
Conditional Complexity∗

Cynthia Kop, Aart Middeldorp, and Thomas Sternagel

Institute of Computer Science
University of Innsbruck, Austria
{cynthia.kop|aart.middeldorp|thomas.sternagel}@uibk.ac.at

Abstract
We propose a notion of complexity for oriented conditional term rewrite systems. This notion is
realistic in the sense that it measures not only successful computations but also partial computa-
tions that result in a failed rule application. A transformation to unconditional context-sensitive
rewrite systems is presented which reflects this complexity notion, as well as a technique to derive
runtime and derivational complexity bounds for the latter.
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1 Introduction

Conditional term rewriting is a well-known computational paradigm. First studied in the
eighties and early nineties of the previous century, in more recent years transformation
techniques have received a lot of attention and automatic tools for (operational) termination
[8, 16, 25] as well as confluence [27] were developed.

In this paper we are concerned with the following question: What is the length of a longest
derivation to normal form in terms of the size of the starting term? For unconditional rewrite
systems this question has been investigated extensively and numerous techniques have been
developed that provide an upper bound on the resulting notions of derivational and runtime
complexity (e.g. [5, 11, 12, 19, 20]). Tools that support complexity methods ([2, 22, 30]) are
under active development and compete annually in the complexity competition.1

We are not aware of any techniques or tools for conditional (derivational and runtime)
complexity—or indeed, even of a definition for conditional complexity. This may be for a
good reason, as it is not obvious what such a definition should be. Of course, simply counting
(top-level) steps will not do. Taking the conditions into account when counting successful
rewrite steps is a natural idea and transformations from conditional term rewrite systems
to unconditional ones exist (e.g., unravelings [24]) that do justice to this two-dimensional
view [15, 16]. However, we will argue that this still gives rise to an unrealistic notion of
complexity. Modern rewrite engines like Maude [6] that support conditional rewriting can
spend significant resources on evaluating conditions that in the end prove to be useless for
rewriting the term at hand. This should be taken into account when defining complexity.

Contribution. We propose a new notion of conditional complexity for a large class of rea-
sonably well-behaved conditional term rewrite systems. This notion aims to capture the
maximal number of rewrite steps that can be performed when reducing a term to normal
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form, including the steps that were computed but ultimately not useful. In order to reuse ex-
isting methodology, we present a transformation into unconditional rewrite systems that can
be used to estimate the conditional complexity. The transformed system is context-sensitive
(Lucas [13, 14]), which is not yet supported by current complexity tools, but ignoring the
corresponding restrictions, we still obtain an upper bound on the conditional complexity.

Organization. The remainder of the paper is organized as follows. In the next section
we recall some preliminaries. Based on the analysis of conditional complexity in Section 3,
we introduce our new notion formally in Section 4. Section 5 presents a transformation
to context-sensitive rewrite systems, and in Section 6 we present an interpretation-based
method targeting the resulting systems. Even though we are far removed from tool support,
examples are given to illustrate that manual computations are feasible. Related work is
discussed in Section 7 before we conclude in Section 8 with suggestions for future work.

2 Preliminaries

We assume familiarity with (conditional) term rewriting and all that (e.g., [4, 28, 24]) and
only shortly recall important notions that are used in the following.

In this paper we consider oriented conditional term rewrite systems (CTRSs for short).
Given a CTRS R, a substitution σ, and a list of conditions c : s1 ≈ t1, . . . , sk ≈ tk, let
R ` cσ denote siσ →∗R tiσ for all 1 6 i 6 k. We have s →R t if there exist a position p in
s, a rule ` → r ⇐ c in R, and a substitution σ such that s|p = `σ, t = s[rσ]p, and R ` cσ.
We may write s ε−→ t for a rewrite step at the root position and s >ε−−→ t for a non-root step.

Given a (C)TRS R over a signature F , the root symbols of left-hand sides of rules in R
are called defined and every other symbol in F is a constructor. These sets are denoted by
FD and FC , respectively. For a defined symbol f , we write R�f for the set of rules in R
that define f . A constructor term consists of constructors and variables. A basic term is a
term f(t1, . . . , tn) with f ∈ FD and constructor terms t1, . . . , tn.

Context-sensitive rewriting, as used in Section 5, restricts the positions in a term where
rewriting is allowed. A (C)TRS is combined with a replacement map µ, which assigns to
every n-ary symbol f ∈ F a subset µ(f) ⊆ {1, . . . , n}. A position p is active in a term t if
either p = ε, or p = i q, t = f(t1, . . . , tn), i ∈ µ(f), and q is active in ti. The set of active
positions in a term t is denoted by Posµ(t), and t may only be reduced at active positions.

Given a terminating and finitely branching TRS R over a signature F , the derivation
height of a term t is defined as dh(t) = max {n | t→n u for some term u}. This leads to
the notion of derivational complexity dcR(n) = max {dh(t) | |t| 6 n}. If we restrict the
definition to basic terms t we get the notion of runtime complexity rcR(n) [10].

Rewrite rules `→ r ⇐ c of CTRSs are classified according to the distribution of variables
among `, r, and c. In this paper we consider 3-CTRSs, where the rules satisfy Var(r) ⊆
Var(`, c). A CTRS R is deterministic if for every rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk in R
we have Var(si) ⊆ Var(`, t1, . . . , ti−1) for 1 6 i 6 k. A deterministic 3-CTRS R is quasi-
decreasing if there exists a well-founded order > with the subterm property that extends
→R, such that `σ > siσ for all ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R, 1 6 i 6 k, and
substitutions σ with sjσ →∗R tjσ for 1 6 j < i. Quasi-decreasingness ensures termination
and, for finite CTRSs, computability of the rewrite relation. Quasi-decreasingness coincides
with operational termination [15]. We call a CTRS constructor-based if the right-hand sides
of conditions as well as the arguments of left-hand sides of rules are constructor terms.
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Limitations. We restrict ourselves to left-linear constructor-based deterministic 3-CTRSs,
where moreover all right-hand sides of conditions are linear, and use only variables not
occurring in the left-hand side or in earlier conditions. That is, for every rule f(`1, . . . , `n)→
r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R:

`1, . . . , `n, t1, . . . , tk are linear constructor terms without common variables,
Var(si) ⊆ Var(`1, . . . , `n, t1, . . . , ti−1) for 1 6 i 6 k and
Var(r) ⊆ Var(`1, . . . , `n, t1, . . . , tk).

We will call such systems CCTRSs in the sequel. Furthermore, we restrict our attention to
quasi-decreasing and confluent CCTRSs. While these latter restrictions are not needed for
the formal development in this paper, without them the complexity notion that we propose
is either undefined or not meaningful, as argued below.

To appreciate the limitations, note that in CTRSs which are not deterministic, 3-CTRSs
or quasi-decreasing, the rewrite relation is undecidable in general, which makes it hard
to define what complexity means. The restriction to linear constructor-TRSs is common
in rewriting, and the restrictions on the conditions are a natural extension of this. Most
importantly, with these restrictions computation is unambiguous: To evaluate whether a
term `σ reduces with a rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk, we start by reducing s1σ and,
finding an instance of t1, extend σ to the new variables in t1 resulting in σ′, continue with
s2σ
′, and so on. If any extension of σ satisfies all conditions then this procedure will find

one, no matter how we reduce. However, if confluence, quasi-decreasingness or any of the
restrictions on the conditions were dropped, this would no longer be the case and we might
be unable to verify whether a rule applied without enumerating all possible reducts of its
conditions. The restrictions on the `i are needed to obtain Lemma 5, which will be essential
to justify the way we handle failure.

I Example 1. The CTRS R consisting of the rewrite rules

0 + y → y fib(0)→ 〈0, s(0)〉
s(x) + y → s(x+ y) fib(s(x))→ 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w

is a quasi-deterministic and confluent CCTRS. The requirements for quasi-decreasingness
are satisfied (e.g.) by the lexicographic path order with precedence fib > 〈·, ·〉 > + > s.

3 Analysis

We start our analysis with a deceivingly simple CCTRS to illustrate that the notion of
complexity for conditional systems is not obvious.

I Example 2. The CCTRS Reven consists of the following six rewrite rules:

even(0)→ true (1)
even(s(x))→ true ⇐ odd(x) ≈ true (2)
even(s(x))→ false ⇐ even(x) ≈ true (3)

odd(0)→ false (4)
odd(s(x))→ true ⇐ even(x) ≈ true (5)
odd(s(x))→ false ⇐ odd(x) ≈ true (6)

If, like in the unconditional case, we count the number of steps needed to normalize a
term, then a term tn = even(sn(0)) has derivation height 1, since tn → false in a single step.
To reflect actual computation, the rewrite steps to verify the condition should be taken into
account. Viewed like this, normalizing tn takes n+ 1 rewrite steps.

RTA 2015
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Table 1 Number of steps required to normalize even(sn(0)) and odd(sn(0)) in Maude.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

2n+1 − 1 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191

even(sn(0)) 1 3 3 11 5 37 7 135 9 521 11 2059 13

odd(sn(0)) 1 2 6 4 20 6 70 8 264 10 1034 12 4108

even(sn(0)) 1 2 7 8 31 32 127 128 511 512 2047 2048 8191

odd(sn(0)) 1 3 4 15 16 63 64 255 256 1023 1024 4095 4096

However, this still seems unrealistic, since a rewriting engine cannot know in advance
which rule to attempt first. For example, when rewriting t9, rule (2) may be tried first, which
requires normalizing odd(s8(0)) to verify the condition. After finding that the condition fails,
rule (3) is attempted. Thus, for Reven, a realistic engine would select a rule with a failing
condition about half the time. If we assume a worst possible selection strategy and count
all rewrite steps performed during the computation, we need 2n+1−1 steps to normalize tn.

Although this exponential upper bound may come as a surprise, a powerful rewrite engine
like Maude [6] does not perform much better, as can be seen from the data in Table 1. For
rows three and four we presented the rules to Maude in the order given in Example 2.
Changing the order to (4), (6), (5), (1), (3), (2) we obtain the last two rows. For no order on
the rules is the optimal linear bound on the number of steps obtained for all tested terms.

From the above we conclude that a realistic definition of conditional complexity should
take failed computations into account. This opens new questions, which are best illustrated
on a different (admittedly artificial) CTRS.

I Example 3. The CCTRS Rfg consists of the following two rewrite rules:

f(x)→ x g(x)→ a ⇐ x ≈ b

How many steps does it take to normalize tn,m = fn(g(fm(a)))? As we have not imposed an
evaluation strategy, one approach for evaluating this term could be as follows. We use the
second rule on the subterm g(fm(a)). This fails in m steps. With the first rule at the root
position we obtain tn−1,m. We again attempt the second rule, failing in m steps. Repeating
this scenario results in n ·m rewrite steps before we reach the term t0,m.

In the above example we keep attempting—and failing—to rewrite an unmodified copy
of a subterm we tried before, with the same rule. Even though the position of the subterm
g(fm(a)) changes, we already know that this reduction will fail. Hence it is reasonable to
assume that once we fail a conditional rule on given subterms, we should not try the same
rule again on (copies of) the same subterms. This idea will be made formal in Section 4.

I Example 4. Continuing with the term t0,m from the preceding example, we could try to
use the second rule, which fails in m steps. Next, the first rule is applied on a subterm, and
we obtain t0,m−1. Again we try the second rule, failing after executingm−1 steps. Repeating
this alternation results eventually in the normal form t0,0, but not before computing 1

2 (m2 +
3m) rewrite steps in total.

Like in Example 3, we keep coming back to a subterm which we have already tried before
in an unsuccessful attempt. The difference is that the subterm has been rewritten between
successive attempts. According to the following general result, we do not need to reconsider
a failed attempt to apply a conditional rewrite rule if only the arguments were changed.
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I Lemma 5. Given a CCTRS R, suppose s >ε−−→∗ t and let ρ : `→ r ⇐ c be a rule such that
s is an instance of `. If t ε−→ρ u then there exists a term v such that s ε−→ρ v and v →∗ u.

So if we can rewrite a term at the root position eventually, and the term already matches
the left-hand side of the rule with which we can do so, then we can rewrite the term with
this rule immediately and obtain the same result.

Proof. Let σ be a substitution such that s = `σ and dom(σ) ⊆ Var(`). Because ` is a basic
term, all steps in s >ε−−→∗ t take place in the substitution part σ of `σ. Since ` is a linear term,
we have t = `τ for some substitution τ such that dom(τ) ⊆ Var(`) and σ →∗ τ . Because the
rule ρ applies to t at the root position, there exists an extension τ ′ of τ such that R ` cτ ′.
We have u = rτ ′. Define the substitution σ′ as follows:

σ′(x) =
{
σ(x) if x ∈ Var(`)
τ ′(x) if x /∈ Var(`)

We have s = `σ = `σ′ and σ′ →∗ τ ′. Let a ≈ b be a condition in c. From Var(b)∩Var(`) = ∅
we infer aσ′ →∗ aτ ′ →∗ bτ ′ = bσ′. It follows that R ` cσ′ and thus s ε−→ρ rσ

′. Hence we can
take v = rσ′ as rσ′ →∗ rτ ′ = u. J

From these observations we see that we can mark occurrences of defined symbols with
the rules we have tried without success or, symmetrically, with the rules we have yet to try.

4 Conditional Complexity

To formalize the ideas from Section 3, we label defined function symbols by subsets of the
rules used to define them.

I Definition 6. Let R be a CCTRS over a signature F . The labeled signature F ′ is defined
as FC ∪ {fR | f ∈ FD and R ⊆ R�f}. A labeled term is a term in T (F ′,V).

Intuitively, the label R in fR records the defining rules for f which have not yet been
attempted.

I Definition 7. Let R be a CCTRS over a signature F . The mapping label : T (F ,V) →
T (F ′,V) labels every defined symbol f with R�f . The mapping erase : T (F ′,V)→ T (F ,V)
removes the labels of defined symbols.

We obviously have erase(label(t)) = t for every t ∈ T (F ,V). The identity label(erase(t)) =
t holds for constructor terms t but not for arbitrary terms t ∈ T (F ′,V).

I Definition 8. A labeled normal form is a term in T (FC ∪ {f∅ | f ∈ FD},V).

The relation −⇀ is designed in such a way that a ground labeled term can be reduced if
and only if it is not a labeled normal form. First, with Definition 9 we can remove a rule
from a label if that rule will never be applicable due to an impossible matching problem.

I Definition 9. We write s ⊥−⇀ t if there exist a position p ∈ Pos(s) and a rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ c such that

1. s|p = fR(s1, . . . , sn) with ρ ∈ R,
2. t = s[fR\{ρ}(s1, . . . , sn)]p, and
3. there exist a linear labeled normal form u with fresh variables, a substitution σ, and an

index 1 6 i 6 n such that si = uσ and erase(u) does not unify with `i.

RTA 2015
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The last item ensures that rewriting s strictly below position p cannot give a reduct that
matches `, since si = uσ can only reduce to instances uσ′ of u and thus not to an instance
of `i. Furthermore, by the linearity of ` = f(`1, . . . , `n) we also have that, if s1, . . . , sn are
labeled normal forms then either f(s1, . . . , sn) is an instance of ` or ⊥−⇀ applies.

Second, Definition 10 describes how to “reduce” labeled terms in general.

I Definition 10. A complexity-conscious reduction is a sequence t1 −⇀ t2 −⇀ · · · −⇀ tm of
labeled terms where s −⇀ t if either s ⊥−⇀ t or there exist a position p ∈ Pos(s), rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, substitution σ, and index 1 6 j 6 k such that

1. s|p = fR(s1, . . . , sn) with ρ ∈ R and si = `iσ for all 1 6 i 6 n,
2. label(ai)σ −⇀∗ biσ for all 1 6 i 6 j,

and either

3. j = k and t = s[label(r)σ]p

in which case we speak of a successful step, or

4. j < k and there exist a linear labeled normal form u and a substitution τ such that
label(aj+1)σ −⇀∗ uτ , u does not unify with bj+1, and t = s[fR\{ρ}(s1, . . . , sn)]p,

which is a failed step.

It is easy to see that for all ground labeled terms s which are not labeled normal forms,
a term t exists such that s ⊥−⇀ t or there are p, ρ, σ such that s|p “matches” ρ in the sense
that the first requirement in Definition 10 is satisfied. As all bi are linear constructor terms
on fresh variables and conditions are evaluated from left to right, label(ai)σ ⇀ biσ simply
indicates that aiσ—with labels added to allow reducing defined symbols in ai—reduces to
an instance of bi.

A successful reduction occurs when we manage to reduce each label(ai)σ to biσ. A failed
reduction happens when we start reducing label(ai)σ and obtain a term that will never
reduce to an instance of bi. As discussed after Definition 9, this is what happens in case 4.

I Definition 11. The cost of a complexity-conscious reduction is the sum of the costs of its
steps. The cost of a step s −⇀ t is 0 if s ⊥−⇀ t,

1 +
k∑
i=1

cost(label(ai)σ −⇀∗ biσ)

in case of a successful step s −⇀ t, and

j∑
i=1

cost(label(ai)σ −⇀∗ biσ) + cost(label(aj+1)σ −⇀∗ uτ)

in case of a failed step s −⇀ t. The conditional derivational complexity of a CCTRS R
is defined as cdcR(n) = max {cost(t −⇀∗ u) | |t| 6 n and t −⇀∗ u for some term u}. If we
restrict t to basic terms we arrive at the conditional runtime complexity crcR(n).

Note that the cost of a failed step is the cost to evaluate its conditions and conclude
failure, while for a successful step we add one for the step itself.

The following result connects the relations −⇀ and → to each other.

I Lemma 12. Let R be a CCTRS.
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1. If s, t ∈ T (F ,V) and s→∗ t then label(s) −⇀∗ label(t).
2. If s, t ∈ T (F ′,V) and s −⇀∗ t then erase(s)→∗ erase(t).

Proof. 1. We use induction on the number of rewrite steps needed to derive s →∗ t. If
s = t then the result is obvious, so let s → u →∗ t. The induction hypothesis yields
label(u) −⇀∗ label(t), so it suffices to show label(s) −⇀∗ label(u). There exist a position
p ∈ Pos(s), a rule ρ : `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, and a substitution σ such that s|p =
`σ, u = s[rσ]p, and aiσ →∗ biσ for all 1 6 i 6 n. Let σ′ be the (labeled) substitution
label ◦ σ. Fix 1 6 i 6 k. We have label(aiσ) = label(ai)σ′ and label(biσ) = biσ

′ (as
bi is a constructor term). Because aiσ →∗ biσ is used in the derivation of s →∗ t we
can apply the induction hypothesis, resulting in label(aiσ) −⇀∗ label(biσ). Furthermore,
writing ` = f(`1, . . . , `n), we obtain label(`) = fR�f (`1, . . . , `n). Hence

label(s) = label(s)[label(`)σ′]p −⇀ label(s)[label(r)σ′]p = label(u)

because conditions (1)–(4) in Definition 10 are satisfied.
2. We use induction on the pair (cost(s −⇀∗ t), ‖s‖) where ‖s‖ denotes the sum of the sizes

of the labels of defined symbols in s, ordered lexicographically. The result is obvious if
s = t, so let s −⇀ u −⇀∗ t. Clearly cost(s −⇀∗ t) > cost(u −⇀∗ t). We distinguish two cases.

Suppose s ⊥−⇀ u or s −⇀ u by a failed step. In either case we have erase(s) = erase(u)
and ‖s‖ = ‖u‖+ 1. The induction hypothesis yields erase(u)→∗ erase(t).
Suppose s −⇀ u is a successful step. So there exist a position p ∈ Pos(s), a rule
ρ : `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk in R, a substitution σ, and terms `′, a′1, . . . , a′k such
that s|p = `′σ with erase(`′) = `, a′iσ −⇀∗ biσ with erase(a′i) = ai for all 1 6 i 6 k, and
u = s[label(r)σ]p. Let σ′ be the (unlabeled) substitution erase◦σ. We have erase(s) =
erase(s)[`σ′]p and erase(u) = erase(s)[rσ′]p. Since cost(s −⇀ u) > cost(a′iσ −⇀∗ biσ)
we obtain aiσ′ = erase(a′iσ) →∗ erase(biσ) = biσ

′ from the induction hypothesis, for
all 1 6 i 6 k. Hence erase(s) → erase(u). Finally, erase(u) →∗ erase(t) by another
application of the induction hypothesis. J

5 Complexity Transformation

The notion of complexity introduced in the preceding section has the downside that we
cannot easily reuse existing complexity results and tools. Therefore, we will consider a
transformation to unconditional rewriting where, rather than tracking rules in the labels of
the defined function symbols, we will keep track of them in separate arguments, but restrict
reduction by adopting a suitable context-sensitive replacement map.

I Definition 13. Let R be a CCTRS over a signature F . For f ∈ FD, let mf be the number
of rules in R�f . The context-sensitive signature (G, µ) is defined as follows:

G contains two constants ⊥ and >,
for every constructor symbol g ∈ FC of arity n, G contains the symbol g with the same
arity and µ(g) = {1, . . . , n},
for every defined symbol f ∈ FD of arity n, G contains two symbols f and fa of arity
n+mf with µ(f) = {1, . . . , n} and µ(fa) = {n+ 1, . . . , n+mf},
for every defined symbol f ∈ FD of arity n, rewrite rule ρ : ` → r ⇐ c1, . . . , ck in R�f ,
and 1 6 i 6 k, G contains a symbol ciρ of arity n+ i with µ(ciρ) = {n+ i}.
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Fixing an order R�f = {ρ1, . . . , ρmf }, terms in T (G,V) that are involved in reducing
f(s1, . . . , sn) ∈ T (F ,V) will have one of two forms: f(s1, . . . , sn, t1, . . . , tmf ) with each
ti ∈ {>,⊥}, indicating that rule ρi has been attempted (and failed) if and only if ti = ⊥,
and fa(s1, . . . , sn, t1, . . . , c

j+1
ρi (s1, . . . , sn, b1, . . . , bj , uj+1), . . . , tmf ) indicating that rule ρi is

currently being evaluated and the first j conditions of ρi have succeeded. The reason for
passing the terms s1, . . . , sn to cj+1

ρi is that it allows for easier complexity methods.

I Definition 14. The maps ξ? : T (F ,V)→ T (G,V) with ? ∈ {⊥,>} are inductively defined:

ξ?(t) =


t if t is a variable,
f(ξ?(t1), . . . , ξ?(tn)) if t = f(t1, . . . , tn) and f is a constructor symbol,
f(ξ?(t1), . . . , ξ?(tn), ?, . . . , ?) if t = f(t1, . . . , tn) and f is a defined symbol.

Linear terms in the set {ξ⊥(t) | t ∈ T (F ,V)} are called ⊥-patterns.

In the transformed system that we will define, a ground term is in normal form if and
only if it is a ⊥-pattern. This allows for syntactic “normal form” tests. Most importantly, it
allows for purely syntactic anti-matching tests: If s does not reduce to an instance of some
linear constructor term t, then s→∗ uσ for some substitution σ and ⊥-pattern u that does
not unify with t. What is more, we only need to consider a finite number of ⊥-patterns u.

I Definition 15. Let t be a linear constructor term. The set of anti-patterns AP(t) is
inductively defined as follows. If t is a variable then AP(t) = ∅. If t = f(t1, . . . , tn) then
AP(t) consists of the following ⊥-patterns:

g(x1, . . . , xm) for every m-ary constructor symbol g different from f ,
g(x1, . . . , xm,⊥, . . . ,⊥) for every defined symbol g of arity m in F , and
f(x1, . . . , xi−1, u, xi+1, . . . , xn) for all 1 6 i 6 n and u ∈ AP(ti).

Here x1, . . . , xm(n) are fresh and pairwise distinct variables.

I Example 16. Consider the CCTRS of Example 1. The set AP(〈z, w〉) consists of the
⊥-patterns 0, s(x), fib(x,⊥,⊥), and +(x, y,⊥,⊥).

The straightforward proof of the following lemma is omitted.

I Lemma 17. Let s be a ⊥-pattern and t a linear constructor term with Var(s)∩Var(t) = ∅.
If s and t are not unifiable then s is an instance of an anti-pattern in AP(t).

We are now ready to define the transformation from a CCTRS (F ,R) to a context-
sensitive TRS (G, µ,Ξ(R)). Here, we will use the notation 〈t1, . . . , tn〉[u]i to denote the
sequence t1, . . . , ti−1, u, ti+1, . . . , tn and we occasionally write ~t for a sequence t1, . . . , tn.

I Definition 18. Let R be a CCTRS over a signature F . For every defined symbol f ∈ FD
we fix an order on the mf rules that define f : R�f = {ρ1, . . . , ρmf }. The context-sensitive
TRS Ξ(R) is defined over the signature (G, µ) as follows. Let ρ : f(`1, . . . , `n) → r ⇐
a1 ≈ b1, . . . , ak ≈ bk be the i-th rule in R�f .

If k = 0 then Ξ(R) contains the rule

f(`1, . . . , `n, 〈x1, . . . , xmf 〉[>]i)→ ξ>(r) (1ρ)
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If k > 0 then Ξ(R) contains the rules

f(~̀, 〈x1, . . . , xmf 〉[>]i)→ fa(~̀, 〈x1, . . . , xmf 〉[c1ρ(~̀, ξ>(a1))]i) (2ρ)

fa(~̀, 〈x1, . . . , xmf 〉[ckρ(~y, b1, . . . , bk)]i)→ ξ>(r) (3ρ)

and the rules

fa(~̀, 〈x1, . . . , xmf 〉[cjρ(~y, b1, . . . , bj)]i)→

fa(~̀, 〈x1, . . . , xmf 〉[cj+1
ρ (~y, b1, . . . , bj , ξ>(aj+1))]i) (4ρ)

for all 1 6 j < k, and the rules

fa(~̀, 〈x1, . . . , xmf 〉[cjρ(~y, b1, . . . , bj−1, v)]i)→ f(~̀, 〈x1, . . . , xmf 〉[⊥]i) (5ρ)

for all 1 6 j 6 k and v ∈ AP(bj).
Regardless of k, Ξ(R) contains the rules

f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf 〉[>]i)→ f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf 〉[⊥]i) (6ρ)

for all 1 6 j 6 n and v ∈ AP(`j).

Here x1, . . . , xmf , y1, . . . , yn are fresh and pairwise distinct variables. A step using rule (1ρ)
or rule (3ρ) has cost 1; other rules—also called administrative rules—have cost 0.

Rule (1ρ) simply adds the > labels to the right-hand sides of unconditional rules. To
apply a conditional rule ρ, we “activate” the current function symbol with rule (2ρ) and start
evaluating the first condition of ρ by steps inside the last argument of c1ρ. With rules (4ρ)
we move to the next condition and, after all conditions have succeeded, an application of
rule (3ρ) results in the right-hand side with > labels. If a condition fails (5ρ) or the left-hand
side of the rule does not match and will never match (6ρ), then we simply replace the label
for ρ by ⊥, indicating that we do not need to try it again.

These rules carry some redundant information. For example, all ciρ are passed the pa-
rameters `1, . . . , `n of the corresponding rule. This is done to make it easier to orient the
resulting rules with interpretations, as we will see in Section 6. Also, instead of passing
b1, . . . , bj to each cj+1

ρ , and `1, . . . , `n to fa, it would suffice to pass along their variables.
This was left in the current form to simplify the presentation.

Note that the rules that do not produce the right-hand side of the originating conditional
rewrite rule are administrative and hence do not contribute to the cost of a reduction. The
anti-pattern sets result in many rules (5ρ) and (6ρ), but all of these are simple. We could
generalize the system by replacing each ?i by a fresh variable; the complexity of the resulting
(smaller) TRS gives an upper bound for the original complexity.

I Example 19. The (context-sensitive) TRS Ξ(Reven) consists of the following rules:

even(0,>, y, z)→ true (11)
even(?1,>, y, z)→ even(?1,⊥, y, z) (61)

even(s(x), y,>, z)→ evena(s(x), y, c1
2(s(x), odd(x,>,>,>)), z) (22)

evena(s(x), y, c1
2(y′, true), z)→ true (32)

evena(s(x), y, c1
2(y′, ?2), z)→ even(s(x), y,⊥, z) (52)

even(?3, y,>, z)→ even(?3, y,⊥, z) (62)
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even(s(x), y, z,>)→ evena(s(x), y, z, c1
3(s(x), even(x,>,>,>))) (23)

evena(s(x), y, z, c1
3(y′, true))→ false (33)

evena(s(x), y, z, c1
3(y′, ?2))→ even(s(x), y, z,⊥) (53)

even(?3, y, z,>)→ even(?3, y, z,⊥) (63)
odd(0,>, y, z)→ false (14)

odd(?1,>, y, z)→ odd(?1,⊥, y, z) (64)
odd(s(x), y,>, z)→ odda(s(x), y, c1

5(s(x), odd(x,>,>,>)), z) (25)
odda(s(x), y, c1

5(y′, true), z)→ false (35)
odda(s(x), y, c1

5(y′, ?2), z)→ odd(s(x), y,⊥, z) (55)
odd(?3, y,>, z)→ odd(?3, y,⊥, z) (65)

odd(s(x), y, z,>)→ odda(s(x), y, z, c1
6(s(x), even(x,>,>,>))) (26)

odda(s(x), y, z, c1
6(y′, true))→ true (36)

odda(s(x), y, z, c1
6(y′, ?2))→ odd(s(x), y, z,⊥) (56)

odd(?3, y, z,>)→ odd(?3, y, z,⊥) (66)

for all

?1 ∈ AP(0) = {true, false, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?2 ∈ AP(true) = {false, 0, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?3 ∈ AP(s(x)) = {true, false, 0, even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}

Below we relate complexity-conscious reductions with R to context-sensitive reductions
in Ξ(R). The following definition explains how we map terms in T (F ′,V) to terms in
T (G,V). It resembles the earlier definition of ξ?.

I Definition 20. For t ∈ T (F ′,V) we define

ζ(t) =


t if t ∈ V,
f(ζ(t1), . . . , ζ(tn)) if t = f(t1, . . . , tn) with f a constructor symbol,
f(ζ(t1), . . . , ζ(tn), c1, . . . , cmf ) if t = fR(t1, . . . , tn) with R ⊆ R�f

where ci = > if the i-th rule of R�f belongs to R and ci = ⊥ otherwise, for 1 6 i 6 mf .
For a substitution σ ∈ Σ(F ′,V) we denote the substitution ζ ◦ σ by σζ .

It is easy to see that p ∈ Posµ(ζ(t)) if and only if p ∈ Pos(t) if and only if ζ(t)|p /∈ {⊥,>},
for any t ∈ T (F ′,V). The easy induction proof of the following lemma is omitted.

I Lemma 21. If t ∈ T (F ,V) then ζ(label(t)) = ξ>(t). If t ∈ T (F ′,V) and σ ∈ Σ(F ′,V)
then ζ(tσ) = ζ(t)σζ . Moreover, if t is a labeled normal form then ζ(t) = ξ⊥(erase(t)).

I Theorem 22. Let R be a CCTRS. If s −⇀∗ t is a complexity-conscious reduction with cost
N then there exists a context-sensitive reduction ζ(s)→∗Ξ(R),µ ζ(t) with cost N .

Proof. We use induction on the number of steps in s −⇀∗ t. The result is obvious when this
number is zero, so let s −⇀ u −⇀∗ t with M the cost of the step s −⇀ u and N −M the cost
of u −⇀∗ t. The induction hypothesis yields a context-sensitive reduction ζ(u) →∗Ξ(R),µ ζ(t)
of cost N −M and so it remains to show that there exists a context-sensitive reduction
ζ(s) →∗Ξ(R),µ ζ(u) of cost M . Let ρ : f(`1, . . . , `n) → r ⇐ a1 ≈ b1, . . . , ak ≈ bk be the rule
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in R that gives rise to the step s −⇀ u and let i be its index in R�f . There exist a position
p ∈ Pos(s), terms s1, . . . , sn, and a subset R ⊆ R�f such that s|p = fR(s1, . . . , sn) and
ρ ∈ R. We have ζ(s)|p = ζ(s|p) = fR(ζ(s1), . . . , ζ(sn), c1, . . . , cmf ) where cj = > if the j-th
rule of R�f belongs to R and cj = ⊥ otherwise, for 1 6 j 6 mf . In particular, ci = >. Note
that p is an active position in ζ(s). We distinguish three cases.

First suppose that s ⊥−⇀ u. So M = 0, u = s[fR\{ρ}(s1, . . . , sn)]p, and there exist
a linear labeled normal form v, a substitution σ, and an index 1 6 j 6 n such that
sj = vσ and erase(v) does not unify with `j . By Lemma 21, ζ(sj) = ζ(vσ) = ζ(v)σζ =
ξ⊥(erase(v))σζ . By definition, ξ⊥(erase(v)) is a ⊥-pattern, which cannot unify with `j
because erase(v) does not. From Lemma 17 we obtain an anti-pattern v′ ∈ AP(`j) such
that ξ⊥(erase(v)) is an instance of v′. Hence ζ(s) = ζ(s)[f(ζ(s1), . . . , ζ(sn), c1, . . . , cmf )]p
with ζ(sj) an instance of v′ ∈ AP(`j) and ci = >. Consequently, ζ(s) reduces to
ζ(s)[f(ζ(s1), . . . , ζ(sn), 〈c1, . . . , cmf 〉[⊥]i)]p by an application of rule (6ρ), which has cost
zero. The latter term equals ζ(s[fR\{ρ}(s1, . . . , sn)]p) = ζ(u), and hence we are done.
Next suppose that s −⇀ u is a successful step. So there exists a substitution σ such
that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 k, and M = 1 + M1 + · · · + Mk.
The induction hypothesis yields reductions ζ(label(ai)σ) →∗Ξ(R),µ ζ(biσ) with cost Mi.
By Lemma 21, ζ(label(ai)σ) = ζ(label(ai))σζ = ξ>(ai)σζ and ζ(biσ) = biσζ . More-
over, ζ(s)|p = ζ(s|p) = f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ and ζ(u) = ζ(s)[ζ(label(r)σ)]p with
ζ(label(r))σζ = ξ>(r)σζ by Lemma 21. So it suffices if f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →∗Ξ(R),µ
ξ>(r)σζ with cost M . If k = 0 we can use rule (1ρ). Otherwise, we use the reductions
ξ>(ai)σζ →∗Ξ(R),µ biσζ , rules (2ρ) and (3ρ), and k− 1 times a rule of type (4ρ) to obtain

f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c1ρ(~̀, ξ>(a1))]i)σζ
→∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c1ρ(~̀, b1)]i)σζ
→Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[c2ρ(~̀, b1, ξ>(a2))]i)σζ
→∗Ξ(R),µ · · ·

→Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[ckρ(~̀, b1, . . . , bk)]i)σζ
→Ξ(R),µ ξ>(r)σζ

Note that all steps take place at active positions, and that the steps with rules 2ρ and
4ρ are administrative. Therefore, the cost of this reduction equals M .
The remaining case is a failed step s −⇀ u. So there exist substitutions σ and τ , an
index 1 6 j < k, and a linear labeled normal form v which does not unify with bj+1
such that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 j and label(aj+1)σ −⇀∗ vτ
with cost Mj+1. We obtain ζ(label(ai)σ) = ξ>(ai)σζ , ζ(biσ) = biσζ , and ζ(s)|p =
f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ like in the preceding case. Moreover, like in the first case, we
obtain an anti-pattern v′ ∈ AP(bj+1) such that ξ⊥(erase(v)) is an instance of v′. We
have ζ(vτ) = ζ(v)τζ = ξ⊥(erase(v))τζ by Lemma 21. Hence ζ(vτ) is an instance of v′.
Consequently,

f(~̀, 〈c1, . . . , cmf 〉[>]i)σζ →∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[cj+1
ρ (~̀, b1, . . . , bj , ξ>(aj+1))]i)σζ

→∗Ξ(R),µ fa(~̀, 〈c1, . . . , cmf 〉[cj+1
ρ (~̀, b1, . . . , bj , ζ(vτ))]i)σζ

→Ξ(R),µ f(~̀, 〈c1, . . . , cmf 〉[⊥]i)σζ

where the last step uses an administrative rule of type (5ρ). Again, all steps take place
at active positions. Note that f(~̀, 〈c1, . . . , cmf 〉[⊥]i)σζ = ζ(fR\{ρ}(s1, . . . , sn)) = ζ(u|p).
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Hence ζ(s)→∗Ξ(R),µ ζ(u) as desired. The cost of this reduction isM1 + · · ·+Mj+1, which
coincides with the cost M of the step s −⇀ u. J

Theorem 22 provides a way to establish conditional complexity: If Ξ(R) has complexity
O(ϕ(n)) then the conditional complexity of R is at most O(ϕ(n)).2 Although there are no
complexity tools yet which take context-sensitivity into account, we can obtain an upper
bound by simply ignoring the replacement map. Similarly, although existing tools do not
accommodate administrative rules, we can count all rules equally. Since for every non-
administrative step reducing a term fR(· · · ) at the root position, at most (number of rules)
× (greatest number of conditions + 1) administrative steps at the root position can be
done, the difference is only a constant factor. Moreover, these rules are an instance of
relative rewriting, for which advanced complexity methods do exist. Thus, it is likely that
there will be direct tool support in the future.

6 Interpretations in N

A common method to derive complexity bounds for a TRS is to use interpretations in N.
Such an interpretation I maps function symbols of arity n to functions from Nn to N, giving
a value [t]I for ground terms t, which is shown to decrease in every reduction step. The
method is easily adapted to take context-sensitivity and administrative rules into account.

Unfortunately, standard interpretation techniques like polynomial interpretations are ill
equipped to deal with exponential bounds. Furthermore, to handle the interleaving behavior
of f and fa, the natural choice for an interpretation is to map both symbols to the same
function. However, compatibility with rule (2ρ) then gives rise to the constraint [>]I >
[c1ρ(`1, . . . , `n, ξ>(a1))]αI regardless of the assignment α for the variables in a1, which is
virtually impossible to satisfy. Therefore, we propose a new interpretation-based method
which is not subject to this weakness.

Let B = {0, 1}. We define relations > and > on N × B as follows: for ◦ ∈ {>, >},
(n′, b′) ◦ (n, b) if n′ ◦ n and b′ > b. Moreover, let π1 and π2 be the projections π1((n, b)) = n

and π2((n, b)) = b.

I Definition 23. A context-sensitive interpretation over N×B is a function I mapping each
symbol f ∈ F of arity n to a function If from (N × B)n to N × B, such that If is strictly
monotone in its i-th argument for all i ∈ µ(f). Given a valuation α mapping each variable
to an element of N×B, the value [t]αI ∈ N×B of a term t is defined as usual ([x]αI = α(x) and
[f(t1, . . . , tn)]αI = If ([t1]αI , . . . , [tn]αI )). We say I is compatible with R if for all ` → r ∈ R
and valuations α, [`]αI > [r]αI if `→ r ∈ R is non-administrative and [`]αI > [r]αI otherwise.

The primary purpose of the second component of (n, b) is to allow more sophisticated
choices for I. We easily see that if s→Rµ t then [s]αI > [t]αI and [s]αI > [t]αI if the employed
rule is non-administrative. Consequently, dh(s,→R,µ) 6 π1([s]αI ) for any valuation α.

2 We suspect that the equivalence goes both ways: If the derivation height of a term s in Ξ(R) is N then
a complexity-conscious reduction of length at least N exists starting at label(s). However, we have not
yet confirmed this proposition as the proof—which is based on swapping rule applications at different
positions—is non-trivial and Theorem 22 provides the direction which is most important in practice.
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I Example 24. Continuing Example 19, we define

I> = (0, 1) I⊥ = Itrue = Ifalse = I0 = (0, 0) Is((x, b)) = (x+ 1, 0)
Ieven((x, b), (y1, b1), (y2, b2), (y3, b3)) = (1 + x+ y1 + y2 + y3 + b2 · 3x + b3 · 3x, 0)
Iodd = Ievena = Iodda = Ieven Ic1

i
((x, b), (y, d)) = (y, 0) for all i ∈ {2, 3, 5, 6}

One easily checks that I satisfies the required monotonicity constraints. Moreover, all
rewrite rules in Ξ(Reven) are oriented as required. For instance, for rule (22) we obtain

1 + (x+ 1) + y + 0 + z + 1 · 3x+1 + bz · 3x+1

> 1 + (x+ 1) + y + (1 + x+ 0 + 0 + 0 + 3x + 3x) + z + 0 + bz · 3x+1

which holds for all x, y, z ∈ N and bz ∈ B. All constructor terms are interpreted by linear
polynomials with coefficients in {0, 1} and hence π1([s]I) 6 |t| for all ground constructor
terms t. Therefore, the conditional runtime complexity crcReven(n) is bound by

max({π1(If ((x1, b1), . . . , (x4, b4))) | f ∈ FD and x1 + x2 + x3 + x4 < n})
= max({1 + x1 + x2 + x3 + x4 + 2 · 3x1 | x1 + x2 + x3 + x4 < n}) 6 3n

As observed before, the actual runtime complexity for this system is O(2n). In order to
obtain this more realistic bound, we might observe that, starting from a basic term s, if
s→∗ t then the first argument of even and odd anywhere in t cannot contain defined symbols.
Therefore, Ieven does not need to be monotone in its first argument. This observation is based
on a result in [11], which makes it possible to impose a stronger replacement map µ.

As to derivational complexity, we observe that [t]I 6 n3 (tetration, or 3 ↑↑n in Knuth’s
up-arrow notation) when t is an arbitrary ground term of size n. To obtain a more elementary
bound, we will need more sophisticated methods, for instance assigning a compatible sort
system and using the fact that all terms of sort int are necessarily constructor terms.

The interpretations in Example 24 may appear somewhat arbitrary, but in fact there is
a recipe that we can most likely apply to many TRSs obtained from a CCTRS. The idea
is to define the interpretation I as an extension of a “basic” interpretation J over N. To
do so, we choose for every symbol f of arity n in the original signature F interpretation
functions J 0

f , . . . ,J
mf
f : Nn → N such that J 0

f is strictly monotone in all its arguments, and
the other J jf are weakly monotone. Similarly, for each rule ρ with k > 0 conditions we fix
interpretation functions J 1

c,ρ, . . ., J kc,ρ with J ic,ρ : Nn+i → N if ciρ has arity n + i. These
functions must be strictly monotone in the last argument. Based on these interpretations,
we fix an interpretation for G: I> = (0, 1) and I⊥ = (0, 0),

If ((x1, b1), . . . , (xn, bn)) = (J 0
f (x1, . . . , xn), 0)

for every f ∈ FC of arity n,

If ((x1, b1), . . . , (xn, bn), (y1, d1), . . . , (ymf , dmf ))

= (J 0
f (x1, . . . , xn) + y1 + · · ·+ ymf +

mf∑
i=1

(di · J if (x1, . . . , xn)), 0)

and Ifa = If for every f ∈ FD of arity n, and

Iciρ((x1, b1), . . . , (xn+i, bn+i)) = (J ic,ρ(x1, . . . , xn+i), 0)
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for every symbol ciρ. It is not hard to see that I satisfies the monotonicity requirements.
In practice, this interpretation assigns to a > symbol in a term f(s1, . . . , sn, . . . ,>, . . . ) the
value J if (s1, . . . , sn) and ignores the B component otherwise. Using this interpretation for
the rules in Definition 18, the inequalities we obtain can be greatly simplified. Obviously,
[`]αI > [r]αI is satisfied for all rules obtained from clauses (5ρ) and (6ρ). For the other clauses
we obtain the following requirements for each rule ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈
bk in the original system R, with ρ the i-th rule in R�f :

J 0
f ([`1]), . . . , [`n]) + J if ([`1], . . . , [`n]) > π1([ξ>(r)]αI ) (1ρ)

J if ([`1], . . . , [`n]) > J 1
c,ρ([`1], . . . , [`n], π1([ξ>(r)]αI )) (2ρ)

J 0
f ([`1], . . . , [`n]) + J kc,ρ([`1], . . . , [`n], [b1], . . . , [bk]) > π1([ξ>(r)]αI ) (3ρ)

J jf ([`1], . . . , [`n], [b1], . . . , [bj ]) >

J j+1
f ([`1], . . . , [`n],[b1], . . . , [bj ], π1([ξ>(r)]αI )) (4ρ)

for the same cases of k and j as in Definition 18. Here, [lj ] and [bj ] are short-hand notation
for π1([lj ]αI ) and π1([bj ]αI ), respectively. Note that [f(t1, . . . , tn)] = Jf ([t1], . . . , [tn]) for
constructor terms f(s1, . . . , sn). Additionally observing that

π1([ξ>(f(t1, . . . , tn))]αI ) =
mf∑
i=0
J if (π1([ξ>(t1)]αI ), . . . , π1([ξ>(tn)]αI ))

we can obtain bounds for the derivation height without ever calculating ξ>(t).

I Example 25. We derive an upper bound for the runtime complexity of Rfib. Following the
recipe explained above, we fix J 1

+(x, y) = J 2
+(x, y) = J 1

fib(x) = 0. Writing K = J 0
0 , S = J 0

s ,
P = J 0

+, F = J 0
fib, G = J 2

fib, A = J 0
〈·〉, C = J 1

c,4, and D = J 2
c,4, we get the constraints

P (K, y) > y P (S(x), y) > S(P (x, y)) F (0) > A(0, S(0))

for the unconditional rules of Rfib and

G(S(x)) > C(S(x), F (x) +G(x))
F (S(x)) +D(S(x), A(y, z), w) > A(z, w)

C(S(x), A(y, z)) > D(S(x), A(y, z), P (y, z))

for the conditional rule fib(s(x)) → 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w. The functions
P , F , A, and S must be strictly monotone in all arguments, whereas for C and D strict
monotonicity is required only for the last argument. Choosing K = 0, S(x) = x + 1,
P (x, y) = 2x+ y + 1, A(x, y) = x+ y + 1, C(x, y) = 3y, and D(x, y, z) = y + z to eliminate
as many arguments as possible, the constraints simplify to

F (0) > 3 G(x+ 1) > 3F (x) + 3G(x) F (x+ 1) > 0

Choosing F (x) = x+ 4 leaves the constraint G(x+ 1) > 3x+ 3G(x) + 12, which is satisfied
(e.g.) by taking G(x) = 4x+1, which results in a conditional runtime complexity of O(4x).

As in Example 24, we can obtain a more precise bound using [11], by observing that
runtime complexity is not altered if we impose a replacement map µ with µ(fib) = ∅, which
allows us to choose a non-monotone function for F . More sophisticated methods may lower
the bound further.
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7 Related Work

We are not aware of any attempt to study the complexity of conditional rewriting, but
numerous transformations from CTRSs to TRSs have been proposed in the literature. They
can roughly be divided into so-called unravelings and structure-preserving transformations.
The former were coined by Marchiori [17] and have been extensively investigated (e.g. [18,
21, 23, 24, 26]), mainly to establish (operational) termination and confluence of the input
CTRS. The latter originate from Viry [29] and improved versions were proposed in [1, 7, 9].

The transformations that are known to transform CTRSs into TRSs such that (simple)
termination of the latter implies quasi-decreasingness of the former, are natural candidates
for study from a complexity perspective. We observe that unravelings are not suitable in
this regard. For instance, the unraveling from [18] transforms the CCTRS Reven into

even(0)→ true even(s(x))→ U1(odd(x), x) U1(true, x)→ true
even(s(x))→ U2(even(x), x) U2(true, x)→ false

odd(0)→ false odd(s(x))→ U3(odd(x), x) U3(true, x)→ false
odd(s(x))→ U4(even(x), x) U4(true, x)→ true

This TRS has a linear runtime complexity, which is readily confirmed by a complexity tool
like TCT [2]. As the conditional runtime complexity is exponential, the transformation is not
suitable for measuring conditional complexity. The same holds for the transformation in [3].

We do not know whether structure-preserving transformations can be used for conditional
complexity. If we apply the transformations from [7] and [9] to Reven we obtain TRSs for
which complexity tools fail to establish an upper bound on the runtime and derivational
complexities. The latter is also true for the TRS that we obtain from Ξ(Reven) by lifting
the context-sensitive restriction, but this is solely due to the (current) lack of support in
complexity tools for techniques that yield non-polynomial upper bounds.

8 Conclusion and Future Work

In this paper we have defined a first notion of complexity for conditional term rewriting,
which takes failed calculations into account as any automatic rewriting engine would. We
have also defined a transformation to unconditional context-sensitive TRSs, and shown how
this transformation can be used to find upper bounds for conditional complexity using
traditional interpretation-based methods.

There are several possible directions to continue our research.

Weakening restrictions. An obvious direction for future research is to broaden the class
of CTRSs we consider. This requires careful consideration. The correctness of the trans-
formation Ξ depends on the limitations that we impose on CCTRSs. However, it may be
possible to weaken the restrictions and still obtain at least a sound (if perhaps not complete)
transformation. More importantly, though, as discussed in Section 2, the restrictions on the
conditions are needed to justify our complexity notion. For the same reason, Lemma 5
(which relies on the left-hand sides being linear basic terms) needs to be preserved.

Alternatively, we might consider different strategies for the evaluation of conditions. For
example, if all restrictions except for variable freshness in the conditions are satisfied, we
could impose the strategy that conditions are always evaluated to normal form. For instance,
given a CTRS with a rule

f(y, z)→ r ⇐ y ≈ g(x), z ≈ x
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rewriting a term f(g(0 + 0), 0) would then bind 0 rather than 0 + 0 to x in the first con-
dition (assuming sensible rules for +), allowing the second condition to succeed. This ap-
proach could also be used to handle non-left-linear rules, for instance transforming a rule
f(g(x), x)→ r into the left-linear rule above.

It would take a little more effort to handle non-confluent systems in a way that does not
allow us to give up on rule applications when it is still possible that their conditions can be
satisfied. As a concrete example, consider the CCTRS

a(x)→ 0 a(x)→ 1 f(x)→ g(y, y) ⇐ a(x) ≈ y h(x)→ x ⇐ f(x) ≈ g(0, 1)

Even though f(0) →∗ g(0, 0) and g(0, 0) is an instance of g(x, 0) ∈ AP(g(0, 1)), we should
not conclude that h(0) cannot be reduced. We could instead attempt to calculate all normal
forms in order to satisfy conditions, but if we do this for the third rule, we would not find the
desired reduction f(0)→ g(a(0), a(0)). Thus, to confirm that h(0) can be reduced, we need to
determine all (or at least, all most general) reducts of the left-hand sides of conditions. This
will likely give very high complexity bounds, however. It would be interesting to investigate
how real conditional rewrite engines like Maude handle this problem.

Rules with branching conditions. Consider the following variant of Reven:

even(0)→ true (1)
even(s(x))→ true ⇐ odd(x) ≈ true (2)
even(s(x))→ false ⇐ odd(x) ≈ false (3)

odd(0)→ false (4)
odd(s(x))→ true ⇐ even(x) ≈ true (5)
odd(s(x))→ false ⇐ even(x) ≈ false (6)

Evaluating even(s9(0)) with rule (2) causes the calculation of the normal form false of
odd(s8(0)), before concluding that the rule does not apply. In our definitions (of ⇀ and Ξ),
and conform to the behavior of Maude, we would dismiss the result and continue trying the
next rule. In this case, that means recalculating the normal form of odd(s8(0)), but now
to verify whether rule (3) applies. There is clearly no advantage in treating the rules (2)
and (3) separately. Instead, we could consider rules such as these to be grouped; if the left-
hand side matches, we try the corresponding condition, and the result determines whether
we proceed with (2), (3), or fail. Future definitions of complexity for sensible conditional
rewriting should take optimizations like these into account.

Improving the transformation. With regard to the transformation Ξ, it should be possible
to obtain smaller resulting systems using various optimizations, such as reducing the set
AP of anti-patterns using typing considerations, or leaving defined symbols untouched when
they are only defined by unconditional rules. As observed in footnote 2, either proving that
Ξ preserves complexity, or improving it so that it does, would be interesting.

Complexity methods. While the interpretation recipe from Section 6 has the advantage
of immediately eliminating rules (5ρ) and (6ρ), it is not strictly necessary to always map
f and fa to the same function. With alternative recipes, we may be able to more fully
take advantage of the context-sensitivity of the transformed system, and handle different
examples.

Besides interpretations into N, there are many other complexity techniques which could
possibly be adapted to context-sensitivity and to handle the > symbols appearing in Ξ(R).
As for tool support, we believe that it should not be hard to integrate support for conditional
rewriting into existing tools. We hope that, in the future, developers of complexity tools will
branch out to context-sensitive rewriting and not shy away from exponential upper bounds.
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