
Polynomial Time in the Parametric Lambda
Calculus
Brian F. Redmond

Department of Computing, Mathematics and Statistical Sciences
Grande Prairie Regional College
10726 – 106 Avenue, Grande Prairie, AB, T8V 4C4, Canada
bredmond@GPRC.ab.ca

Abstract
In this paper we investigate Implicit Computational Complexity via the parametric lambda
calculus of Ronchi Della Rocca and Paolini [13]. We show that a particular instantiation of the
set of input values leads to a characterization of polynomial time computations in a similar way to
Lafont’s Soft Linear Logic [9]. This characterization is manifestly type-free and does not require
any ad hoc extensions to the pure lambda calculus. Moreover, there is a natural extension to
nondeterminism with the addition of explicit products.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Parametric Lambda Calculus, Polynomial Time Complexity, Combinat-
ors, Nondeterminism and Explicit Products, Implicit Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.288

1 Introduction

There is an inherent problem in studying computational complexity within the lambda
calculus in that a single beta reduction step can effectively square the size of a term, thus
leading to an exponential size term after only a linear number of steps. It therefore seems
unreasonable to simply count the number of beta reduction steps as a measure of the
computational complexity of reduction. Indeed, there have been studies, most recently in
[1], which give more reasonable measures of the complexity of a given λ-term using explicit
substitutions and notions of sharing. These delicate issues are entirely avoided here as all
beta reduction steps, except for a constant number (which does not depend on the size of
the input), do not increase the size of the lambda term. Therefore, we feel justified in taking
a very simplistic approach to measuring the complexity of reduction of a given lambda term.
We define a simple “by-value” operational semantics and define the complexity of reduction
as the size of its corresponding evaluation tree, which we show is polynomial in the size of
the input binary word. We claim that any such reduction can be simulated on a Turing
machine with polynomial overhead.

Most studies of complexity within the (pure) lambda calculus rely on typing restrictions
to ensure that terms are strongly normalizing. For example, it is well known that terms in
the simply typed lambda calculus are strongly normalizing and, moreover, that the class of
representable numerical functions is precisely the class of extended polynomials [15]. Adding
an (impredicative) operation of abstraction on types, as in Girard’s system F [6], greatly
increases the class of representable functions to the class of functions provably total in second
order Peano arithmetic [7]. Nevertheless, the system remains strongly normalizing. A system
somewhere in the middle of these two extremes is obtained by stratifying type abstraction
into a finite number of levels. Indeed, in this case, the class of representable functions

© Brian F. Redmond;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 288–301

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.288
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. F. Redmond 289

is precisely the class of super-elementary functions, i.e. the class of E4 in Grzegorczyk’s
subrecursive hierarchy [10]. Finally, there are also well known studies on the complexity of
beta equivalence in the simply typed lambda calculus [16], as well as related results when
restricting to low functional orders [14].

Another fruitful approach to investigating complexity in the lambda calculus is through
linear logic and related type systems. In these studies, it is not typically type abstraction
that is limited, but instead duplication is controlled via the modified exponentials ! and § (see
[5] and [2], for example). These type systems were derived from their corresponding systems
of (light) linear logic and proof nets, and illustrate the computational power of duplication
in the lambda calculus. Unfortunately, type checking and type inference are undecidable in
the presence of unrestricted polymorphism [4].

In this paper we take an entirely different approach to studying complexity within the
lambda calculus via the parametric lambda calculus [13]. With a frugal choice of so-called
input values, we show that strong normalization is guaranteed, yet the system remains
expressive enough to capture polynomial time computations. Moreover, there is a natural
extension to nondeterminism with the addition of explicit products. In contrast to the above
studies, however, this approach does not rely on typing restrictions as we work in an entirely
type-free setting. Nevertheless, we believe a system of intersection types can be introduced
post hoc if desired.

This work is closely related to the author’s work on Bounded Combinatory Logic [12].
In that work, the usual Curry combinators B,C,K,W are introduced, but the duplication
combinator W has one of its arguments restricted to a proper subset of combinators, namely
the BCK-combinators. This ensures that only affine linear terms are duplicated, and leads
to a simple characterization of polynomial time computations. The “moral” analogue in the
lambda calculus corresponds to a particular instantiation of the parametric lambda calculus,
which is the focus of the current paper. However, the systems are not equivalent and in fact
use completely different reduction strategies and encodings. For this reason, we chose to
present this work independently and investigate the relationship between the two system in
future work.

2 An Instance of the Parametric Lambda Calculus

One of the aims of the parametric lambda calculus is to study in a uniform way various
systems of the pure lambda calculus, in particular its call-by-name and call-by-value versions
[13]. This is done by restricting beta reduction to subsets of lambda terms, called input
values, that satisfy certain closure conditions. These closure conditions guarantee important
properties like confluence are satisfied. In this paper we study various instantiations of the
parametric lambda calculus in the context of Implicit Computational Complexity (ICC). We
refer the reader to [13] for much of the notation used as well as some of the basic definitions
in the lambda calculus. However, all nonstandard notation, terminology, and definitions will
be explicitly stated.

The set of lambda terms, Λ, is defined in the usual manner. We assume a countably
infinite set of variables, Var, and define the set of lambda terms Λ as follows:

M,N ::= x | (MN) | (λx.M)

where x ∈ Var. For notational convenience we tacitly assume the standard conventions
regarding parentheses and for contracting multiple lambda abstractions. We use the symbol
≡ to denote the syntactical identity of terms up to α-congruence, and M [N/x] denotes the

TLCA’15

290 Polynomial Time in the Parametric Lambda Calculus

capture-free substitution of N for x in M . Finally, we need the notion of a context C[.] as
defined in [13], Def. 1.1.11.

Let M be a generic lambda term. For each subterm of M of the form λx.P , let #(λx.P)
denote the number of times x occurs free in P . The size1 of a lambda term M , denoted
s(M), is defined by induction on M as follows: s(x) = 1 if x is a variable, s(λx.P) = 1 + s(P)
and s(PQ) = s(P) + s(Q). Recall from [13] that a subset ∆ of Λ is called a set of input
values if it satisfies the following three conditions:
1. Var ⊆ ∆
2. If P and Q are in ∆, then so is P [Q/x], for each x ∈ Var
3. If M ∈ ∆ and M →∆ N , then N ∈ ∆
In condition 3, the symbol →∆ denotes a one-step ∆-reduction [13].

In this paper we introduce a set of input values, denoted Φ, consisting of “pseudo-affine”
terms. This is made precise in the following definition: Let Φ denote the smallest subset of
Λ satisfying the following closure properties:

x ∈ Var implies x ∈ Φ,
If M,N ∈ Φ, then (MN) ∈ Φ,
If M ∈ Φ and x ∈ Var and x occurs free at most once in M , then (λx.M) ∈ Φ.

We shall often refer to Φ as the set of player terms and to Λ\Φ as the set of opponent terms.
For example, the closed terms I ≡ λx.x,B ≡ λxyz.x(yz), C ≡ λxyz.xzy, and K ≡ λxy.x are
all player terms, but D ≡ λx.xx is an opponent term. Note that free variables may appear
more than once in a player term. This follows terminology introduced in [12].

The one-step Φ-reduction →Φ is defined as the contextual closure of the following rule:

(λx.M)N →Φ M [N/x] if and only if N ∈ Φ

Let→∗Φ denote the reflexive and transitive closure of→Φ. A redex R ≡ (λx.P)Q with (λx.P)
an opponent term and Q ∈ Φ is called an opponent redex. A redex R ≡ (λx.P)Q ∈ Φ is
called a player redex. This terminology extends to their respective reductions as well.

Define the degree of a term M , denoted d(M), as follows: d(M) = 0 if M ∈ Φ and
d(MN) = d(M) + d(N) if MN ∈ Λ\Φ and d(λx.P) = 1 + d(P) if λx.P ∈ Λ\Φ. For example,
the degree of the term λx.(λy.yy)x is 2.

I Theorem 1 (confluence). The subset Φ as defined above is a set of input values. Therefore,
the reduction relation →∗Φ is confluent by Theorem 1.2.5 in [13].2

Proof. Condition 1 is obvious. For condition 2, we use induction on the structure of P :
If P ≡ y, then P [Q/x] is either Q ∈ Φ if y ≡ x, or y ∈ Φ if y 6≡ x.
If P ≡ P1P2 ∈ Φ, then P1 ∈ Φ and P2 ∈ Φ. By the induction hypothesis, we have
P1[Q/x], P2[Q/x] ∈ Φ. Thus, P [Q/x] ≡ P1[Q/x]P2[Q/x] ∈ Φ.
If P ≡ λz.M ∈ Φ, then M ∈ Φ and z occurs free at most once in M . If z ≡ x, then
P [Q/x] ≡ P ∈ Φ. Otherwise, by α-congruence, we may assume that z 6∈ FV(Q), so z
occurs free at most once in M [Q/x]. By the induction hypothesis we have M [Q/x] ∈ Φ.
Thus, P [Q/x] ≡ λz.M [Q/x] ∈ Φ.

Finally, for condition 3, we proceed by induction on the structure of M :
If M is a variable, then the result is vacuously true.

1 This is called length in [8].
2 The set Var ∪ Φ0, where Φ0 denotes the set of closed terms in Φ, also forms a set of input values.

However, as we shall see in Section 3.1, pseudo-affine terms provide more flexibility when defining
programs.

B. F. Redmond 291

If M ≡ P1P2 ∈ Φ and the Φ-redex/reduction is entirely in Pi (i ∈ {1, 2}), then Pi →Φ P ′i .
By the induction hypothesis P ′i ∈ Φ, so either N ≡ P ′1P2 ∈ Φ or N ≡ P1P

′
2 ∈ Φ. On the

other hand, if M ≡ (λx.P)Q and (λx.P)Q→Φ P [Q/x] ≡ N , then N ∈ Φ by condition 2.
If M ≡ λx.P ∈ Φ, then x occurs free in P ∈ Φ at most once, and P →Φ P ′. By the
induction hypothesis, P ′ ∈ Φ. Moreover, since the redex contracted in P ∈ Φ must be a
player redex, the number of times x occurs free in P ′ is no more than 1. Thus, λx.P ′ ∈ Φ.

Therefore, Φ is a valid set of input values. J

Note that any term in the λΦ-calculus has the form: λx1 · · ·xn.ζM1 · · ·Mm (n,m ≥ 0) where
ζ is either a variable or a Φ-redex or a head block. (A head block is a term (λx.P)Q, where
Q /∈ Φ.) We say that a term is in Φ-normal form if it has the form λx1 · · ·xn.ζM1 · · ·Mm,
whereMi is in Φ-normal form (1 ≤ i ≤ m) and ζ is either a variable or a head block (λx.P)Q,
where both P and Q are in Φ-normal form. Note that a lambda term is in Φ-normal form iff
it contains no Φ-redexes.

I Lemma 2. If P is any term and Q is a player term, then d(P) = d(P [Q/x]).

Proof. First note that if P is a player term, then so is P [Q/x] and both have degree 0. So
assume P is an opponent term and argue by induction on P . If P ≡ P1P2, then by the
induction hypothesis, d(P1[Q/x]) = d(P1) and d(P2[Q/x]) = d(P2). Thus, d(P [Q/x]) =
d(P1[Q/x]P2[Q/x]) = d(P1[Q/x]) + d(P2[Q/x]) = d(P1) + d(P2) = d(P). If P ≡ λz.P1,
then d(P) = 1 + d(P1). If z ≡ x, then P [Q/x] ≡ P and the result follows. If z 6≡ x,
then P [Q/x] ≡ λz.P1[Q/x] where we may assume by α-congruence that z /∈ FV(Q). Then
by the induction hypothesis, we have d(P1) = d(P1[Q/x]). Thus, d(P) = 1 + d(P1) =
1 + d(P1[Q/x]) = d(P [Q/x]). J

I Theorem 3 (strong normalization). The λΦ-calculus is strongly normalizing.

Proof. Let M be an arbitrary term. Let R ≡ (λx.P)Q be a redex in M and let M change
to M ′ by contracting R. If R is an opponent redex, then by induction on M we show that
d(M ′) < d(M):

If M ≡ N1N2, and R is contained in Ni, then let Ni change to N ′i by contracting R.
By the induction hypothesis, d(N ′i) < d(Ni). Thus, d(M ′) < d(M). If M ≡ R, then
M ′ ≡ P [Q/x]. Then d(M ′) = d(P) < 1 + d(P) = d(M), where the first equality follows
from Lemma 2.
If M ≡ λz.N , then R must be contained in N . Let N change to N ′ by contracting
R, so M ′ ≡ λz.N ′. By the induction hypothesis, we have d(N ′) < d(N). Thus,
d(M ′) ≤ 1 + d(N ′) < 1 + d(N) = d(M).

On the other hand, if R is a player redex, then s(M ′) < s(M) and d(M ′) ≤ d(M). Therefore,
in between each of the at most d(M) opponent reductions, there can be at most a finite
number of player reductions, and reduction always terminates. J

It is useful to have a rough estimate on the complexity of reduction. Note that since each
opponent term can at most square the size of the term, the size of any reduct is bounded by
s(M)2d , where d = d(M). Therefore, in between each of the at most d = d(M) opponent
reductions, there can be at most s(M)2d player reductions. This leads to normalization in
double exponential time, s(M)2O(d) .

There is some flexibility in what to take as the set of output values, Θ (see [13]). At
the very least, the set of Φ-normal forms, denoted Φ-NF, should be contained in Θ. For the
purposes of this paper, it suffices to assume that Θ = Φ-NF. In the next section we shall
represent polynomial time algorithms by programs in the λΦ-calculus.

TLCA’15

292 Polynomial Time in the Parametric Lambda Calculus

3 The Parametric Lambda Calculus and Polynomial Time

To begin we must represent some basic data structures like booleans and boolean strings in
the λΦ-calculus, but we shall not require them to be encoded as player terms, so they are
not necessarily input values3. Other data structures will be introduced as needed.

Booleans

Booleans are represented by the set {True, False} and the conditional Cond, where:

True ≡ λxy.x, False ≡ λxy.y, Cond ≡ I

Note that CondTrueMN →∗Φ M and CondFalseMN →∗Φ N for any M,N ∈ Φ, and that
the terms True, False, Cond belong to Φ ∩Θ.

Boolean Strings

Boolean strings w = b1b2 · · · bn ∈ {0, 1}∗, are represented using a Church-style encoding as
follows:

W ≡ λfx.fa1(fa2(· · · fan−1(fanx) · · ·)), ai ≡

{
zero ≡ λxyz.y, bi = 0
one ≡ λxyz.z, bi = 1

For example, the boolean string 1011 ∈ {0, 1}∗ is encoded by the opponent term:

λfx.fone(fzero(fone(fonex)))

Note that d(W) ≤ 1 for all string encodings W ; this fact will be important in the proof of
Theorem 5. Note that boolean strings are in Φ-normal form, but they are not necessarily
input values. Thus, boolean strings are not in general duplicable in our setting. For this
reason a slightly more general notion of representability is required:

I Definition 4. A predicate A ⊆ {0, 1}∗ is representable in the λΦ-calculus if there exists a
context C[.] such that, for all w ∈ {0, 1}∗, C[W] →∗Φ Bool, where W is the encoding of w
(as defined above) and Bool ≡ True if w ∈ A and Bool ≡ False if w /∈ A. In this case, the
context C[.] is said to represent the predicate in the λΦ-calculus.

We now prove one of the main results of this paper:

I Theorem 5 (soundness). Let C[.] represent a predicate in the λΦ-calculus. Then, for all
w ∈ {0, 1}∗, the term C[W], where W is the encoding of w, reduces to True or False in
time polynomial in the size/length, denoted |w|, of w.

Proof. We define a simple call-by-value operational semantics that proves judgements of the

3 An alternative system in which all of the required basic data structures are input values will be sketched
in the conclusion.

B. F. Redmond 293

form M ⇓V N , where M is any lambda term and N is a term in Φ-normal form:
(Mi ⇓V Ni)i≤m

xM1 · · ·Mm ⇓V xN1 · · ·Nm
(var)

M ⇓V N

λx.M ⇓V λx.N
(abs)

Q ⇓V Q′ Q′ ∈ Φ P [Q′/x]M1 · · ·Mm ⇓V N

(λx.P)QM1 · · ·Mm ⇓V N
(head)

Q ⇓V Q′ Q′ /∈ Φ P ⇓V P ′ (Mi ⇓V Ni)i≤m

(λx.P)QM1 · · ·Mm ⇓V (λx.P ′)Q′N1 · · ·Nm
(block)

An easy induction on the evaluation tree shows that if M ⇓V N , then M →∗Φ N , where N is
in Φ-normal form, and the length of this reduction sequence is bounded by the size of the
evaluation tree.

Our runtime bound is therefore obtained by bounding the size of the (rooted) evaluation
tree – i.e. the total number of rules in the evaluation tree for the judgement M ⇓V N . Let n
denote the total number of (head)-rules contained in such a tree. We show by induction on
the height of the tree that the size of the tree is bounded by (n+ 1)h, where h denotes the
maximum size of any reduct of M . To this end, we define a partial order on the vertices
(proof rules) of the evaluation tree such that u ≤ v iff the unique path from the root to v
passes through u. Consider the subtree obtained by removing the right branch of each of
the p ≥ 0 occurences of minimal (with respect to the above partial order) (head)-rules. This
subtree has size bounded by s(M) ≤ h as each rule in the subtree decreases the size of the
term. By the induction hypothesis, each of the removed branches, which end with judgements
of the form P [Q′/x]M1 · · ·Mm ⇓V N , has size bounded by (ni + 1)h, where ni (1 ≤ i ≤ p)
denotes the number of (head)-rules in branch i. Therefore, the total size of the evaluation
tree is bounded by h+

∑
i≤p(ni + 1)h = (1 +

∑
i≤p ni + p)h = (1 + n)h, as claimed.

Therefore, it follows by the discussion immediately following the proof of Theorem 3 that
the size of the evaluation tree is bounded by s(C[W])2O(d) , where d is the degree of C[W], as
both n are h are so bounded. And since s(C[W]) = O(|w|) and d remains fixed, the bound
is in fact polynomial in |w| (albeit with possibly large degree). Therefore, our reduction
machine, as defined by the operational semantics above, runs in polynomial time. J

3.1 Polynomial Time Completeness
In this section we shall use the notation MnN ≡ N , if n = 0, and Mn+1N ≡M(MnN), if
n > 0.

We begin by defining a context IterP,M [.] which is used to iterate a player term M ∈ Φ a
polynomial P (n) number of times. More precisely, we claim:

IterP,M [W]→∗Φ λy.MP (n)y ∈ Φ (1)

where n = |w|. Recall that any polynomial with natural number coefficients can be represented
in Horner normal form. For example, the polynomial 2n3 + 4n2 + 3n+ 5 is represented in
Horner normal form as (((2)n+ 4)n+ 3)n+ 5. Given a polynomial P (n), which is either a
constant a0 or has the form P (n) = P1(n)n+ a0, where P1(n) is in Horner normal form, the
context IterP,M [.] is defined inductively on the structure of P as follows:

Itera0,M [.] ≡ λy.Ma0y

IterP,M [.] ≡ λy.Ma0([.](KIterP1,M [.])y) (K ≡ λxy.x)

TLCA’15

294 Polynomial Time in the Parametric Lambda Calculus

We argue by induction on the structure of the polynomial that this context satisfies reduction
(1). Indeed, the base case is clear. Otherwise we suppose P (n) = (P1(n))n + a0. By the
induction hypothesis we have that IterP1,M [W]→∗Φ λy.MP1(n)y ∈ Φ, where n = |w|. Then:

IterP,M [W] ≡ λx.Ma0(W (KIterP1,M [W])x)
→∗Φ λx.Ma0(W (Kλy.MP1(n)y)x)
→∗Φ λx.Ma0((λy.MP1(n)y)nx)
→∗Φ λx.Ma0(M (P1(n))nx)
≡ λx.M (P1(n))n+a0x

≡ λx.MP (n)x ∈ Φ

This finishes the induction. Therefore, for any player term N , we have:

IterP,M [W]N →∗Φ MP (n)N ∈ Φ

Note, in particular, that λf.IterP,f [W]→∗Φ λfx.fP (n)x, which is the Church representation
of P (n). We shall use this iteration combinator to iterate the transition function of a
space-bounded Turing machine a polynomial number of times. But first we need the following
preliminaries.

Affine Tensor Products
Given player terms N1, . . . , Nm ∈ Φ, we write N1⊗· · ·⊗Nm for the term λx.xN1 · · ·Nm and
Prji for the term λf.f(λx1 . . . xm.xi) for each 1 ≤ i ≤ m. Note that N1⊗· · ·⊗Nm, P rji ∈ Φ
and satisfy: PrjiN1 ⊗ · · · ⊗ Nm →∗Φ Ni for each 1 ≤ i ≤ m. Occasionally we shall
also use the notation λx1 ⊗ · · · ⊗ xm.M for the term λf.f(λx1 . . . xm.M). This satisfies
(λx1⊗· · ·⊗xm.M)(N1⊗· · ·⊗Nm)→∗Φ M [N1/x1] · · · [Nm/xm] for any termsM,N1, . . . , Nm ∈
Φ. For example, Prji could be written instead as λx1 ⊗ · · · ⊗ xm.xi for each 1 ≤ i ≤ m.

Lists
Lists are encoded using player terms for the constructors nil and cons as follows:

nil ≡ λxy.y H :: T ≡ λx.xHT ≡ H ⊗ T

Note that nil ∈ Φ and H :: T ∈ Φ iff H,T ∈ Φ. We shall assume that “::” associates to the
right.

Space-Bounded Turing Machines
Suppose we are given a Turing machine with k states, tape alphabet {t, 0, 1}, and input
alphabet {0, 1}, where t is a special symbol for “blank”. These three symbols are encoded,
respectively, by the terms blank ≡ λxyz.x, zero ≡ λxyz.y and one ≡ λxyz.z. For conveni-
ence, we shall assume that the set of states always contains (distinct) special accepting and
rejecting states, and that the machine cannot change states once it reaches one of these two
terminating states. Moreover, we assume that the tape is sufficiently large so that either the
accepting or rejecting state is always reached before the machine encounters either end of
the tape.

A configuration of the Turing machine is encoded as an affine triple tensor product,
S ⊗L⊗R, where S encodes the current state, L encodes the left part of the tape (in reverse

B. F. Redmond 295

order), and R encodes the right part of the tape. The head of the Turing machine is always
assumed to be positioned on the head of R. The left and right parts of the tape are encoded
as lists of the tape alphabet. The k states Si are encoded as follows. Suppose, for example,
in state i, the machine’s instructions, upon reading the symbol on the head, are:

t 7→ (sj1, 0,move_right)
0 7→ (sj2, 1,move_left)
1 7→ (sj3,t,move_left)

Then state Si is encoded as follows:

Si ≡ λx1 . . . xk, h1 ⊗ t1, h2 ⊗ t2.h2(F1)(F2)(F3)x1 · · ·xkh1t1t2

F1 ≡ λx1 . . . xkh1t1t2.xj1 ⊗ (zero :: h1 :: t1)⊗ t2
F2 ≡ λx1 . . . xkh1t1t2.xj2 ⊗ t1 ⊗ (h1 :: one :: t2)
F3 ≡ λx1 . . . xkh1t1t2.xj3 ⊗ t1 ⊗ (h1 :: blank :: t2)

The transition function is then defined as T ≡ λz ⊗ l ⊗ r.zS1 · · ·Sklr and satisfies T (Si ⊗
L⊗R) →∗Φ Sj ⊗ L′ ⊗R′, where Sj is the new current state and L′ and R′ are encodings
of the updated left and right parts of the tape after one iteration of the machine. The
special accepting and rejecting states simply remain in the same state and write one or zero,
respectively, on the head of the tape. Finally, observe that there is a term out (encoded via
appropriate projections) that returns the head of the right tape from a given configuration
of the machine. Note that all the terms in this encoding belong to Φ.

I Theorem 6 (completeness). If a predicate is computable by a Turing machine in polynomial
time P (n) and polynomial space Q(n)4, then it is representable in the λΦ-calculus by a context
C[.].

Proof. Observe that there is a player term, denoted pad, which satisfies pad(S⊗L⊗R) →∗Φ
S⊗(blank :: L)⊗(blank :: R). Then IterQ,pad[W](S1⊗nil⊗nil) pads out the tape sufficiently
for the full computation of the machine and puts it in the initial state S1. Next, apply a
player context write such that write[W](S⊗L⊗R) →∗Φ S⊗L⊗ (W (λxy.(x :: y))R), which
writes the binary string w onto the right part of the tape. Now apply IterP,T [W], where T
is the encoding of the transition function of the machine (as described above), to iterate the
transition function P (|w|) times, which suffices for the machine to reach a terminating state.
Finally, use the player term out (mentioned above) to return the head of the right tape R
and apply it to the arguments I, False, T rue to get a boolean value which indicates whether
the machine is in an accepting or a rejecting state. J

4 Various Extensions

In this section we investigate a few natural extensions of the λΦ-calculus. The first extends
the set of input values to include the so-called Φ-valuable terms (defined below). This larger
set of input values allows for further flexibility in defining programs, but at the expense of
strong normalization. The second extension adds explicit products to the language for the
purpose of characterizing nondeterministic polynomial computations.

4 Of course, the explicit space bound Q(n) is not necessary here since one may simply take Q(n) = P (n).
The explicit accounting of both time and space resources in the encoding of TMs is similar to that given
in [9].

TLCA’15

296 Polynomial Time in the Parametric Lambda Calculus

4.1 Φ-valuability
In order to reduce a redex (λx.P)Q in the λΦ-calculus, it is first necessary to reduce Q to
an input value. However, suppose we relax this condition as follows. Recall that a term M

is called Φ-valuable if there is an N ∈ Φ such that M →∗Φ N . Let Φv denote the set of
Φ-valuable terms.

I Theorem 7. Φv forms a set of input values such that Φ ⊂ Φv. Therefore, the reduction
relation →∗Φv

is confluent by Theorem 1.2.5 in [13].

Proof. Condition 1 is immediate. For condition 2, let P,Q ∈ Φv, so there are terms
P ′, Q′ ∈ Φ such that P →∗Φ P ′ and Q →∗Φ Q′. Then P [Q/x] →∗Φ P ′[Q′/x] (by Lemmas
1.2.21 and 1.2.22 in [13]). But then P ′[Q′/x] is in Φ by the substitution closure of Φ. Hence
P [Q/x] ∈ Φv. For condition 3, let M ≡ C[(λx.P)Q] and N ≡ C[P [Q/x]]. Then Q ∈ Φv

in order for this reduction to happen. So there is a term Q′ ∈ Φ such that Q →∗Φ Q′.
Then M →∗Φ C[(λx.P)Q′] →Φ C[P [Q′/x]]. But since M ∈ Φv, there is a term M ′ ∈ Φ
such that M →∗Φ M ′. So by the confluence of →∗Φ there is a term M ′′ ∈ Φ such that
C[P [Q′/x]]→∗Φ M ′′. But then N →∗Φ C[P [Q′/x]]→∗Φ M ′′, which shows that N ∈ Φv. J

The λΦv-calculus is not strongly normalizing. For example, consider the term D ≡
λy.KI(yy)I, which is Φ-valuable since it reduces to λyx.x ∈ Φ. However, DD →Φv

KI(DD)I →Φv KI(KI(DD)I)I →Φv · · · , which leads to an infinite reduction sequence.
Nevertheless, every term in the λΦv-calculus has a (unique) normal form:

I Theorem 8 (weak normalization). Every term in the λΦv-calculus has a unique normal
form.

Proof. Let M be a term. If there are no Φv-redexes, then M is a Φv-nf and we are done.
Otherwise, let (λx.P)Q be a Φv-redex in M . Then Q ∈ Φv, and thus Q →∗Φ Q′, where
Q′ ∈ Φ. Consider the Φ-reduction of M : M ≡ C[(λx.P)Q]→∗Φ C[(λx.P)Q′]→Φ C[P [Q′/x]].
If C[P [Q′/x]] is a Φv-nf, then we are done. Otherwise, repeat this procedure and extend
the Φ-reduction of M . This process must terminate since there are no infinite Φ-reductions.
Therefore, M is weakly normalizable. Uniqueness comes from the confluence property
(Theorem 7). J

Of course, by including the Φ-valuable terms in the set of input values, we have not obtained
any new complexity results. However, Theorem 7 is an interesting general result about the
parametric lambda calculus that is true of any set of input values and may have future
applications. Theorem 8 is less applicable as it requires the additional fact that the λΦ-
calculus is strongly normalizing.

4.2 Explicit Products and Nondeterminism
In this section we study nondeterminism in the parametric lambda calculus with the use of
explicit products. Of course, one could simply add a new term constructor M +N (sum)
together with nondeterministic projections, but the resulting system would not be confluent
(by construction). Here we present an alternative approach based on the idea of a polynomial
verifier.

Let Λ× denote the set of lambda calculus with explicit products:

M,N ::= x |MN | λx.M | 〈M,N〉 | π1M | π2M

B. F. Redmond 297

where x ∈ Var. The notions of substitution and α-equivalence are extended in the obvious
manner. Here, the term 〈M,N〉 is called an explicit product and πiM are called projec-
tions. For a given set of input values ∆ ⊆ Λ×, we extend →∆ as the contextual closure of
the following rules:

(λx.M)N →∆ M [N/x] iff N ∈ ∆
π1〈M,N〉 →∆ M

π2〈M,N〉 →∆ N

As before, we let →∗∆ denote the reflexive and transitive closure of →∆. The following is a
straightforward generalization of Theorem 1.2.5 in [13].

I Theorem 9. The λ∆-calculus with explicit products and →∗∆ as defined above is confluent.

Proof. The definitions of deterministic parallel reduction ↪→∆ and nondeterminsitic parallel
reduction ⇒∆, Definition 1.2.19 in [13], are extended with the following clauses:
5. M ↪→∆ M ′, N ↪→∆ N ′ imply 〈M,N〉 ↪→∆ 〈M ′, N ′〉;
6. M ↪→∆ M ′ and M 6≡ 〈M1,M2〉 imply πiM ↪→∆ πiM

′, for i ∈ {1, 2};
7. M1 ↪→∆ M ′1, M2 ↪→∆ M ′2 imply πi〈M1,M2〉 ↪→∆ M ′i , for i ∈ {1, 2}.

5. M ⇒∆ M ′, N ⇒∆ N ′ imply 〈M,N〉 ⇒∆ 〈M ′, N ′〉;
6. M ⇒∆ M ′ implies πiM ⇒∆ πiM

′, for i ∈ {1, 2};
7. M1 ⇒∆ M ′1, M2 ⇒∆ M ′2 imply πi〈M1,M2〉 ⇒∆ M ′i , for i ∈ {1, 2}.
Then Lemmas 1.2.21, 1.2.22, Property 1.2.23 and Lemma 1.2.24 in [13] all have straightforward
generalizations by checking the extra cases. The details are left to the reader. Finally, the
proof of Lemma 1.2.25 and the rest of the proof of Theorem 1.2.5 are unchanged. J

We expand the set of input/player values to include affine linear terms with explicit products:
Let Φ× be defined the smallest subset of Λ× satisfying the following closure properties:

x ∈ Var implies x ∈ Φ×,
If M,N ∈ Φ×, then (MN) ∈ Φ×,
If M ∈ Φ×, then πiM ∈ Φ× for i ∈ {1, 2},
If M,N ∈ Φ×, then 〈M,N〉 ∈ Φ×,
If M ∈ Φ× and x ∈ Var and x occurs free at most once in M , then (λx.M) ∈ Φ×.

Note that if M ∈ Φ× and is closed, then M is affine linear even with (additive) explicit
products. One could define a more general notion of input values based on the notion of
slice (as defined in [11], for example) which includes terms like λx.〈x, x〉 and is strongly
normalizing. However, such a system would require a lazy reduction strategy for explicit
products as well as pointers to avoid an exponential explosion in the size of a term (cf. [12]).
We don’t believe this added complication is necessary here.5

The following two theorems are straightforward generalizations of Theorems 1 and 3, so
the proofs have been omitted.

I Theorem 10. Φ× forms a set of input values such that Φ ⊂ Φ×. Therefore, the reduction
relation →∗Φ×

is confluent by Theorem 9.

I Theorem 11. The λΦ×-calculus is strongly normalizing.

5 However, we do believe this more general set of input values is the starting point for a characterization
of PSPACE (see [12]).

TLCA’15

298 Polynomial Time in the Parametric Lambda Calculus

We extend the simple call-by-value operational semantics introduced in the proof of Theorem
5 with the following rules:

P1 ⇓V P ′1 P2 ⇓V P ′2 (Mi ⇓V Ni)i≤m

〈P1, P2〉M1 · · ·Mm ⇓V 〈P ′1, P ′2〉N1 · · ·Nm
(pair)

Q ⇓V Q′ Q′ ≡ 〈Q′1, Q′2〉 Q′iM1 · · ·Mm ⇓V N

πiQM1 · · ·Mm ⇓V N
(proji)

Q ⇓V Q′ Q′ 6≡ 〈Q′1, Q′2〉 (Mi ⇓V Ni)i≤m

πiQM1 · · ·Mm ⇓V πiQ
′N1 · · ·Nm

(blocki)

Once again, an easy induction on the evaluation tree shows that ifM ⇓V N , thenM →∗Φ×
N ,

where N is in Φ×-normal form, and the length of this reduction sequence is bounded by the
size of the evaluation tree. On the other hand, by Theorem 10, if M →∗Φ×

N , where N is
in Φ×-normal form, then M evaluates to N according to the operational semantics defined
above.

Additive Booleans
Explicit products allow for an alternative definition of booleans and conditional:

Proj1 ≡ λf.π1f Proj2 ≡ λf.π2f if b then M else N ≡ λb.b〈M,N〉

A term M is called eventually true if there exists a sequence of additive booleans
Proji1 , . . . , P rojik

such that MProji1 · · ·Projik
→∗Φ×

True.

I Definition 12. A predicate A ⊆ {0, 1}∗ is representable in the λΦ×-calculus if there is a
context C[.] such that, for all w ∈ {0, 1}∗, w ∈ A iff C[W] is eventually true.

We have the following result:

I Theorem 13. A predicate A ⊆ {0, 1}∗ is representable in the λΦ×-calculus by a context
C[.] iff it is computable in nondeterministic polynomial time (NP).

Proof. (⇒) Suppose a predicate A is representable by a context C[.] in the λΦ×-calculus.
If w ∈ A, then a straightforward generalization of Theorem 5 shows that, for any choice
of projections Proji1 , P roji2 , . . . , P rojik

, the term C[W]Proji1Proji2 · · ·Projik
reduces in

time bounded by a polynomial in s(C[W]Proji1Proji2 · · ·Projik
) to True.6 Moreover, note

that k must be bounded by a polynomial in |w|. Indeed, each projection input requires a
head lambda abstraction. This head lambda abstraction cannot itself be a projection term
because otherwise the normal form would have a (projection) block. And there can only be
a polynomial in |w| such head reductions. Therefore, the entire reduction is polynomial time
in |w| only.

(⇐) Conversely, let A be a predicate computable on a nondeterministic Turing machine
in polynomial time P (n) and polynomial space Q(n) (i.e. the maximum time and space
used by any computational branch). The encoding of nondeterministic Turing machines is
based on the encoding of deterministic Turing machines found in Section 3.1. However, for a
nondeterministic machine, we assume a pair of transition functions Tl and Tr instead of just

6 As noted above, we may assume, by Theorem 10, that this reduction sequence is determined by the
operational semantics.

B. F. Redmond 299

one. The following player term can be iterated P (n) times using the iteration combinator
from Section 3.1:

Branch ≡ λfzb.b〈λxy.x(Tly), λxy.x(Try)〉fz

Let w be any binary word and let n = |w|. Let Initial[W]→∗Φ×
Config initialize the machine

by padding the tape out to size Q(n), writing w on the initial segment of the tape, and
putting it in the start state. Finally, let out be a term that reduces to True if a given
configuration is accepting and reduces to False otherwise.

Let Zk denote the normal form of Branchkout, which has the form:

Zk ≡ λzb.b〈λxy.x(Tly), λxy.x(Try)〉Zk−1z, k > 0
Z0 ≡ out

If w ∈ A, then there exists a sequence of i1, . . . , ik, with ij ∈ {1, 2} and k = P (n), specifying
a path down the nondeterministic evaluation tree to an accepting leaf. This path is encoded
by the series of projections Proji1 , . . . ,Projik

and verified as follows:

IterP,Branch[W]outConfigProji1 · · ·Projik

→∗Φ×
BranchkoutConfigProji1 · · ·Projik

→∗Φ×
(λb.b〈λxy.x(Tly), λxy.x(Try)〉Zk−1Config)Proji1 · · ·Projik

→∗Φ×
Proji1〈λxy.x(Tly), λxy.x(Try)〉Zk−1ConfigProji2 · · ·Projik

→∗Φ×
Zk−1Config1Proji2 · · ·Projik

→∗Φ×
. . .

→∗Φ×
Z1Configk−1Projik

→∗Φ×
outConfigk

→∗Φ×
True

Moreover, this reduction proceeds according to the operational semantics defined above.
Thus, (IterP,Branch[W]outConfig)Proji1 · · ·Projik

⇓V True. On the other hand, if w /∈ A,
then all such reductions reduce to False. J

5 Conclusion

In this paper we have demonstrated that a characterization of polynomial time computations
can be obtained in the lambda calculus without requiring any typing information and/or ad
hoc extensions to the language. Indeed, the characterization is obtained simply by restricting
the set of input values to the so-called pseudo-affine terms. Moreover, a characterization of
nondeterministic polynomial time is obtained with the addition of explicit products.

It would be interesting to investigate other (decidable) instantiations of the parametric
lambda calculus in the context of Implicit Computational Complexity. For example, the
choice to allow weakening in the language was made simply because it made the encoding
of polynomial time TMs much more natural. However, if we change the final clause in the
definition of Φ to specify that x occurs exactly once in P , we conjecture that this smaller set
of input values also characterizes polynomial time. In this case, the encoding of polynomial
bounded TMs might follow that in [11].

Finally, one unfortunate aspect of our characterization is that binary words (and Church
numerals) are not in general input values. For this reason our definitions of representability
use contexts instead, which is not standard. We consider two possibilites for dealing with

TLCA’15

300 Polynomial Time in the Parametric Lambda Calculus

this situation. First, one could use a player encoding of binary strings instead (in the style of
the Barendregt numerals [3, 13]), together with a more natural definition of representability.
However, it is not difficult to show that this leads to a system for linear time computations
only. A second possibility is to use a system of abstract binary numerals (see [8]) instead
of pure terms to represent binary strings. In this case, four new atomic constants, denoted
ε, σ1, σ2 and Z, are added to the system such that ε, σ1 and σ2 belong to the set of input
values, but Z does not. Then any binary string w ∈ {0, 1}∗ can be represented by an input
value ŵ in the obvious way. Furthermore, we add the contextual closure of the following
reduction rule:

Zŵ →Φ w

where w is the Church-style representation of w described in Section 3.7 This arithmetical
extension [8] of the λΦ-calculus leads to an applied system for polynomial time computations,
similar to the pure system presented in this paper. It is an alternative if a standard notion
of representability is desired.

Acknowledgements.
The author would like to thank Simona Ronchi Della Rocca for reading a preliminary draft
of this paper and offering some useful suggestions for improvement. The author would also
like to thank the anonymous referees for their valuable comments and suggestions regarding
the presentation of the results of this paper.

References
1 Beniamino Accattoli and Ugo Dal Lago. Beta reduction is invariant, indeed. In Thomas A.

Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS’14, Vienna, Austria, July
14–18, 2014, page 8. ACM, 2014.

2 Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda-calculus. In 19th IEEE Symposium on Logic in Computer Science (LICS 2004),
14-17 July 2004, Turku, Finland, Proceedings, pages 266–275. IEEE Computer Society,
2004.

3 Hendrik Pieter Barendregt. The lambda calculus: its syntax and semantics. Studies in
logic and the foundations of mathematics. North-Holland, Amsterdam, New-York, Oxford,
1981.

4 J. Chrząszcz and A. Schubert. The role of polymorphism in the characterisation of com-
plexity by soft types. (To appear).

5 Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment system for
lambda-calculus. In Jacques Duparc and Thomas A. Henzinger, editors, Computer Science
Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes
in Computer Science, pages 253–267. Springer, 2007.

6 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithméti-
que d’ordre supérieur. Thèse d’état, Université Paris 7, June 1972.

7 Note that if Z is permitted to be an input value, then w must be as well. Otherwise, the system would
not satisfy reduction closure (i.e. condition 3 in the definition of input values). This leads to (at least)
elementary time complexity.

B. F. Redmond 301

7 Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Number 7 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

8 J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Intro-
duction. Cambridge University Press, New York, NY, USA, 2 edition, 2008.

9 Yves Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1-2):163–180,
2004.

10 Daniel Leivant. Finitely stratified polymorphism. Inf. Comput., 93(1):93–113, 1991.
11 Harry G. Mairson and Kazushige Terui. On the computational complexity of cut-

elimination in linear logic. In Carlo Blundo and Cosimo Laneve, editors, Theoretical Com-
puter Science, 8th Italian Conference, ICTCS 2003, Bertinoro, Italy, October 13-15, 2003,
Proceedings, volume 2841 of Lecture Notes in Computer Science, pages 23–36. Springer,
2003.

12 B. Redmond. Bounded combinatory logic and lower complexity. (To appear).
13 Simona Ronchi Della Rocca and Luca Paolini. The parametric lambda calculus: a meta-

model for computation. Texts in theoretical computer science. Springer-Verlag, New York,
2004.

14 Aleksy Schubert. The complexity of beta-reduction in low orders. In TLCA, pages 400–414,
2001.

15 H. Schwichtenberg. Definierbare Funktionen im λ-Kalkül mit Typen. Arkhiv für mathem-
atische Logik und Grundlagenforschung, 17:113–114, 1976.

16 R. Statman. The typed lambda calculus is not elementary recursive. Theoretical Computer
Science, 9:73–82, 1979.

TLCA’15

	Introduction
	An Instance of the Parametric Lambda Calculus
	The Parametric Lambda Calculus and Polynomial Time
	Polynomial Time Completeness

	Various Extensions
	Phi-valuability
	Explicit Products and Nondeterminism

	Conclusion

