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Abstract
The rule labeling heuristic aims to establish confluence of (left-)linear term rewrite systems via
decreasing diagrams. We present a formalization of a confluence criterion based on the interplay
of relative termination and the rule labeling in the theorem prover Isabelle. Moreover, we report
on the integration of this result into the certifier CeTA, facilitating the checking of confluence
certificates based on decreasing diagrams for the first time. The power of the method is illustrated
by an experimental evaluation on a (standard) collection of confluence problems.
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1 Introduction

Confluence is an important property of rewrite systems as it ensures unique normal forms.
The recent achievements in confluence research have enabled a competition1 where automated
tools try to establish/refute confluence. As the proofs produced by these tools are often
complicated and large, there is interest in checking them within a trustable certifier.

Decreasing diagrams [15] provide a complete characterization of confluence for abstract
rewrite systems whose convertibility classes are countable. As a criterion for abstract
rewrite systems, they can be applied to first- and higher-order rewriting, including term
rewriting and the λ-calculus. In this paper we build upon the recent Isabelle formalization of
decreasing diagrams (see [28, 29]) and specialize it from abstract rewriting to term rewriting.
Moreover, we formalize the rule labeling and present a mechanized proof of the following
result (see [31, Corollary 16]):

I Theorem 1. A left-linear term rewrite system is confluent if its duplicating rules terminate
relative to its other rules and all its critical peaks are decreasing for the rule labeling.

This result is an adequate candidate for a formalization because of the following reasons.
On the one hand, regarding the aspect of automation, it is easily implementable as the
relative termination requirement can be outsourced to external (relative) termination provers
and the rule labeling heuristic has already been implemented successfully [1,7]. Furthermore,
it is a powerful criterion as demonstrated by an experimental evaluation in Section 6. On the
other hand, regarding the aspect of formalization, it is challenging because it involves the
combination of different labeling functions (in the sense of [31]). Hence, in our formalization
Theorem 1 is not established directly, but obtained as a corollary of more general results.

∗ This research is supported by FWF (Austrian Science Fund) project P27528.
1 http://coco.nue.riec.tohoku.ac.jp/2014
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This paves the way for reusing the formalization described here when tackling the remaining
criteria in [31].

We based our formalization on the Isabelle Formalization of Rewriting (IsaFoR) [27]
and extended it by the theories Decreasing_Diagrams2.thy and Rule_Labeling_Impl.thy,
which amount to approximately 3500 lines of Isabelle in Isar style. IsaFoR contains executable
check functions for each formalized proof technique together with formal proofs that whenever
such a check is accepted, the technique is applied correctly. Then Isabelle’s code-generation
facility is used to obtain a trusted Haskell program, i.e., the certifier CeTA, which is capable of
checking proof certificates in CPF [22] (certification problem format).2 We suitably extended
CPF to represent proofs according to Theorem 1 and implemented dedicated check functions
in our formalization, enabling CeTA to inspect, i.e., certify such confluence proofs. Typically,
these proofs are generated by automated confluence tools. (See Footnote 1 for details.)

A preliminary result of our formalization has already been proved useful in the latest
edition of the confluence competition (CoCo 2014), where CeTA certified confluence proofs for
linear rewrite systems based on the rule labeling (among others). The main challenge in lifting
the result from linear to left-linear rewrite systems has not been the relative termination
requirement per se, which vacuously holds in the linear case, but the interplay of the relative
termination condition with the rule labeling, which is crucial in the the proof of Theorem 1,
albeit in the statement of the result these concepts are clearly separated. Besides, to establish
decreasingness of variable peaks (involving non-right-linear rules) more details about the
joining sequences were needed than the existing theories in IsaFoR provided.

The remainder of this paper is organized as follows. Preliminaries are introduced in
the next section. The interplay of several labeling functions favors the notion of extended
local decreasingness [7], which is proved to imply local decreasingness in Section 3, where
also the connection to the existing formalization of decreasing diagrams for abstract rewrite
systems [28, 29] is established. Afterwards, Section 4 lifts extended local decreasingness from
abstract rewriting to results for term rewriting that are parametrized by a labeling. Section 5
instantiates these results with concrete labeling functions to obtain corollaries that ensure
confluence. Section 6 presents an experimental evaluation, before we conclude in Section 7.

The full formalization is available from the URL in Footnote 2.

2 Preliminaries

We assume familiarity with rewriting [25] and decreasing diagrams [15]. Basic knowledge
of Isabelle [14] is not essential but experience with an interactive theorem prover might be
helpful.

Let F be a signature and V a set of variables disjoint from F . By T (F ,V), we denote the
set of terms over F and V. Positions are strings of positive natural numbers, i.e., elements
of N∗+. We write q 6 p if qq′ = p for some position q′, in which case p\q is defined to be q′.
Furthermore q < p if q 6 p and q 6= p. Finally, q ‖ p if neither q 6 p nor p < q. Positions are
used to address subterm occurrences. The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable and as Pos(t) = {ε} ∪ {iq | 1 6 i 6 n and q ∈ Pos(ti)} if t = f(t1, . . . , tn).
The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p = ε and as t|p = ti|q if
p = iq and t = f(t1, . . . , tn). We write s[t]p for the result of replacing the occurrence of
s|p with t in s. The set of function symbol positions PosF (t) is {p ∈ Pos(t) | t|p /∈ V} and
PosV(t) = Pos(t) \ PosF (t).

2 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/ceta/.

http://cl-informatik.uibk.ac.at/software/ceta/
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A rewrite rule is a pair of terms (l, r), written l→ r.3 A rewrite rule l→ r is duplicating
if |l|x < |r|x for some x ∈ V. Here the expression |t|x indicates the number of occurrences
of the variable x in term t. A term rewrite system (TRS) is a signature together with a
set of rewrite rules over this signature. In the sequel, signatures are left implicit. By Rd
and Rnd, we denote the duplicating and non-duplicating rules of a TRS R, respectively. A
rewrite relation is a binary relation on terms that is closed under contexts and substitutions.
For a TRS R we define →R (often written as →) to be the smallest rewrite relation that
contains R. As usual →=, →+, and →∗ denote the reflexive, transitive, and reflexive and
transitive closure of →, respectively, while →n denotes the n-fold composition of →.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S . Sometimes we identify a TRS R with the relative TRS R/∅ and
vice versa. A TRS R is terminating (relative to a TRS S) if →R (→R/S) is well-founded.

A critical overlap (l1 → r1, p, l2 → r2)µ of a TRS R consists of variants l1 → r1 and
l2 → r2 of rewrite rules in R without common variables, a position p ∈ PosF (l2), and a most
general unifier µ of l1 and l2|p. From a critical overlap (l1 → r1, p, l2 → r2)µ we obtain a
critical peak l2µ[r1µ]p ←l2µ→ r2µ and a critical pair l2µ[r1µ]p ←o→ r2µ.

If l → r ∈ R, p is a position, and σ is a substitution we call the triple π = 〈p, l → r, σ〉
a redex pattern, and write pπ, lπ, rπ, σπ for its position, left-hand side, right-hand side,
and substitution, respectively. We write →π (or →pπ,lπ→rπ,σπ ) for a rewrite step at position
pπ using the rule lπ → rπ and the substitution σπ. A redex pattern π matches a term t if
t|pπ = lπσπ, which is then called a redex.

Let π1 and π2 be redex patterns that match a common term. They are called parallel,
written π1 ‖ π2, if pπ1 ‖ pπ2 . If P = {π1, . . . , πn} is a set of pairwise parallel redex patterns
matching a term t, we denote by t →pp P t′ the parallel rewrite step from t to t′ by P , i.e.,
t→π1 · . . . · →πn t′.

In IsaFoR, an abstract rewrite system (ARS) is a binary relation → where the domain
is left implicit in the type. Let I be an index set. We write {→α}α∈I to denote the ARS
→ where → is the union of →α for all α ∈ I. Let {→α}α∈I be an ARS and let > and >
be relations on I. Two relations > and > are called compatible if > · > · > ⊆ >. Given
a relation < we write → 4α1···αn for the union of →β where αi < β for some 1 6 i 6 n.
Similarly, 4S is the set of all β such that α < β for some α ∈ S. We call α and β extended
locally decreasing (for > and >) if α← · →β ⊆ →∗<α · →

=

6β
· →∗

<αβ
· ∗

<αβ
← · =

6α
← · ∗

<β
←. If

there exist a well-founded order > and a preorder >, such that > and > are compatible, and
α and β are extended locally decreasing for all α, β ∈ I then the ARS {→α}α∈I is extended
locally decreasing (for > and >). We call an ARS locally decreasing (for >) if it is extended
locally decreasing for > and =, where the latter is the identity relation. In the sequel, we
often refer to extended locally decreasing as well as to locally decreasing just by decreasing,
whenever the context clarifies which concept is meant or the exact meaning is irrelevant.

3 Abstract Rewriting

This section is concerned with the formalization of the following result from [7, Theorem 2]:

I Lemma 2. Every extended locally decreasing ARS is confluent. J

3 We do not require the common variable conditions, i.e., the restriction that l is not a variable and all
variables in r are contained in l.

RTA 2015
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Figure 1 (Extended) locally decreasing peaks.

The results for decreasing diagrams formalized in [28] differ from the above lemma for
two reasons. Firstly, [28] establishes results for local decreasingness instead of extended local
decreasingness. Secondly, in contrast to the formulation of the lemma above it does not
represent the ARS as a family of rewrite relations (i.e., {→α}α∈I) but considers a single
labeled relation where a triple (a, α, b) expresses that (a, b) ∈ →α.

Given an ARS that is extended locally decreasing for > and >, the proof in [7] constructs
a single order � on sets of labels and establishes local decreasingness of the ARS for �. Our
formalization goes along the lines with the proposed proof (see below). It turned out that
the representation of the ARS as a family of relations is essential to follow the proof in [7].
Hence establishing equivalence of a single labeled ARS with a family of rewrite relations is
needed to employ the formalization of [28] in the proof of Lemma 2. This equivalence looks
trivial at first sight, but as each representation comes with a different formalization of rewrite
steps, also related concepts such as local peaks, joining sequences, and local decreasingness,
must be mapped. We refer the interested reader to the formalization and do not present the
technical details here.

The remainder of this section sketches the formalization of the next lemma (following [7]).

I Lemma 3. Every extended locally decreasing ARS is locally decreasing.

To prepare for its proof we consider sets of labels.

I Definition 4. Let Cα denote the set {α′ | α > α′ and α 6> α′} and let C be the set of all
Cα. For C,D ∈ C let C � D if there exist α and β with C = Cα, D = Cβ , and α > β. By
→C , we denote the union of →α for all α ∈ C.

The idea is to establish {→α}α∈I = {→C}C∈C and conclude local decreasingness of the
ARS {→C}C∈C based on extended local decreasingness of the ARS {→α}α∈I . The next
example demonstrates some peculiarities of this approach.

I Example 5. Consider the ARS {→α}α∈{1,1.5,2} with →1 = {(a, b), (c, d)}, →1.5 = {(b, d)},
and →2 = {(a, c)}. This ARS is extended locally decreasing for >N and >Q, as depicted
in Figure 1(a). We have C = {C2, C1.5, C1} with C2 = {2, 1.5}, C1.5 = {1.5, 1}, and
C1 = {1}. E.g. 1.5 ∈ C2 since 2 >Q 1.5 but 2 6>N 1.5. Consequently, →C2 = {(a, c), (b, d)},
→C1.5 = {(b, d), (a, b), (c, d)}, and →C1 = {(a, b), (c, d)}. To establish local decreasingness of
the related ARS {→C}C∈C the peak b C1← a→C2 c (emerging from b 1← a→2 c) must be
considered, which can be closed in a locally decreasing fashion via b→C2 d C1← c (based
on b →1.5 d 1← c), as in Figure 1(b). However, the construction also admits the peak
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b C1.5← a→C2 c, for which there is no peak b 1.5← a→2 c in the original ARS, as it does not
contain the step b 1.5← a. Still, this peak can be closed locally decreasing, cf. Figure 1(c).

The following properties are crucial:

I Lemma 6. Let > be a well-founded order and > a preorder compatible with >.
1. Then � is a well-founded order.
2. If γ > γ′, δ > δ′, and x→∗

<γ′δ′ y then x→∗

<γδ
y.

3. If γ > γ′ and x→=
6 γ′ y then x→=

6 γ
y.

4. If x→∗

<γδ
y then x→∗≺CγCδ y.

5. If x→=

6 γ
y then x→=

Cγ
y or x→ ≺Cγ y.

Proof. Items (1–3) follow from the properties of the orders. Items (4) and (5) are established
as in [7]. J

Item (1) of Lemma 6, i.e., well-foundedness of � is not proved explicitly in [7]. Moreover
items (2) and (3) are missing in [7]. Their need becomes apparent in the following proof.
In [8] (the journal version of [7]) extended local decreasingness is avoided by employing the
predecessor labeling. Then a rewrite step comes with a set of labels, which is typically not
computable and hence inappropriate for certification.

Proof of Lemma 3. We assume the ARS {→α}α∈I is extended locally decreasing for >
and > and establish local decreasingness of the ARS {→C}C∈C for � by showing

←−
C
· −→
D
⊆ ∗−−→

≺C
· =−→
D
· ∗−−−→

≺CD
· ∗←−−−

≺CD
· =←−
C
· ∗←−−

≺D
(1)

for C,D ∈ C.4 By definition of C and D, there exist α and β with C = Cα and D = Cβ , i.e.,
C← · →D = Cα← · →Cβ =

⋃
α′∈Cα,β′∈Cβ α′← · →β′ . We note that from y Cα← x in general

we may not infer y α← x, but rather y α′← x for some α′ ∈ Cα (cf. Example 5). Similarly
x→Cβ z implies x→β′ z for some β′ ∈ Cβ . Consequently, the extended local decreasingness
assumption cannot be applied to α and β (as conveyed in [7]) but must be applied to α′
and β′ (as sketched in Example 5), i.e.,

←−
α′
· −→
β′
⊆ ∗−−→

<α′
· =−−→

6β′
· ∗−−−→

<α′β′
· ∗←−−−

<α′β′
· =←−−

6α′
· ∗←−−

<β′

Then we establish

∗−−→

<α′
· =−−→

6β′
· ∗−−−→

<α′β′
· ∗←−−−

<α′β′
· =←−−

6α′
· ∗←−−

<β′
⊆ ∗−−→

<α
· =−−→

6β
· ∗−−→

<αβ
· ∗←−−

<αβ
· =←−−

6α
· ∗←−−

<β

using Lemma 6(2-3), from which the desired

←−−
Cα
· −−→
Cβ
⊆ ∗−−−→

≺Cα
· =−−→
Cβ
· ∗−−−−→

≺CαCβ
· ∗←−−−−

≺CαCβ
· =←−−
Cα
· ∗←−−−

≺Cβ

is obtained using Lemma 6(4–5). Depending on the case of Lemma 6(5) that applies, the
reflexive step either stays, if e.g. →=

6β
becomes →=

Cβ
, or is merged with the subsequent

sequence having smaller labels, if e.g. →=

6β
becomes → ≺Cβ , establishing the property (1).

The proof concludes by the equivalence {→α}α∈I = {→C}C∈C , as in [7]. J

4 In [7] the (stronger) property C← · →D ⊆ →∗

≺C · →
=

≺D · →
∗

≺CD ·
∗

≺CD← ·
=

≺C← ·
∗

≺D← is claimed, but
as this is obviously impossible we anticipate a typo there.

RTA 2015
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4 Term Rewriting

This section builds upon the result for ARSs from the previous section to prepare for
confluence criteria for TRSs, such as Theorem 1. To support confluence results besides
Theorem 1, in the formalization we did not follow the easiest way, i.e., suit the definitions
and lemmas directly towards Theorem 1. Rather, we adopted the approach from [31], where
all results are established via labeling functions (satisfying some abstract properties). Apart
from avoiding a monolithic proof, this has the advantage that similar proofs need not be
repeated for different labeling functions but it suffices to establish that the concrete labeling
functions satisfy some abstract conditions. Then decreasingness is established in three steps.
The first step comprises joinability results for local peaks (Section 4.1). The second step
(Section 4.2) formulates abstract conditions with the help of labeling functions that admit a
finite characterization of decreasingness of local peaks. Finally, based on the previous two
steps, the third step (Section 5) then obtains confluence results by instantiating the abstract
labeling functions with concrete ones, e.g. the rule labeling. So only the third step needs to
be adapted when formalizing new labeling functions, as steps one and two are unaffected.

4.1 Local Peaks
As IsaFoR already supported Knuth-Bendix’ criterion (see [21]), it contained results for
joinability of local peaks and the critical pair theorem (the terms obtained by a local peak
in a left-linear TRS are joinable or an instance of a critical pair). However, large parts
of the existing formalization could not be reused directly as the established results lacked
information required for ensuring decreasingness. For instance, to obtain decreasingness for
the rule labeling (cf. Section 5) in case of a variable peak, the rewrite rules employed in the
joining sequences are crucial, but the existing formalization only states that such a local
peak is joinable. On the other hand, the existing notion of critical pairs from IsaFoR could be
reused as the foundation for critical peaks. Since the computation of critical pairs requires a
formalized unification algorithm, extending IsaFoR admitted focusing on the tasks related to
decreasingness.

Local peaks can be characterized based on the positions of the diverging rewrite steps.
Either the positions are parallel, called a parallel peak, or one position is above the other.
In the latter situation we further distinguish whether the lower position is at a function
position, called a function peak, or at/below a variable position of the other rule’s left-hand
side, called a variable peak. More precisely, for a local peak

t = s[r1σ1]p ← s[l1σ1]p = s = s[l2σ2]q → s[r2σ2]q = u (2)

there are three possibilities (modulo symmetry):
(a) p ‖ q (parallel peak),
(b) q 6 p and p\q ∈ PosF (l2) (function peak),
(c) q 6 p and p\q /∈ PosF (l2) (variable peak).

For the situation of a left-linear TRS these cases are visualized in Figure 2. It is easy to
characterize parallel, function, and variable peaks in Isabelle (cf. Listing 1) but it requires
tedious notation. The information of a rewrite step s →p,l→r,σ

R t is represented in IsaFoR
as (s,t) ∈ rstep_r_p_s R (l,r) p σ. As the definition of function and variable peaks is
asymmetric the five cases of local peaks can be reduced to the above three by mirroring
those peaks. Then local peaks can be characterized as in Listing 2. Next we elaborate on
the three cases.
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Figure 2 Three kinds of local peaks.

definition local_peaks where "local_peaks R =
{((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) | s t u rl1 rl2 p q σ1 σ2.
((s,t) ∈ rstep_r_p_s R rl1 p σ1 ∧ (s,u) ∈ rstep_r_p_s R rl2 q σ2)}"

definition parallel_peak where "parallel_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
p ⊥ q))"

definition function_peak where "function_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
∃r.((p<#>r = q) ∧ r ∈ poss (fst rl1) ∧ is_Fun ((fst rl1) |_ r))))"

definition variable_peak where "variable_peak R pk = (
pk ∈ local_peaks R ∧ (let ((s,rl1,p,σ1,t),(s,rl2,q,σ2,u)) = pk in
∃r.((p<#>r = q) ∧ ¬(r ∈ poss (fst rl1) ∧ is_Fun ((fst rl1) |_ r)))))"

Listing 1 Characterization of local peaks.

lemma local_peaks_cases:
assumes "pk ∈ local_peaks R"
shows "parallel_peak R pk ∨ variable_peak R pk ∨ function_peak R pk
∨ variable_peak R (snd pk, fst pk) ∨ function_peak R (snd pk, fst pk)"

Listing 2 Cases of local peaks.

Case 1: Parallel Peaks

Figure 2(a) shows the shape of a local peak where the steps take place at parallel positions.
For a peak t π1← s →π2 u with π1 ‖ π2 we established that t →π2 v π1← u, i.e., the
steps drawn at opposing sides in the diagram are corresponding, that is, they apply the
same rule/substitution at the same position. The proof is straightforward and based on a
decomposition of the terms into a context and the redex.

Case 2: Function Peaks

In general joining function peaks may involve rules not present in the divergence (as indicated
by the question mark in Figure 2(b)). To reduce the duty of joining (infinitely many) function

RTA 2015
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peaks to joining the (in case of a finite TRS finitely many) critical peaks, we established that
every function peak is an instance of a critical peak.

I Lemma 7. Let t p,l1→r1,σ1← s →q,l2→r2,σ2 u with qq′ = p, and q′ ∈ PosF (l2). Then
there are a context C, a substitution τ , and a critical peak l2µ[r1µ]q′ ←l2µ→ r2µ such that
s = C[l2µτ ], t = C[(l2µ[r1µ]q′)τ ], and u = C[r2µτ ]. J

We remark that this fact was already present (multiple times) in IsaFoR, but concealed in
larger proofs, e.g. the formalization of orthogonality [12], and never stated explicitly.

As IsaFoR does not enforce that the variables of a rewrite rule’s right-hand side are con-
tained in its left-hand side, such rules are just also included in the critical peak computation.

Case 3: Variable Peaks

Variable overlaps (Figure 2(c)) can again be joined by the rules involved in the diverging step.5
We only consider the case if l2 → r2 is left-linear, as our main result assumes left-linearity.
More precisely, if q′ is the unique position in PosV(l2) such that qq′ 6 p, x = l2|q′ , and
|r2|x = n then we have t →l2→r2 v, which is similar to the case for parallel peaks, as the
redex l2σ becomes l2τ but is not destroyed, and u→n

l1→r1
v. To obtain this result we reason

via parallel rewriting. The notion of parallel rewriting already supported by IsaFoR (employed
to prove that orthogonal systems are confluent) does not keep track of e.g. the applied rules.
Thus we augmented IsaFoR by a new version of parallel steps, which record the information
(position, rewrite rule, substitution) of each rewrite step, i.e., the rewrite relation is decorated
with the contracted redex patterns:

x
∅−→pp x

l→ r ∈ R

lσ
{〈ε,l→r,σ〉}−−−−−−−→pp rσ

s1
P1−→pp t1 · · · sn

Pn−−→pp tn

f(s1, . . . , sn) (1P1)∪···∪(nPn)−−−−−−−−−−→pp f(t1, . . . , tn)

Here for a set of redex patterns P = {π1, . . . , πm} by iP we denote {iπ1, . . . , iπm} with
iπ = 〈ip, l → r, σ〉 for π = 〈p, l → r, σ〉. To use this parallel rewrite relation for closing
variable peaks we established the following auxiliary results.

I Lemma 8. The following properties of the parallel rewrite relation hold:
1. For all s we have s→pp ∅ s.
2. If s→pp ∅ t then s = t.
3. If s→pp P t and q ∈ Pos(u) then u[s]q →pp qP u[t]q.
4. We have s→π t if and only if s→pp {π} t.
5. If σ(x) →π τ(x) and σ(y) = τ(y) for all y ∈ V with y 6= x then tσ →pp P tτ with

lπ′ → rπ′ = lπ → rπ for all π′ ∈ P .
6. If s→pp {π}∪P t then there is a u with s→pp {π} u→pp P t.
7. If s→pp {π1,...,πn} t then s→π1 · · · →πn t.

Proof. In principle the results follow from the definitions using straightforward induction
proofs. However, the additional bookkeeping, required to correctly propagate the information
attached to the rewrite relation, makes them considerably more involved than for the existing,
agnostic notion of parallel rewriting. J

Now for reasoning about variable peaks as above we decompose u = s[r2σ]q and v = s[r2τ ]q
where σ(y) = τ(y) for all y ∈ V \{x} and σ(x)→p\qq′,l1→r1 τ(x). From the latter by item (5)

5 This includes rules having a variable as left-hand side.
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inductive_set seq for R where
"(s,[]) ∈ seq R" |
"(s,t) ∈ rstep_r_p_s R rl p σ

=⇒ (t,ts) ∈ seq R =⇒ (s,(s,rl,p,σ,t)#ts) ∈ seq R"

Listing 3 Rewrite sequences.

we obtain r2σ →pp P r2τ , where all redex patterns in P use l1 → r1. Then by item (3) we get
s[r2σ]q →pp qP s[r2τ ]q and finally s[r2σ]q →n

l1→r1
s[r2τ ]q with n = |qP | = |P | by item (7).

4.2 Local Decreasingness
The aim of this section is a confluence result (cf. Corollary 14) based on decreasingness of
the critical peaks. Abstract conditions, via the key notion of a labeling, will ensure that
parallel peaks and variable peaks are decreasing. Furthermore these conditions imply that
decreasingness of the critical peaks implies decreasingness of the function peaks.

For establishing (extended) local decreasingness, a label must be attached to rewrite steps.
To facilitate checking, the formalization makes the rewrite sequences (cf. Listing 3) explicit, i.e.,
they involve the intermediate terms, applied rules, etc. based on rstep_r_p_s. Furthermore,
labels are computed by a labeling (function), having (local) information about the rewrite
step (such as source and target term, applied rewrite rule, position, and substitution) it is
expected to label. For reasons of readability in this presentation we employ the mathematical
notation (e.g., →∗, etc.) with all information implicit but remark that the formalization
works on rewrite sequences with explicit information (as in Listing 3).

I Definition 9. A labeling is a function ` from rewrite steps to a set of labels such that for
all contexts C and substitutions σ the following properties are satisfied:

If `(s→π1 t) > `(u→π2 v) then `(C[sσ]→C[π1σ] C[tσ]) > `(C[uσ]→C[π2σ] C[vσ])
If `(s→π1 t) > `(u→π2 v) then `(C[sσ]→C[π1σ] C[tσ]) > `(C[uσ]→C[π2σ] C[vσ])

Here C[πσ] denotes 〈qp, l→ r, τσ〉 for π = 〈p, l→ r, τ〉 and C|q = �.

In presence of a labeling, rewrite sequences can be labeled at any time. This avoids lifting
many notions (such as rewrite steps, local peaks, rewrite sequences, etc.) and results from
rewriting to labeled rewriting.

Following [28], we separate (local) diagrams (where rewriting is involved) from decreas-
ingness (where only the labels are involved). In the next definition a labeling is extended to
peaks and rewrite sequences via the equations: `(t π← s) = `(s→π t), `(t→0 t) = ∅, and
`(s→π t→∗ u) = {`(s→π t)} ∪ `(t→∗ u).

I Definition 10. A local peak t π1← s→π2 u is extended locally decreasing (for `) if it can
be completed into a local diagram t →∗ t′ →= t′′ →∗ v ∗← u′′ =← u′ ∗← u such that its
labels are extended locally decreasing, i.e.,
`(t→∗ t′) ⊆ <`(t π1← s), `(t′ →= t′′) ⊆ 6 `(s→π2 u), `(t′′ →∗ v) ⊆ <`(t π1← s→π2 u) and
`(u′ ∗← u) ⊆ <`(s→π2 u), `(u′′ =← u′) ⊆ 6 `(t π1← s), `(v ∗← u′′) ⊆ <`(t π1← s→π2 u).

The corresponding predicate in IsaFoR is given in Listing 4 where extended local decreas-
ingness (eld) of a local peak pk is expressed via the existence of rewrite sequences jl and jr
that join the divergence caused by the local peak pk in the shape of a local diagram (ld_trs)
and the labels of the underlying rewrite sequences are extended locally decreasing (eld_seq).
Here r is the pair of relations (>,>).
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definition eld where "eld R ` r pk =
(∃ jl jr. (ld_trs R pk jl jr ∧ eld_seq ` r pk jl jr))"

Listing 4 Extended local decreasingness.

Then a function peak is extended locally decreasing if the critical peaks are.

I Lemma 11. Let ` be a labeling and let all critical peaks of a TRS R be extended locally
decreasing for `. Then every function peak of R is extended locally decreasing for `.

Proof. As every function peak is an instance of a critical peak (see Lemma 7), the result
follows from ` being a labeling (Definition 9). J

The notion of compatibility (between a TRS and a labeling) admits a finite characterization
of extended local decreasingness.

I Definition 12. Let ` be a labeling. We call ` compatible with a TRS R if all parallel peaks
and all variable peaks of R are extended locally decreasing for `.

The key lemma then establishes that if ` is compatible with a TRS, then all local peaks
are extended locally decreasing.

I Lemma 13. Let ` be a labeling which is compatible with a TRS R. If the critical peaks
of R are extended locally decreasing for `, then all local peaks of R are extended locally
decreasing for `.

Proof. The cases of variable and parallel peaks are taken care of by compatibility. The case
of function peaks follows from the assumption in connection with Lemma 11. The symmetric
cases for function and variable peaks are resolved by mirroring the local diagrams. J

Representing a TRS R over the signature F and variables V as the ARS over objects
T (F ,V) and relations

⋃
α{(s, t) | s→π t and `(s→π t) = α}, Lemma 2 immediately applies

to TRSs. To this end extended local decreasingness formulated via explicit rewrite sequences
(with labeling functions) has to be mapped to extended local decreasingness on families of
(abstract rewrite) relations; we omit the technical details here.

Finally, we obtain the following result.

I Corollary 14. Let ` be a labeling compatible with a TRS R. If the critical peaks of R are
extended locally decreasing for ` then R is confluent. J

Concrete confluence criteria are then obtained as instances of the above result. In the
case of Theorem 1 by showing that the relative termination assumption in combination with
the rule labeling implies the desired preconditions.

5 Applications

In this section we instantiate Corollary 14 to obtain concrete confluence results. Afterwards
we discuss the design of the certificates, checkable by CeTA.
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5.1 Rule Labeling
The rule labeling [16] is parametrized by an index mapping i : R → N, which associates to
every rewrite rule a natural number.

I Definition 15. The function `i(s→π t) = i(lπ → rπ) is called rule labeling. Labels due to
the rule labeling are compared by >N and >N.

The rule labeling admits a confluence criterion based on the results established so far.

I Lemma 16.
1. The rule labeling is a labeling.
2. Parallel peaks are extended locally decreasing for the rule labeling.
3. Variable peaks of a linear TRS are extended locally decreasing for the rule labeling.
4. The rule labeling is compatible with a linear TRS.
5. A linear TRS is confluent if its critical peaks are extended locally decreasing for the rule

labeling.

Proof. Item (1) follows from Definition 9. For (2) and (3) we employ the analysis of parallel
and variable peaks from Section 4.1, respectively. Item (4) is then a consequence of (2)
and (3). Finally, (5) amounts to an application of Corollary 14. J

Eventually, we remark that for the rule labeling extended local decreasingness implies
local decreasingness, as >N is the reflexive closure of >N.

5.2 Relative Termination
That a locally confluent terminating left-linear TRS is confluent can be established in the
flavor of Lemma 16. The restriction to left-linearity arises from the lack of considering
non-left-linear variable peaks in Section 4.1. As the analysis of such a peak would not
give further insights we pursue another aim in this section, i.e., the mechanized proof of
Theorem 1.

It is well known that the rule labeling `i is in general not compatible with left-linear
TRSs, cf. [8]. Thus, to obtain extended local decreasingness for variable peaks the additional
relative termination assumption is exploited. To this end we use the source labeling, which
labels each rewrite step by its source, i.e., `src(s→π t) = s. Here, labels due to the source
labeling are compared by the orders →+

Rd/Rnd
and →∗R. The relative termination assumption

of Theorem 1 makes all variable peaks of a left-linear TRS extended locally decreasing for
the source labeling.

Following [31], the aim is to establish that the lexicographic combination `src × `i is
compatible with a left-linear TRS. To employ the rule labeling we have to introduce a weaker
version of compatibility.

I Definition 17. A diagram of the shape t α← s →l2→r2
β u, t →

6β
v n

6α
← u is called

weakly extended locally decreasing if n 6 1 whenever r2 is linear. We call a labeling ` weakly
compatible with a TRS R if parallel and variable peaks are weakly extended locally decreasing
for `.

While weak extended local decreasingness could also be defined in the spirit of extended
local decreasingness (with a more complicated join sequence) the chosen formulation eases
the definition and simplifies proofs.

Based on the peak analysis of Section 4.1 the following results are established (Such
properties must be proved for each labeling function.):
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I Lemma 18. Let R be a left-linear TRS.
1. Parallel peaks are weakly extended locally decreasing for the rule labeling.
2. Variable peaks of R are weakly extended locally decreasing for the rule labeling.
3. The rule labeling is weakly compatible with R. J

Similar results are established for the source labeling.

I Lemma 19. Let R be a left-linear TRS whose duplicating rules terminate relative to the
other rules.
1. The source labeling is a labeling.
2. Parallel peaks are extended locally decreasing for the source labeling.
3. Variable peaks of R are extended locally decreasing for the source labeling.
4. The source labeling is compatible with R. J

Using this lemma, we proved the following results for the lexicographic combination of
the source labeling with another labeling.

I Lemma 20. Let R be a left-linear TRS whose duplicating rules terminate relative to the
other rules, and ` a labeling weakly compatible with R.
1. Then `src × ` is a labeling.
2. Then `src × ` is compatible with R. J

For reasons of readability we have left the orders > and > that are required for (weak)
compatibility implicit and just mention that the lexicographic extension (as detailed in [31])
preserves the required properties. Finally, we prove the main result of this paper.

Proof of Theorem 1. From Lemma 18(3) in combination with Lemma 20 we obtain that
`src × `i is a labeling compatible with a left-linear TRS, provided the relative termination
assumption is satisfied. By assumption, the critical peaks are (extended locally) decreasing
for the rule labeling `i. As along a rewrite sequence labels with respect to `src never increase,
the critical peaks are extended locally decreasing for `src × `i. We conclude the proof by an
application of Corollary 14. J

Hence, actually a stronger result than Theorem 1 has been mechanized, as `src × `i might
show more critical peaks decreasing than `i alone.

5.3 Certificates
Next we discuss the design of the certificates for confluence proofs via the rule labeling, i.e.,
how they are represented in CPF, and the executable checker to verify them. A minimal
certificate could just claim that the considered rewrite system can be shown decreasing via
the rule labeling. However, this is undecidable, even for locally confluent systems [8]. Hence
in the certificate the index function i as well as (candidates for) the joining sequences for
each critical pair have to be provided. Note that the labels in the joining sequences are not
required for the certificate, since CeTA has to check, i.e., compute them anyway. The same
holds for the critical peaks.

As the confluence tools that generate certificates might use different renamings than CeTA
when computing critical pairs, the joining sequences given in the certificate are subject to
a variable renaming. Thus, after computing all critical peaks, CeTA has to look for joining
sequences in the certificate modulo renaming of variables.

Now, to verify whether the sequences of labels obtained from the joining sequences by
applying the given index function fulfill the extended local decreasingness condition, we need
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Table 1 Experimental results for 148 TRSs from CoCo 2014.

method success CoCo 2013 CoCo 2014 CeTA 2.19

(weak) orthogonality 4 3 3 3

Knuth-Bendix 26 3 3 3

strong closedness 28 3 3 3

Lemma 16(5) 41 7 3 3

Theorem 1 46 7 7 3∑
45 56 58

to provide means to decide the following: given two natural numbers α and β and a sequence
σ of natural numbers, is there a split σ = σ1σ2σ3 such that σ1 ⊆ <α, σ2 ⊆ 6β with length of
σ2 at most one, and σ3 ⊆ <αβ? To this end our checker employs a simple, greedy approach.
That is, we pick the maximal prefix of σ with labels smaller α as σ1. If the next label is less
or equal to β we take it as σ2 and otherwise we take the empty sequence for σ2. Finally, the
remainder of the sequence is σ3. A straightforward case analysis shows that this approach is
complete, i.e., otherwise no such split exists.

To certify applications of Theorem 1, additionally the relative termination condition has
to be checked. Luckily, CeTA already supports a wide range of relative termination techniques,
so that here we just needed to make use of existing machinery.

6 Experiments

For experiments we considered the 148 TRSs selected for CoCo 2014 and used the confluence
tool CSI [30] to obtain certificates in CPF for confluence proofs. Note that ACP [2] can also
produce certificates in CPF, but at the moment they are a subset of the ones reported by CSI.
All generated certificates have been certified by CeTA. Note that CeTA can also certify various
methods for non-confluence [12]. The largest certificate (for Cops #60) has 760 KB and lists
182 candidate joins for showing the 34 critical peaks decreasing. The certificate is checked
within 1.1 seconds. We remark that no confluence tool besides CSI has solved Cops #60 so
far, stressing the importance of a certified proof.

Next we elaborate on the impact of the new contributions. Experimental results for
various criteria supported by CeTA are shown in Table 1.6 The CeTA version from CoCo 2013
incorporated (weak) orthogonality [18], Knuth-Bendix’ criterion [11], and strong closedness [9].
Due to the formalization described in this paper now also Theorem 1 is supported (column
CeTA 2.19). As already employed for CoCo 2014, we included the data for Theorem 1 restricted
to linear TRSs, i.e., Lemma 16(5). On our testbed Theorem 1 can establish confluence of
more systems than all earlier methods together (46 vs. 45) and admits about 25% increase in
power (58 vs. 45) when used in combination with the other criteria.

7 Conclusion

Finally we discuss related work, comment on the existing formalization of rewriting in IsaFoR,
and conclude with a short summary.

6 Details are available from http://cl-informatik.uibk.ac.at/experiments/2015/rta3.
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7.1 Related Work

Formalizing confluence criteria has a long history in λ-calculus. Huet [10] proved a stronger
variant of the parallel moves lemma in Coq. Isabelle/HOL was used in [13] to prove the
Church-Rosser property of β, η, and βη. For β-reduction the standard Tait/Martin-Löf
proof as well as Takahashi’s proof [24] were formalized. The first mechanically verified proof
of the Church-Rosser property of β-reduction was done using the Boyer-Moore theorem
prover [20]. The formalization in Twelf [17] was used to formalize the confluence proof of a
specific higher-order rewrite system in [23].

Next we discuss related work for term rewriting. Newman’s lemma (for abstract rewrite
systems) and Knuth and Bendix’ critical pair theorem (for first-order rewrite systems) have
been proved in [19] using ACL. An alternative proof of the latter in PVS, following the higher-
order structure of Huet’s proof, is presented in [6]. PVS is also used in the formalization
of the lemmas of Newman and Yokouchi in [5]. Knuth and Bendix’ criterion has also been
formalized in Coq [4] and Isabelle/HOL [26]. The strong closedness condition of Huet [9]
has been formalized by the first author in Isabelle [12] where reasoning similar to the one
in Section 4.1 is used to (strongly) close variable and parallel peaks. However, for strong
closedness it suffices to construct a common reduct while for our setting every rewrite step
has to be made explicit in order to compute the labels and show local decreasingness.

7.2 Assessment

Next we discuss the usefulness of existing formalizations for this work. The existing machinery
of IsaFoR admitted invaluable support. We regard our efforts to establish an annotated version
of parallel rewriting not as a shortcoming of IsaFoR, but as a useful extension to it. On the
contrary, we could employ many results from IsaFoR without further ado, e.g., completeness of
the unification algorithm (to compute critical peaks), plain rewriting (to connect parallel steps
with single steps), and the support for relative termination. Although [28] does not provide
the main result for decreasing diagrams of abstract rewrite systems that are represented via
families (as needed for Lemma 2), the amount of work to use this result has been modest,
justifying the usability of [28]. That Lemma 7 occurred several times in IsaFoR can be
explained as follows. Note that also in textbook proofs (e.g. [3]) this result is not made
explicit but established in the scope of a larger proof, probably due to its nasty formulation.
Still, in later proofs the result is used as if it would have been established explicitly. In IsaFoR
these proofs have been duplicated, but as formalization papers typically come with code
refactoring these deficiencies have been fixed. Note that the duplicated proofs have actually
never been published.

Next, differences to [31] are addressed. The concepts of an L-labeling and an LL-labeling
from [31] have been unified to the notion of a labeling compatible with a TRS while weak-LL-
labelings are represented via weakly compatible labelings here. This admits the formulation of
the abstract conditions such that a labeling ensures confluence (cf. Corollary 14) independent
from the TRS being (left-)linear. We anticipate that the key result for closing variable
peaks for the left-linear case (cf. Section 4.1) does not rely on the annotated version of
parallel rewriting, but as [31] also supports labelings based on parallel rewriting the developed
machinery might be useful for future certification efforts. The formalization described in this
paper covers a significant amount of the results presented in [31]. As explained, additional
concepts (e.g., the annotated version of parallel rewriting) were formalized to already prepare
for the remaining criteria. However, for some results that are not covered yet (e.g. persistency),
we anticipate that already formalizing the preliminaries requires significant effort.
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7.3 Summary
In this paper we presented the formalization of a result establishing confluence of left-
linear term rewrite systems based on relative termination and the rule labeling. While
our formalization admits stronger results (in order to prepare for further results from [31]),
we targeted Theorem 1, whose statement (in contrast to its proof) does not require the
complex interplay of relative termination and the rule labeling, admitting the use of external
termination provers. Our formalization also admits the (original) criterion for the rule
labeling (cf. Lemma 16(5)). As this criterion applies to linear systems only, the involved
analysis of non-right-linear variable peaks is not needed. The same holds for (the interplay
with) the relative termination condition and the notion of extended local decreasingness (the
rule labeling does not benefit from a preorder). Hence the proof of Theorem 1 is significantly
more involved than the one of Lemma 16(5).

Acknowledgments. We thank Bertram Felgenhauer, Christian Sternagel, and René Thie-
mann for discussion and the reviewers for helpful comments.
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