/~kesner/enseignement/master1/semantique/ConfluenceSP-4.pdf

T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama 317

12 M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In
Proceedings of LPAR’92, LNAI 624, pages 190–201. Springer-Verlag, 1992.

13 A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186:165–193, 2003.

14 T. Sternagel and A. Middeldorp. Conditional confluence (system description). In Proceed-
ings of Joint RTA and TLCA’14, LNCS 8560, pages 456–465. Springer-Verlag, 2014.

15 T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Confluence of orthogonal nominal rewriting
systems revisited. http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/.

16 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
17 C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer

Science, 323:473–497, 2004.
18 R. Vestergaard and J. Brotherston. A formalised first-order confluence proof for the λ-

calculus using one-sorted variable names. In Proceedings of RTA’01, LNCS 2051, pages
306–321. Springer-Verlag, 2001.

19 R. Vestergaard and J. Brotherston. A formalised first-order confluence proof for the λ-
calculus using one-sorted variable names. Information and Computation, 183:212–244, 2003.

20 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proceedings of
CADE’11, LNAI 6803, pages 499–505. Springer-Verlag, 2011.

RTA 2015

http://www.nue.riec.tohoku.ac.jp/user/kentaro/cr-nominal/

	Introduction
	Nominal rewriting
	Nominal terms
	Alpha-equivalence and nominal rewriting systems

	Confluence of nominal rewriting systems
	Self-rooted and proper overlaps
	Problems on confluence of nominal rewriting systems
	Confluence proof of orthogonal nominal rewriting systems

	Criterion for uniformity and alpha-stability
	Abstract skeleton
	Abstract skeleton preserving rewrite rules
	Alpha-stability of abstract skeleton preserving rewrite rules

	Implementation and Experiments
	Conclusion

