
Network Rewriting II: Bi- and Hopf Algebras
Lars Hellström

Division of Applied Mathematics, The School of Education, Culture and
Communication
Mälardalen University, Box 883, 721 23 Västerås, Sweden
lars.hellstrom@residenset.net

Abstract
Bialgebras and their specialisation Hopf algebras are algebraic structures that challenge tradi-
tional mathematical notation, in that they sport two core operations that defy the basic functional
paradigm of taking zero or more operands as input and producing one result as output. On the
other hand, these peculiarities do not prevent studying them using rewriting techniques, if one
works within an appropriate network formalism rather than the traditional term formalism. This
paper restates the traditional axioms as rewriting systems, demonstrating confluence in the case
of bialgebras and finding the (infinite) completion in the case of Hopf algebras. A noteworthy
minor problem solved along the way is that of constructing a quasi-order with respect to which
the rules are compatible.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases confluence, network, PROP, Hopf algebra

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.194

1 Introduction

Bialgebras and Hopf algebras are rarely mentioned in first (or second) abstract algebra courses,
but many familiar algebraic and combinatorial [5] structures possess a Hopf algebra structure,
which may be viewed as giving a more complete picture of the basic thing than the mere
algebra would. For polynomials in one variable x over a field K, one may define the coproduct
∆: K[x] −→ K[x] ⊗ K[x], the counit ε : K[x] −→ K, and the antipode S : K[x] −→ K[x] as
the linear maps which satisfy

∆(xn) =
n∑
k=0

(
n

k

)
xk ⊗ xn−k, ε(xn) =

{
1 if n = 0,
0 otherwise,

S(xn) = (−1)nxn

for all n > 0; this turns K[x] into a Hopf algebra. For any group G, the corresponding
group algebra K[G] is similarly endowed with coproduct ∆: K[G] −→ K[G]⊗K[G], counit
ε : K[G] −→ K, and antipode S : K[G] −→ K[G] defined by

∆(g) = g ⊗ g, ε(g) = 1, S(g) = g−1

for all g ∈ G and then extended to the whole of K[G] by linearity, that turn K[G] into a Hopf
algebra. If G is finite, then the linear dual of K[G] will moreover also be a Hopf algebra.
Hopf algebras are thus close at hand, but they can for syntactic reasons be awkward to work
with abstractly.

The simplest way to fully formalise the Hopf algebra concept of coproduct in a classical
computational context would be that it is a function which returns a generator object for
a finite sequence of pairs of algebra elements, because the basic way to encode a general

© Lars Hellström;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 194–208

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.194
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

L. Hellström 195

element in a vector space tensor product V ⊗ V is as a finite sum a1 ⊗ b1 + · · ·+ an ⊗ bn
where ai, bi ∈ V for all i = 1, . . . , n; note however that neither the length of this sum nor
any particular term of it is uniquely determined by the element that the sum encodes. For
example, in the polynomial Hopf algebra one can express ∆(x) as 1⊗ x+ x⊗ 1, but equally
well as 1⊗ (x+ 1) + (x−1)⊗1 or (x+ 1)⊗ (x+ 1)−1⊗1−x⊗x, since these are all the same
element of K[x]⊗K[x]. That the overall result of a computation should be independent of
how such a tensor product element happened to get encoded places far-reaching constraints
on what one may do to the ais and bis; in particular, all the ai must be processed in the same
way, and all the bi must be processed in the same way, although ais need not be processed in
the same way as the bi. Hence a more intuitive syntactic interpretation of the coproduct ∆
is that it is like a subroutine with one in-parameter and two out-parameters, one of which is
the “sequence” of ai and the other being the corresponding “sequence” of bi. In a composite
expression, the left and the right results of a coproduct may then be used in quite separate
places of the expression as a whole.

The counit ε is syntactically even stranger, as it also takes one operand as input, but
produces no result as output, although it contributes a global factor to the final result of
any composite expression of which it is part. Getting a grip on ∆ and ε is difficult, and the
main reason for this is precisely that they in the natural interpretation go beyond one of
the fundamental principles of mathematical notation, namely that each expression is either
atomic or a combination of independent subexpressions that each contributes one intermediate
result to the final combining operation, thus giving every expression an underlying rooted tree
structure. The two output results of a coproduct can instead create a syntactic dependence
between what from the root looks like separate subexpressions, and the no output results of
a counit can leave an expression syntactically disconnected, in both cases invalidating the
traditional presumption that an expression is structured like a tree.

One approach for working with bialgebras has been to device special notational extensions
to traditional notation, such as the Sweedler [10] notation which however has the drawback
of having the bialgebra axioms built in; it cannot be used if one wishes to study the bialgebra
axioms themselves. Another approach has been to give up on traditional expressions for
equational reasoning, to rather work in the formalism of category theory: instead of an
equational proof, one has a huge commutative diagram, where the various paths correspond
to expressions, and the facets correspond to applications of axioms. An awkward trait of this
approach is that it places considerable emphasis on such elementary issues as the domains of
intermediate results at the expense of more structural aspects (like saying

R sin−→ [−1, 1] sqr−→ [0, 1] t 7→1−t−→ [0, 1] sqrt−→ [0, 1]

instead of
√

1− sin2 x while aiming to do basic calculus) and a significant disadvantage is
that it requires many steps for trivial rearrangements of parentheses.

The approach followed here, to the end of examining bi- and Hopf algebras using techniques
of rewriting, is instead to adopt a more general expression (formal term) concept, where
the underlying structure is a DAG rather than a simple tree. This kind of generalisation is
known from the works of for example Hasegawa [2], Lafont [6], and Mimram [8], but the
exact realisation of it that will be used here is that of [3]. This network concept of more
general expressions can be transcribed in terms of the categorical primitives of morphism
composition, tensor product, and component permutation, but it is graphical (primarily as
in graph, only secondarily as in graphics) and thus more accessible to the human eye. Even
better, the matter of whether two categorical expressions are equal modulo the axioms of a
symmetric monoidal category (the “rearrangement of parentheses” mentioned above) turns

RTA 2015

196 Bi- and Hopf Algebras

out to be exactly the same as whether the corresponding networks are isomorphic (as graphs
with some extra structure). There is much formal nonsense, but once the many minutiae of
establishing the more general expression concept have been taken care of [3, Secs. 4, 5, 7],
rewriting behaves very much as we’re used to, even if some new phenomena pop up.

What is not a new phenomenon, but deserves to be stated explicitly, is that the rewriting
operates on a higher level of abstraction than is usual in applications of rewriting to abstract
algebra; the objects being rewritten do not represent/evaluate to elements of the algebra in
question, but are rather expressions that could be applied to some tuple of algebra elements.
More technically, the objects being rewritten represent (could be taken as evaluating to)
multilinear maps H⊗n −→ H⊗m which live in the PROP (symmetric monoidal category)
of such maps that is generated by the five Hopf algebra operations. Rewrite theories that
describe more specific Hopf algebras, for example “the free Hopf algebra generated by a given
coalgebra”, can be had by extending the generic system described below with extra constant
operations representing the generating elements and extra rewrite rules representing how
the coproduct and counit act on these generators; the resulting Hopf algebra is then the
no-input-one-output component of the generated PROP.

Section 2 gives an introduction to the network formalism for bi- and Hopf algebras.
Section 3 presents the axiom system for bialgebras and shows that it constitutes a confluent
system of rewrite rules. Section 4 presents the axiom system for Hopf algebras and derives
the additional rules needed to make the rewrite system complete. Section 5 shows that the
system of the previous section indeed is confluent. Section 6 takes care of a technical detail
left aside in the earlier critical pairs/completion oriented sections, namely that of how to
construct a compatible order on the set of networks, to ensure termination.

2 Network formalism for bi- and Hopf algebras

In a Hopf algebra H over a field K, there are five multilinear operations:

multiplication
µ : H⊗H −→ H

antipode
S : H −→ H

unit
u : K −→ H

coproduct
∆: H −→ H⊗H

counit
ε : H −→ K

A bialgebra is not required to have an antipode. The graphic symbols shown are used
to denote these operations in network notation expressions (see [3, Sec. 5] for the formal
definition of network notation). These networks will be directed acyclic graphs where each
inner vertex is one of the above five, and all edges by convention are directed downwards; no
arrowheads are drawn. Edges beginning at the top of the network correspond to inputs and
edges ending at the bottom correspond to outputs; together, these constitute the legs of the
network. A network may be interpreted as a “circuit” performing Hopf algebra operations;
any antichain k-edge-cut separating input side from output side is then the location of an
intermediate result of the circuit; technically such an intermediate result is an element of
the tensor power H⊗k. When occurring as parts of a larger mathematical formula, network
expressions are for clarity framed in brackets, like so:

− []
−

[]
+
[]

The rightmost of these networks is the identity map id⊗2 = id⊗ id : H⊗2 −→ H⊗2, whereas
the first three in categorical notation rather would be ∆ ◦ µ ◦ (S ⊗ S), (id⊗ µ) ◦ (∆⊗ id),

L. Hellström 197

and (µ⊗ id) ◦ (id⊗∆). The rewriting formalism applied operates on linear combinations of
networks, but the bialgebra and Hopf algebra axioms are all binomial, so the reader may for
this paper ignore that aspect. (Rewrite rules always have simple networks, as opposed to
formal linear combinations of networks, as left hand sides. Critical pairs/ambiguities thus
only arise at simple networks, even though their resolutions might involve linear combinations
if there are rules introducing such.)

Rewrite rules act on networks in the pictorially intuitive way of removing a subnetwork
isomorphic to the left hand side and instead splicing in a subnetwork isomorphic to the right
hand side, making sure that corresponding legs of the left and right hand sides are spliced
into the same edge of the network being rewritten. Thus the rule

[]
→

[]
can change

 into

 ;

it makes no mathematical difference that the crossing of two edges is shown above the two
antipodes in the right hand side of the rule but below them in the spliced network (rightmost),
as in this formalism the crossing of two edges is merely a presentational artifact that arises
when the abstract network (a graph not given with an embedding) has to be depicted on a
two-dimensional page.

Critical pairs (the formal term used in [3] is decisive ambiguities) arise when the left
hand sides of two rules occur as overlapping subnetworks of some network that they cover
completely, at least in the case of the rewrite systems considered here. (In some more general
cases, there can be an ambiguity even when there is not an overlap.)

3 The bialgebra axioms and rewriting system

The bialgebra axioms are straightforward to state as network rewrite rules. First, there are
the axioms for an associative unital algebra

associativity

s1 :
[]

→

[]
µ ◦ (id⊗ µ)→ µ ◦ (µ⊗ id)

left unit

s2 :
[]

→
[]

µ ◦ (u⊗ id)→ id

right unit

s3 :
[]

→
[]

µ ◦ (id⊗ u)→ id

then the dual axioms (obtained from the above by exchanging the roles of inputs and outputs)
for a coassociative counital coalgebra

coassociativity

s4 :
[]

→

[]
(id⊗∆) ◦∆→ (∆⊗ id) ◦∆

left counit

s5 :
[]

→
[]

(ε⊗ id) ◦∆→ id

right counit

s6 :
[]

→
[]

(id⊗ ε) ◦∆→ id

and finally the axioms relating co- and non-co operations

s7 :
[]

→
[]

s8 :
[]

→
[]

s9 :
[]

→
[]

s10 :
[]

→

[]
ε ◦ u→ id⊗0 ∆ ◦ u→ u⊗ u ε ◦ µ→ ε⊗ ε ∆ ◦ µ→ µ⊗ µ ◦

id⊗ τ ⊗ id ◦
∆⊗∆

RTA 2015

198 Bi- and Hopf Algebras

where id⊗0 is the neutral element with respect to the tensor product operation ⊗ and τ

is a “twist” map defined by τ(x ⊗ y) = y ⊗ x for all x and y; it is usually when reaching
expressions the size of the right hand side of s10 that one starts to appreciate the network
notation (and its less formalised kin, such as ‘shorthand diagrams’ [7] and Penrose’s pictorial
notation [9]) as an improvement over the raw categorical notation. In more traditional
algebraic presentations, axioms s7 and s9 are often combined into the claim that ε is a unital
algebra homomorphism, whereas axioms s8 and s10 combine into the same claim about ∆.
The crossing of edges (or τ twist) in the right hand side of s10 is then swept under the rug
as a detail of how the multiplication operation of a tensor product algebra H⊗H is defined,
but it is an important feature which deserves to be made explicit.

A sequence of rewriting steps modulo the system {s1, s2, . . . , s10} is
 s10→

 s9→

[]
s5→

[]
s5→
[]

and that is also half of the resolution of the critical pair formed by rules s10 and s5; the
other half amounts to just one application of s5. The full list1 of networks being sites of
critical pairs for this rewriting system is

 , []
,

 ,

 , []

,

 ,

 ,

[]
,

 , []

,

 ,
 ,

 ,
 ,

 ,
 ,

 ,

 ,

 ,

 ,

 ,

and these all resolve in a quite straightforward manner. This list was compiled by enumerating
all networks that satisfy the conditions of [3, Lemma 10.15]. Together with the quasi-order
discussed in Section 6, this meets the conditions of the network rewriting diamond lemma [3,
Th. 10.24], and so it follows that:

I Theorem 1. The rewriting system {sk}10
k=1 is terminating and confluent.

Remark on proof. This may seem abrupt, but proofs of confluence using a diamond lemma
admit a degree of stylisation that almost render them redundant. Recall that a diamond
lemma is a theorem of the form that if certain prerequisites are met, then various claims are
equivalent; one of these claims is that a rewriting system is confluent and another that the
rewriting system is locally confluent at each critical pair. Proofs relying upon it therefore
tends to have two parts: first check that the prerequisites are met, which among other things

1 This list of critical pairs, resolutions of these critical pairs, ditto for the extensions of the rewriting
system treated below, and all drawings of networks shown in this paper, were computed using a utility
for completion in network rewriting that was written by the author. The homepage of that utility, where
its sources are available for download, is currently http://www.mdh.se/ukk/personal/maa/lhm03/sw/
rewriting

http://www.mdh.se/ukk/personal/maa/lhm03/sw/rewriting
http://www.mdh.se/ukk/personal/maa/lhm03/sw/rewriting

L. Hellström 199

establishes termination, second check the local confluence. But when termination holds, the
matter of local confluence becomes algorithmically decidable, so recording the details of those
calculations is not essential for the proof. The second part can therefore be abbreviated pretty
much to the point of being omitted entirely, and the first part is often completely standard.
(For this particular theorem, it is not so standard; the argument underlying termination can
be found in Section 6, since the same argument would be used for all rewriting systems in
this paper.)

What, on the other hand, may require a great deal of ingenuity and calculations is the
construction of the confluent rewrite system. But the rewrite system must be included
already in the statement of the theorem, so in a sense such claims tell the reader how to
prove them. J

Networks which are built from µ, u, ∆, and ε vertices and moreover are on normal
form with respect to {sk}10

k=1 can be fully characterised. Let M0 = u, M1 = id, Mi+2 =
Mi+1 ◦ (µ⊗ id⊗i) for i > 0. Dually let D0 = ε, D1 = id, and Di+2 = (∆⊗ id⊗i) ◦Di+1 for
i > 0. Then the networks on normal form consist of three layers and have the overall form
A ◦ B ◦ C, where A =

⊗m
k=1Mpk

for some numbers {pk}mk=1 ⊆ N, the middle B part is a
permutation, and C =

⊗n
k=1Dqk

for some numbers {qk}nk=1 ⊆ N. In other words, the A
part contains all the µ and u, whereas the C part contains all the ∆ and ε, and both the A
part and the C part are written on left-leaning form.

4 The Hopf algebra axioms and rewriting system

The situation for Hopf algebras is far more complicated. The traditional axiom system for
these adds just two axioms to the ten of a bialgebra, namely

fa0 :

→ []

and fb0 :

→ []

.

Logically, these two are all that is needed, but in practical calculations one needs to employ
a number of derived rules. In particular, there are four rules describing interaction of an
antipode with one of the four bialgebra operations:

s11 :
[]

→

[]
s12 :

[]
→

[]
s13 :

[]
→
[]

s14 :
[]

→
[]

The rules s13 and s14 for how an antipode interacts with a counit and unit are fairly
straightforward; they are among the first things an automated completion procedure discovers
when given the Hopf algebra axioms as input, and the derivation of s14 is merely

[]
s7←

 fb0←

 s8→

 s3→

[]
.

The rules s11 and s12 for how an antipode interacts with the multiplication and coproduct
are on the other hand among the last spurious rules such a procedure discovers; a derivation

RTA 2015

200 Bi- and Hopf Algebras

of s11 with some steps combined is

[]
s3,s6←

 fa0←

 s1,s4→

s3,s6←

fa0←

s4→

s4→

s1↔

s10←

fb0→

 s9→

 s2,s5→

[]
(1)

and the derivation of s12 is just the vertical flip (exchanging inputs and outputs, multiplication
and coproduct, and unit and counit) of this one.

Given rules s11 and s12, it is easy to see that these will form critical pairs with the axioms
fa0 and fb0 that lead to the failed resolutions

 s11←

 fa0→

 s14→

[]
and

 s11←

 fa0→

 s14→

[]
.

This thus calls for the introduction of two derived rules fc0 and fd0, which are themselves
involved in similar critical pairs, that in turn call for another two derived rules with an extra
pair of antipodes and an extra crossing. Since crossing twice takes one back to the original
uncrossed state, this second pair of derived rules may be called fa1 and fb1 as they look
just like fa0 and fb0, except with two extra antipodes on each of the two paths between
coproduct and multiplication:

fa1 :

→

[]
fb1 :

→

[]

Continuing this way, one will generate four infinite families of rules, where the members of
a family differ only in how many extra antipodes are inserted between the coproduct and the
multiplication in the left hand side, but all rules in a family have the same right hand side.
To present this succinctly in network notation, it becomes convenient to introduce a special
double antipode sequence vertex , that denotes a path of some 2n antipode vertices; the
number n will appear as an index in the rule name. Note especially that all double antipode
sequence vertices in a single network denote the same even number of antipodes. Using this,
the fan, fbn, fcn, and fdn families of rules are what is shown in the top row of Figure 1.

Families a–d also form critical pairs with rules s1 and s4, that do not resolve using the
rules mentioned so far; one example is

 s1←

 fan→

[]
s3→
[]

.

L. Hellström 201

 fan→

[]
 fbn→

[]
 fcn→

[]
 fdn→

[]

 fen→

[]

 ffn→
[]

 fgn→

[]

fhn→
[]

 fin→

[]
 fjn→

[]

 fkn→
[]

fln→
[]

fmn→ []

 fnn→ []

fon→ []

fpn→ []

Figure 1 The sixteen infinite families of rewrite rules for Hopf algebras. The letters a–p in the
index correspond to the subequation labels in [3, Eq. 1.2], where this system of rewrite rules was
first announced.

These failed resolutions thus give rise to additional families of derived rules; with s1 one gets
fen through fhn and with s4 one gets fin through fln, also defined in Figure 1. Furthermore
families e–h form critical pairs with s4 that give rise to another four families m–p, and those
same four families also arise from critical pairs of s1 and a member of families i–l. But after
these last four that bring the total up to sixteen families {fan}∞n=0 through {fpn}∞n=0, there
are no more derived rules to discover; the rewrite system is, as shall be shown in Section 5,
complete.

The last four families, the simplest member of which is

fn0 :

→ [] , so that

→

[]

(the filled vertex in that formula is to be read as a placeholder for an arbitrary network
expression) do however exhibit an interesting property: they apply even in places where the
first input is reachable from the first output. Note that since networks are by definition DAGs,
a rewrite formalism for networks may not perform any surgery that would introduce cycles.
A simple condition to that effect would be that left hand sides of rules may only be identified
with networks in such a way that no directed path exists from a left hand side output to a
left hand side input, because that ensures the result of applying the rule is also acyclic no

RTA 2015

202 Bi- and Hopf Algebras

matter what the right hand side looks like. Though simple, this convexity condition turns
out to be a bit too restrictive in practice, and a more appropriate condition is that a rewrite
rule should not introduce any new connections; the right hand side should not have a path
from input j to output i unless there was such a path in the left hand side.

Remember that a derived rule can be considered a bottled sequence of proof steps
exercising more elementary rules; any application of a derived rule can, as far as equational
reasoning is concerned, be replaced by a sequence of more elementary steps. When considering
such a sequence of steps in the context of a larger network, there is no a priori reason why
the union of the subnetworks operated upon in the more elementary steps should always
be convex, and in general it will indeed not be. What matters for the validity of a derived
rule is merely that the elementary steps it is a parcel for can be carried out in every context
where the rule is claimed to apply, and that is certainly the case with rule families m–p.

Experience with completing a modification of the Hopf axiom system suggests that rules
will typically become nonconvex as soon as they grow complicated enough. An open problem
in the more general case is however that there may exist more connections in the intermediate
steps of a rule derivation than there are in neither the final left or right hand sides. In this
case the rule is non-sharp [3, Def. 10.3], and it may be involved in critical pairs other than
the decisive ambiguities, a matter which requires further research [4]. The rewrite rules
considered in this paper are however all sharp, so that is not a concern for the results stated
here.

5 Confluence of the Hopf system

For the matter of proving confluence of the system of Hopf algebra rules derived in the
previous section, one may begin with the system of the fourteen spurious rules s1 through
s14. Since this is a superset of the bialgebra system, all the critical pairs of that system arise
again, but they can also be resolved in exactly the same way as there. The additional critical
pairs that arise are at the sites

 ,

 ,

 ,

 ,

 ,

 ,

 ,
 ,

 ,[]
,

and these also resolve through straightforward calculations. Again putting aside until
Section 6 the technical details concerning the construction of a compatible order on the set
of networks, it may now be claimed that:

I Theorem 2. The rewriting system {sk}14
k=1 is terminating and confluent.

The normal form modulo {sk}14
k=1 of a Hopf algebra expression is a three-layered A◦B ◦C

as in the case of a bialgebra, but with the difference that B in this case may contain antipodes.
Hence rather than being a simple matching (as permutations are), the B network is in general
a disjoint union of paths where each path may contain any number (including 0) of antipode
vertices. Adding the sixteen infinite families to the system will reduce that slightly, but not
very much.

Continuing with that full rewriting system F = {sk}14
k=1 ∪{fan}∞n=0 ∪ · · · ∪ {fpn}∞n=0, one

may first observe that the spurious rules s3, s6, s7, s13, and s14 do not form any critical pairs
with the family rules. Rules s8 and s9 form critical pairs, but these all resolve very easily
as a unit or counit will effectively gobble any vertex to which it becomes adjacent. Rules
s1, s2, s4, s5, s11, and s12 are another matter, as they get involved in a rather complicated

L. Hellström 203

fon fgn ffn fnn

fln fdn fbn fjn

fin fan fcn fkn

fmn fen fhn fpn

s1, s4
s1 s1

s1, s4

s1s1

s1 s1

s1 s1
s1s1

s1, s4
s1 s1 s1, s4

s2 s2 s2 s2

s2 s2 s2 s2

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s4

s5

s5

s5

s5

s5

s5

s5

s5

s11s11

s11s11

s11

s11s11

s11

s11

s11

s11

s11

s11

s11
s11

s11

s12

s12

s12

s12

s12

s12

s12

s12

s12

s12
s12

s12

s12

s12
s12

s12

Figure 2 The effect of spurious rules on family rules. Critical pairs formed by one spurious rule
from {s1, s2, s4, s5, s11, s12} and some rule fxn from one of the sixteen infinite families resolve in a
number of spurious rule steps and one family rule step; in several but not all cases, these resolutions
can alternatively be used as derivations of that family rule. The head of an arrow point at the family
of which a member might be derived, whereas the family at the tail and the arrow label correspond
to the rules that would be involved in the critical pair.

dance of transforming rules of one family into rules of another family (or sometimes the same
family); Figure 2 gives an overview of how the families connect. If not for the fact that all
rules in a family form the same kind of critical pair with a spurious rule, and also that the
resolutions are (within each family) all trivial variations on each other, it would be very hard
to verify that the resolutions all succeed. The sheer volume of calculations that are needed is
such that one appreciates also having obtained a computer verification2 of them (for the first
couple of rules from each family), even though it remains within the realm of what can be
carried out manually.

The final spurious rule s10 is not only the one most prolific in forming critical pairs with
family rules (once for the coproduct at the top, once for the multiplication at the bottom),
but also the one which creates the most complicated intermediate steps in their resolutions.

2 Using the utility mentioned in a previous footnote.

RTA 2015

204 Bi- and Hopf Algebras

A typical sequence is
 s10→

s12
→∗

 s12→

 s4→

where now a rule from family fjn applies on the subnetwork containing the right multiplication,
and then a rule from family fan resolves the rest. In the middle step it looks unlikely that any
family rule can apply, because the crossing introduced by rule s10 means that two paths of
antipodes that are adjacent on the coproduct side are not adjacent on the multiplication side,
but what makes everything fit together is that one of the original paths between coproduct
and multiplication has an even number of antipodes whereas the other has an odd number,
and thus there is an extra twist at the end which makes one pair of paths adjacent on both
sides, after which the resolution becomes straightforward. So even though rule s10 creates
a lot of noise as far as critical pairs are concerned, it does not really contribute anything
interesting here. (Note however that rule s10 plays a crucial role at one point in the derivation
(1) of rule s11.)

The final case of critical pair would be one formed by two family rules, and although
that happens (for example between fan and fmn), it does not happen very often. The main
reason is that the overlap has to take the form of a path starting in a coproduct, passing
some number of antipodes, and ending in a multiplication; this places a strong restriction
on the n values that might be involved, as both rules must have such paths with the same
number of antipode vertices. Considering in addition that twisted families (c, d, g, h, k, l, o,
and p) cannot form overlaps with the straight families (a, b, e, f, i, j, m, and n), one ends
up with the conclusion that the n values of both rules involved must in fact be equal, and
then it follows that all these critical pairs have trivial resolutions. Thus we have, again in
anticipation of the technical details that will be dealt with in the next section, the main
claim that:

I Theorem 3. The full Hopf rewriting system F is terminating and confluent.

As before, networks on normal form with respect to F can be written as A ◦B ◦C where
all the µ and u are in A, all the antipodes S are in B, and all ∆ and ε are in C. What is new
in the full system is that those arrangements of coproduct, antipodes, and multiplication
upon which one of the family rules would act are forbidden, but which arrangements are
those? Define a mid-section path of a network to be one that begins in a coproduct, have
antipodes as inner vertices, and ends in a multiplication. Two mid-section paths are said to
be adjacent on the coproduct or multiplication side if their outermost vertices on that side
are adjacent or coincide. Clearly, the family rules may only apply to pairs of paths that are
adjacent on both sides. Moreover, the number of antipodes on the paths in the pair must
differ by 1, and the paths must cross (or not cross) depending on whether it is the path with
the even number of antipodes that is the longer (or shorter, respectively).

6 Compatible ordering of networks

The diamond lemma in [3] is a descendant of Bergman’s diamond lemma for associative
algebras [1], so it requires a well-founded quasi-order P on the set of networks, that on
one hand is compatible with the rules of the rewriting system, and on the other is strictly

L. Hellström 205

preserved under composition of networks. This turns out to not be entirely trivial to construct
in this setting.

The main complication is the coproduct–multiplication rule s10, since this has the
unhelpful property of increasing the number of vertices in a network; were it not for this (and
to a lesser extent rules s11 and s12), one could have ensured well-foundedness simply by first
ordering networks by the number of vertices in them. A generalisation to weighted vertex
counts achieves nothing, since one would need wµ +wu > 0 for rules s2 and s3, w∆ +wε > 0
for rules s5 and s6, wµ > wε for rule s9, w∆ > wu for rule s8, and 0 > wµ + w∆ for rule
s10, all of which taken together merely imply that we have equality in all those inequalities.
Beyond weighted vertex counts, it is not easy to come up with an ordering principle that is
preserved under composition; most elementary suggestions of orders one can make up that
do take the structure of an expression into account tend to fail at being preserved under
composition.

Might it be better to orient some rules the other way? But no, this is the natural
orientation; rules s8, s9, s10, s11 and s12 expand things, whereas most of the others remove
superfluous operations, and only the orientations of s1 and s4 are really arbitrary. It is
natural that s11 changes expressions so that antipodes are applied before the multiplication
rather than after, so how would one formalise this intuition? Obviously the order in which
operations are performed matters, but how does one express that when comparing networks,
as the structure of one network can be quite different from the structure of another? One
possibility is to compare the sequence in which different vertex types occur along paths from
input to output, because in the left hand side of s10 each path passes first a µ vertex and
then a ∆ vertex, whereas in the right hand side it is ∆ first and µ second; the same kind
of condition works for s11 and s12. The only catch is that in order to be preserved under
composition of networks, these comparisons must be performed separately for each pair of
input and output, and also separately for paths that begin or end within a network.

In the end, it turns out to be sufficient to compare the number of paths through a network,
provided that vertices are replaced by suitable gadgets, as follows:

7→ 7→ 7→

Unfilled circles (like for the unit u and counit ε) may serve as start or end point of a path, but
the filled dots may only occur as inner vertices on a path; hence a multiplication µ counts as
having three types of paths: paths from the left input passing through, paths from the right
input passing through, and paths beginning here and continuing through the output. With
these substitutions, it turns out that both the left and right hand sides of s10 contribute the
same number of paths reaching the boundary of the network (despite the right hand side
having 3 edges more), but the left hand side in addition has a path that both starts and ends
within the network (starting at the µ, ending at the ∆), which the right hand side does not
(since every µ there, where such a path might start, comes after the ∆s where it would have
to end), and therefore the left hand side achieves a greater number of paths than the right
hand side. Similarly in rule s11, the antipode doubles the number of paths passing through
it, but it is only in the left hand side that the antipode also doubles the number of paths
beginning at the multiplication. This is how these rules can be oriented from greater to
smaller, even though there are more vertices in the right hand side than in the left hand side.

That is however the intuitive explanation. The formal nonsense is rather that a suitable
quasi-order is constructed by pulling back the standard [3, Constr. 6.1] PROP quasi-order [3,
Def. 3.1] on the biaffine PROP Baff(N) [3, Ex. 2.15] along a cleverly chosen PROP homo-

RTA 2015

206 Bi- and Hopf Algebras

morphism, namely that g which satisfies

g(µ) =

1 0 0 0
0 1 0 0
0 1 1 1

 g(u) =

1 0
0 1
0 1

 g(∆) =

1 0 1
0 1 0
0 0 1
0 0 1

 g(S) =

1 0 0
0 1 0
0 0 2

g(ε) =

(
1 0 1
0 1 0

)
;

these conditions uniquely determine a homomorphism, because the set of all networks is the
free PROP [3, Th. 8.4]. The italic matrix entries are those that are not fixed for elements
of the biaffine PROP and thus may be chosen, although for the resulting PROP order to be
strict it is necessary that there is at least one positive element in each row and at least one
positive element in each column [3, Cor. 6.5]. The relevant interpretation of an element of
Baff(N) is that the (i+ 2, j + 2) entry keeps track of the number of paths going from input j
to output i of a network, whereas entry (i+ 2, 2) keeps track of the number of paths which
begin inside the network and reach output i, entry (1, j + 2) keeps track of the number of
paths which come from input j but end inside the network, and entry (1, 2) keeps track of
the number of paths which both begin and end inside the network. Thus the above argument
about counting paths in a gadgetified s10 corresponds to the observation that

g

([])
=

1 1 1 1
0 1 0 0
0 1 1 1
0 1 1 1

 >

1 0 1 1
0 1 0 0
0 1 1 1
0 1 1 1

 = g

([])
.

What is not distinguished by the order pulled back over that g are the left and right
hand sides of rules s1 and s4; since these impose a left–right asymmetry, they would interact
poorly with the left–right swaps introduced by rules s11 and s12. To orient also these, one
introduces a secondary comparison criterion (technically makes a lexicographic composition [3,
Constr. 3.7] of quasi-orders) by pulling back along a second cleverly chosen homomorphism
g2, for example that which has

g2(µ) =

1 0 0 1
0 1 0 0
0 1 1 1

 g2(∆) =

1 0 1
0 1 0
0 0 1
0 1 1

In the path-counting interpretation, this amounts to adding the opportunity to end a path
entering through the right input of a µ and begin a path leaving through the right output of
a ∆. This causes the third input of a right-leaning µ ◦ (id ⊗ µ) to offer two chances for a
path to end, whereas the third input of a left-leaning µ ◦ (µ⊗ id) only sees one; this suffices
for making the left hand side of s1 strictly larger than the right hand side.

Two additional results of [3] that are important in verifying that the quasi-order con-
structed as described above meet the conditions for the diamond lemma (Th. 10.24) are
Corollary 9.16 and Lemma 9.18. Arguably also Lemma 3.5 on well-foundedness, but that
result is on the other hand quite standard.

7 Final remarks

An anonymous reviewer has asked about the difficulty of finding redexes in network rewriting.
Since network rewriting is nondeterministic, this ends up being a search problem, but the

L. Hellström 207

search is in practice fairly constrained: most of the time, a redex is uniquely determined by
the correspondence of one vertex in the rule left hand side to one vertex in the network being
reduced, because each edge incident with a vertex occupies a distinct “port” on that vertex
(e.g. multiplication µ has a left incoming factor, a right incoming factor, and an outgoing
result, no two of which are interchangeable). Therefore it is feasible to pick one vertex in
the left hand side and try to match it against each vertex of the network to reduce; when
things don’t match, one tends to discover that early, and the only case in which the search
might need to backtrack would be for a left hand side that is not connected. There are
some additional complications related to keeping track of the transference types of rules [3,
Defs. 6.14, 10.3], which can prevent something from being a redex even though the networks
match, but that boils down to doing some extra bookkeeping.

A somewhat tougher problem is how to check which rules in a rewrite system might apply
to a given network, especially when the rewrite system is large and in flux due to a (Knuth–
Bendix style) completion being in progress. The author has implemented a system where
each network is assigned a “signature” that counts occurrences of various small subgraphs
therein, to the end of only considering rules whose signature is dominated by that of the
target network. The performance has been good enough that reduction is not perceived as a
problem when running large completions.

Acknowledgements. This work was begun in the spring of 2004, during my postdoc stay
at the Mittag-Leffler institute as part of the NOG (Noncommutative Geometry) programme,
funded by the European Science Foundation and the Royal Swedish Academy of Sciences.
Much research has also been done while the author was associated with the Department of
Mathematics and Mathematical Statistics at Umeå University. Final write-up was supported
by The School of Education, Culture and Communication at Mälardalen University.

References

1 George M. Bergman. The diamond lemma for ring theory. Adv. in Math., 29(2):178–218,
1978.

2 Masahito Hasegawa. Models of sharing graphs. CPHC/BCS Distinguished Dissertations.
Springer-Verlag London, Ltd., London, 1999. A categorical semantics of let and letrec,
Dissertation, University of Edinburgh, Edinburgh.

3 Lars Hellström. Network Rewriting I: The Foundation. ArXiv e-prints, 2012.
arXiv:1204.2421 [math.RA].

4 Lars Hellström. Critical pairs in network rewriting. In Takahito Aoto and Delia Kesner,
editors, IWC 2014, 3rd International Workshop on Confluence, pages 9–13, 2014. http:
//www.nue.riec.tohoku.ac.jp/iwc2014/iwc2014.pdf.

5 S. A. Joni and G.-C. Rota. Coalgebras and bialgebras in combinatorics. Stud. Appl. Math.,
61(2):93–139, 1979.

6 Yves Lafont. Towards an algebraic theory of Boolean circuits. J. Pure Appl. Algebra,
184(2-3):257–310, 2003.

7 Shahn Majid. Cross products by braided groups and bosonization. J. Algebra, 163(1):165–
190, 1994.

8 Samuel Mimram. Computing critical pairs in 2-dimensional rewriting systems. In RTA
2010: Proceedings of the 21st International Conference on Rewriting Techniques and Ap-
plications, volume 6 of LIPIcs. Leibniz Int. Proc. Inform., pages 227–241. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2010.

RTA 2015

http://www.nue.riec.tohoku.ac.jp/iwc2014/iwc2014.pdf
http://www.nue.riec.tohoku.ac.jp/iwc2014/iwc2014.pdf

208 Bi- and Hopf Algebras

9 Roger Penrose. Applications of negative dimensional tensors. In Combinatorial Mathem-
atics and its Applications (Proc. Conf., Oxford, 1969), pages 221–244. Academic Press,
London, 1971.

10 Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc.,
New York, 1969.

	Introduction
	Network formalism for bi- and Hopf algebras
	The bialgebra axioms and rewriting system
	The Hopf algebra axioms and rewriting system
	Confluence of the Hopf system
	Compatible ordering of networks
	Final remarks

