Standardization of a Call-By-Value Lambda-Calculus*

Giulio Guerrieri ${ }^{1}$, Luca Paolini ${ }^{2}$, and Simona Ronchi Della Rocca ${ }^{2}$

1 Laboratoire PPS, UMR 7126, Université Paris Diderot, Sorbonne Paris Cité 75205 Paris, France
giulio.guerrieri@pps.univ-paris-diderot.fr

2 Dipartimento di Informatica, Università degli Studi di Torino Corso Svizzera 185, Torino, Italy
\{paolini,ronchi\}@di.unito.it

Abstract

We study an extension of Plotkin's call-by-value lambda-calculus by means of two commutation rules (sigma-reductions). Recently, it has been proved that this extended calculus provides elegant characterizations of many semantic properties, as for example solvability. We prove a standardization theorem for this calculus by generalizing Takahashi's approach of parallel reductions. The standardization property allows us to prove that our calculus is conservative with respect to the Plotkin's one. In particular, we show that the notion of solvability for this calculus coincides with that for Plotkin's call-by-value lambda-calculus.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of Programming Language, F.4.1 Mathematical Logic

Keywords and phrases standardization, sequentialization, lambda-calculus, sigma-reduction, parallel reduction, call-by-value, head reduction, internal reduction, solvability, potential valuability, observational equivalence

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.211

1 Introduction

The λ_{v}-calculus (λ_{v} for short) has been introduced by Plotkin in [15], in order to give a formal account of the call-by-value evaluation, which is the most commonly used parameter passing policy for programming languages. λ_{v} shares the syntax with the classical, call-by-name, λ-calculus (λ for short), but its reduction rule, β_{v}, is a restriction of β, firing only in case the argument is a value (i.e., a variable or an abstraction). While β_{v} is enough for evaluation, it turned out to be too weak to study operational properties of terms. For example, in λ, the β-reduction is sufficient to characterize solvability and (using extensionality) separability, but, in order to characterize similar properties for λ_{v}, it has been necessary to introduce different notions of reduction unsuitable for a correct call-by-value evaluation (see [13, 14]): this is disappointing and requires complex reasoning. In this paper we study λ_{v}^{σ}, the extension of λ_{v} proposed in [3]. It keeps the λ_{v} (and λ) syntax and it adds to the β_{v}-reduction two commutation rules, called σ_{1} and σ_{3}, which unblock β_{v}-redexes that are hidden by the "hyper-sequential structure" of terms. It is well-known (see $[14,1]$) that in λ_{v} there are normal forms that are unsolvable, e.g. $(\lambda y x . x x)(z z)(\lambda x . x x)$. The more evident benefit of λ_{v}^{σ}

[^0]is that the commutation rules make all normal forms solvable (indeed $(\lambda y x . x x)(z z)(\lambda x . x x)$ is not a λ_{v}^{σ} normal form). More generally, the so obtained language, allows us to characterize operational properties, like solvability and potential valuability, in an internal and elegant way (see [3]). In this paper we prove a standardization property in λ_{v}^{σ}, and some of its consequences, namely its soundness with respect to the semantics of λ_{v}.

Let us recall the notion of standardization, which has been first studied in the ordinary λ-calculus (see, for example [5, 8, 2]). A reduction sequence is standard if its redexes are ordered in a given way, and the corresponding standardization theorem establishes that every reduction sequence can constructively be transformed into a standard one. Standardization is a key tool to grasp the way in which reductions work, that sheds some light on redexes relationships and their dependencies. It is useful for characterization of semantic properties through reduction strategies (the proof of operational semantics adequacy is a typical use).

In the λ_{v} setting standardization theorems have been proved by Plotkin [15], Paolini and Ronchi Della Rocca [14, 12] and Crary [4]. The definition of standard sequence of reductions considered by Plotkin and Crary coincides, and it imposes a partial order on redexes, while Paolini and Ronchi Della Rocca define a total order on them. All these proofs are developed by using the notion of parallel reduction introduced by Tait and Martin-Löf (see Takahashi [17] for details and interesting technical improvements). We emphasize that this method does not involve the notion of residual of a redex, on which many classical proofs for the λ-calculus are based (see for example [8, 2]). As in [15, 17, 14, 4], we use a suitable notion of parallel reduction for developing our standardization theorem for λ_{v}^{σ}. In particular we consider two groups of redexes, head β_{v}-redexes and head σ-redexes (putting together σ_{1} and σ_{3}), and we induce a total order on head redexes of the two groups, without imposing any order on head σ-redexes themselves. More precisely, when σ-redexes are missing, this notion of standardization coincides with that presented in [14]. Moreover, we show that it is not possible to strengthen our standardization by (locally) ordering σ_{1}-reduction to σ_{3}-reduction (or viceversa).

As usual, our standardization proof is based on a sequentialization result: inner reductions can always be postponed after the head ones, for a non-standard definition of head reduction. Sequentialization has interesting consequences: it allows us to prove that fundamental operational properties in λ_{v}^{σ}, like observational equivalence, potential valuability and solvability, are conservative with respect to the corresponding notions of λ_{v}. This fully justifies the project in [3] where λ_{v}^{σ} has been introduced as a tool for studying the operational behaviour of λ_{v}.

Other variants of λ_{v} have been introduced in the literature for modeling the call-by-value computation. We would like to cite here at least the contributions of Moggi [10], Felleisen and Sabry [16], Maraist et al. [9], Herbelin and Zimmerman [7], Accattoli and Paolini [1]. All these proposals are based on the introduction of new constructs to the syntax of λ_{v}, so the comparison between them is not easy with respect to syntactical properties (some detailed comparison is given in [1]). We point out that the calculi introduced in [10, 16, 9, 7] present some variants of our σ_{1} and/or σ_{3} rules, often in a setting with explicit substitutions.

Outline. In Section 2 we introduce the language λ_{v}^{σ} and its operational behaviour; in Section 3 the sequentialization property is proved; Section 4 contains the main result, i.e., standardization ; in Section 5 some conservativity results with respect to Plotkin's λ_{v}-calculus are proved. Section 6 concludes the paper, with some hints for future work.

2 The call-by-value lambda calculus with sigma-rules

In this section we present λ_{v}^{σ}, a call-by-value λ-calculus introduced in [3] that adds two σ-reduction rules to pure (i.e. without constants) call-by-value λ-calculus defined by Plotkin in [15].

The syntax of terms of λ_{v}^{σ} [3] is the same as the one of ordinary λ-calculus and Plotkin's call-by-value λ-calculus λ_{v} [15] (without constants). Given a countable set \mathcal{V} of variables (denoted by x, y, z, \ldots), the sets Λ of terms and Λ_{v} of values are defined by mutual induction:

$$
\begin{array}{rlr}
V, U::=x \mid \lambda x . M & \text { values } \\
M, N, L::=V \mid M N & \text { terms }
\end{array}
$$

Clearly, $\Lambda_{v} \subseteq \Lambda$. All terms are considered up to α-conversion. The set of free variables of a term M is denoted by $\mathrm{fv}(M)$. Given $V_{1}, \ldots, V_{n} \in \Lambda_{v}$ and pairwise distinct variables x_{1}, \ldots, x_{n}, $M\left\{V_{1} / x_{1}, \ldots, V_{n} / x_{n}\right\}$ denotes the term obtained by the capture-avoiding simultaneous substitution of V_{i} for each free occurrence of x_{i} in the term M (for all $1 \leq i \leq n$). Note that, for all $V, V_{1}, \ldots, V_{n} \in \Lambda_{v}$ and pairwise distinct variables $x_{1}, \ldots, x_{n}, V\left\{V_{1} / x_{1}, \ldots, V_{n} / x_{n}\right\} \in \Lambda_{v}$.

Contexts (with exactly one hole (\cdot)), denoted by C, are defined as usual via the grammar:

$$
\mathrm{C}::=(\cdot)|\lambda x . \mathrm{C}| \mathrm{C} M \mid M \mathrm{C}
$$

We use $\mathrm{C}(M)$ for the term obtained by the capture-allowing substitution of the term M for the hole (\cdot) in the context C .

- Notation. From now on, we set $I=\lambda x . x$ and $\Delta=\lambda x . x x$.

The reduction rules of λ_{v}^{σ} consist of Plotkin's β_{v}-reduction rule, introduced in [15], and two simple commutation rules called σ_{1} and σ_{3}, studied in [3].

- Definition 1 (Reduction rules). We define the following binary relations on Λ (for any $M, N, L \in \Lambda$ and any $V \in \Lambda_{v}$):

$$
\begin{aligned}
(\lambda x . M) V & \mapsto_{\beta_{v}} M\{V / x\} \\
(\lambda x . M) N L & \mapsto_{\sigma_{1}}(\lambda x . M L) N \quad \text { with } x \notin \mathrm{fv}(L) \\
V((\lambda x . L) N) & \mapsto_{\sigma_{3}}(\lambda x . V L) N \quad \text { with } x \notin \mathrm{fv}(V) .
\end{aligned}
$$

For any $\mathrm{r} \in\left\{\beta_{v}, \sigma_{1}, \sigma_{3}\right\}$, if $M \mapsto_{\mathrm{r}} M^{\prime}$ then M is a r -redex and M^{\prime} is its r -contractum. In this sense, a term of the shape $(\lambda x . M) N$ (for any $M, N \in \Lambda$) is a β-redex.

We set $\mapsto_{\sigma}=\mapsto_{\sigma_{1}} \cup \mapsto_{\sigma_{3}}$ and $\mapsto_{v}=\mapsto_{\beta_{v}} \cup \mapsto_{\sigma}$.
The side conditions on $\mapsto_{\sigma_{1}}$ and $\mapsto_{\sigma_{3}}$ in Definition 1 can be always fulfilled by α-renaming.
Obviously, any β_{v}-redex is a β-redex but the converse does not hold: $(\lambda x . z)(y I)$ is a β-redex but not a β_{v}-redex. Redexes of different kind may overlap: for example, the term $\Delta I \Delta$ is a σ_{1}-redex and it contains the β_{v}-redex ΔI; the term $\Delta(I \Delta)(x I)$ is a σ_{1}-redex and it contains the σ_{3}-redex $\Delta(I \Delta)$, which contains in turn the β_{v}-redex $I \Delta$.

According to the Girard's call-by-value "boring" translation $(\cdot)^{v}$ of terms into Intuitionistic Multiplicative Exponential Linear Logic proof-nets, defined by $(A \Rightarrow B)^{v}=!A^{v} \multimap!B^{v}$ (see $[6])$, the images under $(\cdot)^{v}$ of a σ_{1}-redex (resp. σ_{3}-redex) and its contractum are equal modulo some "bureaucratic" steps of cut-elimination.

- Notation. Let R be a binary relation on Λ. We denote by R^{*} (resp. $\mathrm{R}^{+} ; \mathrm{R}^{=}$) the reflexive-transitive (resp. transitive; reflexive) closure of R .
- Definition 2 (Reductions). Let $\mathrm{r} \in\left\{\beta_{v}, \sigma_{1}, \sigma_{3}, \sigma, \mathrm{v}\right\}$.

The r -reduction \rightarrow_{r} is the contextual closure of \mapsto_{r}, i.e. $M \rightarrow_{r} M^{\prime}$ iff there is a context C and $N, N^{\prime} \in \Lambda$ such that $M=\mathrm{C}(N), M^{\prime}=\mathrm{C}\left(N^{\prime}\right)$ and $N \mapsto_{\mathrm{r}} N^{\prime}$.

The r-equivalence $={ }_{r}$ is the reflexive-transitive and symmetric closure of \rightarrow_{r}.
Let M be a term: M is r-normal if there is no term N such that $M \rightarrow_{r} N ; M$ is r -normalizable if there is a r -normal term N such that $M \rightarrow_{r}^{*} N ; M$ is strongly r -normalizing if there is no sequence $\left(N_{i}\right)_{i \in \mathbb{N}}$ such that $M=N_{0}$ and $N_{i} \rightarrow_{\mathrm{r}} N_{i+1}$ for any $i \in \mathbb{N}$. Finally, \rightarrow_{r} is strongly normalizing if every $N \in \Lambda$ is strongly r-normalizing.

Patently, $\rightarrow_{\sigma} \subsetneq \rightarrow_{\mathrm{v}}$ and $\rightarrow_{\beta_{v}} \subsetneq \rightarrow_{\mathrm{v}}$.

- Remark 3. For any $\mathrm{r} \in\left\{\beta_{v}, \sigma_{1}, \sigma_{3}, \sigma, \mathrm{v}\right\}$ (resp. $\mathrm{r} \in\left\{\sigma_{1}, \sigma_{3}, \sigma\right\}$), values are closed under r reduction (resp. r-expansion): for any $V \in \Lambda_{v}$, if $V \rightarrow_{r} M$ (resp. $M \rightarrow_{r} V$) then $M \in \Lambda_{v}$; more precisely, $V=\lambda x \cdot N$ and $M=\lambda x \cdot N^{\prime}$ for some $N, N^{\prime} \in \Lambda$ with $N \rightarrow_{r} N^{\prime}\left(\right.$ resp. $\left.N^{\prime} \rightarrow_{r} N\right)$.
- Proposition 4 (See [3]). The σ-reduction is confluent and strongly normalizing. The v -reduction is confluent.

The λ_{v}^{σ}-calculus, λ_{v}^{σ} for short, is the set Λ of terms endowed with the v-reduction \rightarrow_{v}. The set Λ endowed with the β_{v}-reduction $\rightarrow_{\beta_{v}}$ is the λ_{v}-calculus (λ_{v} for short), i.e. the Plotkin's call-by-value λ-calculus [15] (without constants), which is thus a sub-calculus of λ_{v}^{σ}.

- Example 5. $M=(\lambda y . \Delta)(x I) \Delta \rightarrow_{\sigma_{1}}(\lambda y . \Delta \Delta)(x I) \rightarrow_{\beta_{v}}(\lambda y . \Delta \Delta)(x I) \rightarrow_{\beta_{v}} \ldots$ and $N=$ $\Delta((\lambda y . \Delta)(x I)) \rightarrow_{\sigma_{3}}(\lambda y . \Delta \Delta)(x I) \rightarrow_{\beta_{v}}(\lambda y . \Delta \Delta)(x I) \rightarrow_{\beta_{v}} \ldots$ are the only possible v-reduction paths from M and N respectively: M and N are not v-normalizable, and $M={ }_{v} N$. Meanwhile, M and N are β_{v}-normal and different, hence $M \not \mathcal{\beta}_{\beta_{v}} N$ (by confluence of $\rightarrow_{\beta_{v}}$, see [15]).

Informally, σ-rules unblock β_{v}-redexes which are hidden by the "hyper-sequential structure" of terms. This approach is alternative to the one in [1] where hidden β_{v}-redexes are reduced using rules acting at a distance (through explicit substitutions). It can be shown that the call-by-value λ-calculus with explicit substitution introduced in [1] can be embedded in λ_{v}^{σ}.

3 Sequentialization

In this section we aim to prove a sequentialization theorem (Theorem 22) for the λ_{v}^{σ}-calculus by adapting Takahashi's method [17, 4] based on parallel reductions.

- Notation. From now on, we always assume that $V, V^{\prime} \in \Lambda_{v}$.

Note that the generic form of a term is $V M_{1} \ldots M_{m}$ for some $m \in \mathbb{N}$ (in particular, values are obtained when $m=0$). The sequentialization result is based on a partitioning of v -reduction between head and internal reduction.

- Definition 6 (Head β_{v}-reduction). We define inductively the head β_{v}-reduction $\xrightarrow{h} \beta_{v}$ by the following rules ($m \in \mathbb{N}$ in both rules):

$$
\begin{aligned}
& \overline{(\lambda x . M) V M_{1} \ldots M_{m} \xrightarrow{h}{ }_{\beta v} M\{V / x\} M_{1} \ldots M_{m}} \beta_{v} \\
& \frac{N{\xrightarrow[\rightarrow]{\beta_{v}}}^{h^{\prime}}}{V N M_{1} \ldots M_{m} \xrightarrow{h}_{\beta_{v}} V N^{\prime} M_{1} \ldots M_{m}} \text { right }
\end{aligned}
$$

The head β_{v}-reduction $\xrightarrow{h} \beta_{v}$ reduces exactly the same redexes (see also [13]) as the "left reduction" defined in [15, p. 136] for λ_{v} and called "evaluation" in [16, 4]. If $N \xrightarrow{h} \beta_{v} N^{\prime}$ then N^{\prime} is obtained from N by reducing the leftmost-outermost β_{v}-redex, not in the scope of a λ : thus, the head β_{v}-reduction is deterministic (i.e., it is a partial function from Λ to Λ) and does not reduce values.

- Definition 7 (Head σ-reduction). We define inductively the head σ-reduction ${ }_{\rightarrow}^{h}{ }_{\sigma}$ by the following rules ($m \in \mathbb{N}$ in all the rules, $x \notin \mathrm{fv}(L)$ in the rule $\sigma_{1}, x \notin \mathrm{fv}(V)$ in the rule σ_{3}):

$$
\begin{gathered}
{\overline{(\lambda x . M) N L M_{1} \ldots M_{m}} \stackrel{h}{h}_{\sigma}(\lambda x . M L) N M_{1} \ldots M_{m}}_{\sigma_{1}}^{\sigma_{1}} \frac{N \xrightarrow[h]{h}_{\sigma} N^{\prime}}{V N M_{1} \ldots M_{m} \xrightarrow[h]{h}_{\sigma} V N^{\prime} M_{1} \ldots M_{m}} \text { right } \\
\frac{V((\lambda x . L) N) M_{1} \ldots M_{m} \xrightarrow[\rightarrow]{h}^{h}(\lambda x . V L) N M_{1} \ldots M_{m}}{\sigma_{3}}
\end{gathered}
$$

The head ($\mathrm{v}-$) reduction is $\xrightarrow{h}_{\mathrm{v}}=\xrightarrow{h}_{\beta_{v}} \cup \xrightarrow{h}_{\sigma}$. The internal (v -) reduction is $\xrightarrow{\text { int }}{ }_{\mathrm{v}}=\rightarrow_{\mathrm{v}} \backslash \xrightarrow{h}$.
Notice that $\mapsto_{\beta_{v}} \subsetneq \xrightarrow{h}_{\beta_{v}} \subsetneq \rightarrow_{\beta_{v}}$ and $\mapsto_{\sigma} \subsetneq{ }_{\rightarrow}^{h} \sigma \subsetneq \rightarrow_{\sigma}$ and $\mapsto_{\mathrm{v}} \subsetneq \xrightarrow{h}_{\mathrm{v}} \subsetneq_{\rightarrow} \rightarrow_{\mathrm{v}}$. Values are normal forms for the head reduction, but the converse does not hold: $x I \notin \Lambda_{v}$ is head-normal.

Informally, if $N \xrightarrow{h}{ }_{\sigma} N^{\prime}$ then N^{\prime} is obtained from N by reducing "one of the leftmost" σ_{1} - or σ_{3}-redexes, not in the scope of a λ : in general, a term may contain several head $\sigma_{1^{-}}$and σ_{3}-redexes. Indeed, differently from ${ }^{h}{ }_{\beta_{v}}$, the head σ-reduction $\xrightarrow{h}{ }_{\sigma}$ is not deterministic, for example the leftmost-outermost σ_{1} - and σ_{3}-redexes may overlap: if $M=\left(\lambda y \cdot y^{\prime}\right)(\Delta(x I)) I$ then $M \xrightarrow{h} \sigma\left(\lambda y \cdot y^{\prime} I\right)(\Delta(x I))=N_{1}$ by applying the rule σ_{1} and $M \xrightarrow{h}{ }_{\sigma}\left(\lambda z \cdot\left(\lambda y \cdot y^{\prime}\right)(z z)\right)(x I) I=N_{2}$ by applying the rule σ_{3}. Note that N_{1} contains only a head σ_{3}-redex and $N_{1} \xrightarrow{h}_{\sigma}\left(\lambda z .\left(\lambda y . y^{\prime} I\right)(z z)\right)(x I)=N$ which is normal for ${ }_{\rightarrow}^{h}$; meanwhile N_{2} contains only a head σ_{1}-redex and $N_{2} \xrightarrow{h}_{\sigma}\left(\lambda z .\left(\lambda y \cdot y^{\prime}\right)(z z) I\right)(x I)=N^{\prime}$ which is normal for $h_{\mathrm{v}}^{h}: N \neq N^{\prime}$, hence the head reduction $\xrightarrow[\rightarrow]{h}^{h}$ is not confluent and a term may have several head-normal forms (this example does not contradict the confluence of σ-reduction because $N^{\prime} \rightarrow_{\sigma} N$ but by performing an internal reduction step). Later, in Corollary 26.2 we show that if a term M has a head normal form $N \in \Lambda_{v}$ then N is the unique head normal form of M.

- Definition 8 (Parallel reduction). We define inductively the parallel reduction \Rightarrow by the following rules ($x \notin \mathrm{fv}(L)$ in the rule $\sigma_{1}, x \notin \mathrm{fv}(V)$ in the rule σ_{3}):

$$
\begin{aligned}
& \frac{V \Rightarrow V^{\prime} \quad M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 0 \leq i \leq m)}{\left(\lambda x . M_{0}\right) V M_{1} \ldots M_{m} \Rightarrow M_{0}^{\prime}\left\{V^{\prime} / x\right\} M_{1}^{\prime} \ldots M_{m}^{\prime}} \beta_{v} \quad \frac{N \Rightarrow N^{\prime} \quad L \Rightarrow L^{\prime} \quad M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 0 \leq i \leq m)}{\left(\lambda x . M_{0}\right) N L M_{1} \ldots M_{m} \Rightarrow\left(\lambda x . M_{0}^{\prime} L^{\prime}\right) N^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}} \sigma_{1} \\
& \frac{V \Rightarrow V^{\prime} \quad N \Rightarrow N^{\prime} \quad L \Rightarrow L^{\prime} \quad M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 1 \leq i \leq m)}{V((\lambda x . L) N) M_{1} \ldots M_{m} \Rightarrow\left(\lambda x . V^{\prime} L^{\prime}\right) N^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}} \sigma_{3} \\
& \frac{M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 0 \leq i \leq m)}{\left(\lambda x . M_{0}\right) M_{1} \ldots M_{m} \Rightarrow\left(\lambda x . M_{0}^{\prime}\right) M_{1}^{\prime} \ldots M_{m}^{\prime}} \lambda \quad \frac{M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 1 \leq i \leq m)}{x M_{1} \ldots M_{m} \Rightarrow x M_{1}^{\prime} \ldots M_{m}^{\prime}} \text { var }
\end{aligned}
$$

In Definition 8 the rule var has no premises when $m=0$: this is the base case of the inductive definition of \Rightarrow. The rules σ_{1} and σ_{3} have exactly three premises when $m=0$.

Intuitively, $M \Rightarrow M^{\prime}$ means that M^{\prime} is obtained from M by reducing a number of $\beta_{v^{-}}$, σ_{1} - and σ_{3}-redexes (existing in M) simultaneously.

- Definition 9 (Internal and strong parallel reduction). We define inductively the internal parallel reduction $\stackrel{\text { int }}{\Rightarrow}$ by the following rules:

$$
\frac{N \Rightarrow N^{\prime}}{\lambda x . N \stackrel{\text { int }}{\Rightarrow} \lambda x . N^{\prime}} \lambda \quad \overline{x \stackrel{\text { int }}{\Rightarrow} x} \text { var } \quad \frac{V \Rightarrow V^{\prime} \quad N \stackrel{\text { int }}{\Rightarrow} N^{\prime} \quad M_{i} \Rightarrow M_{i}^{\prime} \quad(m \in \mathbb{N}, 1 \leq i \leq m)}{V N M_{1} \ldots M_{m} \stackrel{\text { int }}{\Rightarrow} V^{\prime} N^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}} \text { right }
$$

The strong parallel reduction \Rightarrow is defined by: $M \Rightarrow N$ iff $M \Rightarrow N$ and there exist $M^{\prime}, M^{\prime \prime} \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta}{ }_{v} M^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} M^{\prime \prime} \xrightarrow{i n t} N$.

Notice that the rule right for $\stackrel{\text { int }}{\Rightarrow}$ has exactly two premises when $m=0$.

- Remark 10. The relations \Rightarrow, \Rightarrow and $\stackrel{\text { int }}{\Rightarrow}$ are reflexive. The reflexivity of \Rightarrow follows immediately from the reflexivity of \Rightarrow and $\stackrel{\text { int }}{\Rightarrow}$. The proofs of reflexivity of \Rightarrow and $\stackrel{\text { int }}{\Rightarrow}$ are both by structural induction on a term: in the case of \Rightarrow, recall that every term is of the form $(\lambda x . N) M_{1} \ldots M_{m}$ or $x M_{1} \ldots M_{m}$ for some $m \in \mathbb{N}$ and then apply the rule λ or var respectively, together with the inductive hypothesis; in the case of $\stackrel{\text { int }}{\Rightarrow}$, recall that every term is of the form $\lambda x . M$ or x or $V N M_{1} \ldots M_{m}$ for some $m \in \mathbb{N}$ and then apply the rule λ (together with the reflexivity of \Rightarrow) or var or right (together with the reflexivity of \Rightarrow and the inductive hypothesis) respectively.

One has $\stackrel{\text { int }}{\Rightarrow} \subsetneq \Rightarrow \subseteq \Rightarrow$ (first, prove that $\stackrel{\text { int }}{\Rightarrow} \subseteq \Rightarrow$ by induction on the derivation of $M \stackrel{\text { int }}{\Rightarrow} M^{\prime}$, the other inclusions follow from the definition of \Rightarrow) and, since \Rightarrow is reflexive (Remark 10), $\xrightarrow{h}_{\beta_{v}} \subsetneq \Rightarrow$ and $\xrightarrow{h} \sigma \subsetneq \Rightarrow$. Observe that $\Delta \Delta \mathrm{R} \Delta \Delta$ for any $\mathrm{R} \in\left\{\mapsto_{\beta_{v}}, \xrightarrow{h} \beta_{v}, \Rightarrow \stackrel{i n}{\Rightarrow}, \Rightarrow\right\}$, even if for different reasons: for example, $\Delta \Delta \stackrel{\text { int }}{\Rightarrow} \Delta \Delta$ by reflexivity of $\stackrel{i n t}{\Rightarrow}$ (Remark 10), whereas $\Delta \Delta \xrightarrow{h} \beta_{v} \Delta \Delta$ by reducing the (leftmost-outermost) β_{v}-redex.

Next two further remarks collect many minor properties that can be easily proved.

- Remark 11. 1. The head β_{v}-reduction $\xrightarrow{h} \beta_{v}$ does not reduce a value (in particular, does not reduce under λ 's), i.e., for any $M \in \Lambda$ and any $V \in \Lambda_{v}$, one has $V \not$ 多 $_{\beta_{v}} M$.

2. The head σ-reduction $\xrightarrow{h} \sigma$ does neither reduce a value nor reduce to a value, i.e., for any $M \in \Lambda$ and any $V \in \Lambda_{v}$, one has $V \overbrace{\boldsymbol{\not}}^{\boldsymbol{\prime}}{ }_{\sigma} M$ and $M \nRightarrow_{\sigma} V$.
3. Variables and abstractions are preserved under $\stackrel{i n t}{\Leftarrow}(\stackrel{\text { int }}{\Rightarrow}$-expansion), i.e., if $M \stackrel{\text { int }}{\Rightarrow} x$ (resp. $M \stackrel{\text { int }}{\Rightarrow} \lambda x . N^{\prime}$) then $M=x$ (resp. $M=\lambda x . N$ for some $N \in \Lambda$ such that $N \Rightarrow N^{\prime}$).
4. If $M \Rightarrow M^{\prime}$ then $\lambda x \cdot M \mathrm{R} \lambda x \cdot M^{\prime}$ for any $\mathrm{R} \in\{\Rightarrow, \stackrel{\text { int }}{\Rightarrow}, \Rightarrow\}$. Indeed, for $\mathrm{R} \in\{\Rightarrow, \stackrel{\text { int }}{\Rightarrow}\}$ apply the rule λ to conclude, then $\lambda x \cdot M \Rightarrow \lambda x \cdot M^{\prime}$ according to the definition of \Rightarrow.
5. For any $V, V^{\prime} \in \Lambda_{v}, V \stackrel{\text { int }}{\Rightarrow} V^{\prime}$ iff $V \Rightarrow V^{\prime}$. The left-to-right direction holds because $\xlongequal{\text { int }} \subseteq \Rightarrow$; conversely, assume $V \Rightarrow V^{\prime}$: if V is a variable then necessarily $V=V^{\prime}$ and hence $V \stackrel{\text { int }}{\Rightarrow} V^{\prime}$ by applying the rule var for $\stackrel{\text { int }}{\Rightarrow}$; otherwise $V=\lambda x \cdot N$ for some $N \in \Lambda$, and then necessarily $V^{\prime}=\lambda x . N^{\prime}$ with $N \Rightarrow N^{\prime}$, so $V \stackrel{\text { int }}{\Rightarrow} V^{\prime}$ by applying the rule λ for $\stackrel{\text { int }}{\Rightarrow}$.

- Remark 12. 1. If $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$ then $M N \Rightarrow M^{\prime} N^{\prime}$. For the proof, it is sufficient to consider the last rule of the derivation of $M \Rightarrow M^{\prime}$.

2. If $\mathrm{R} \in\left\{\xrightarrow{h}_{\beta_{v}}, \xrightarrow{h}_{\sigma}\right\}$ and $M \mathrm{R} M^{\prime}$, then $M N \mathrm{R} M^{\prime} N$ for any $N \in \Lambda$. For the proof, it is sufficient to consider the last rule of the derivation of $M \mathrm{R} M^{\prime}$, for any $\mathrm{R} \in\left\{\xrightarrow{h}_{\beta_{v}} \xrightarrow{h}{ }_{\sigma}\right\}$.
3. If $M \stackrel{\text { int }}{\Rightarrow} M^{\prime}$ and $N \Rightarrow N^{\prime}$ where $M^{\prime} \notin \Lambda_{v}$, then $M N \stackrel{\text { int }}{\Rightarrow} M^{\prime} N^{\prime}$: indeed, the last rule in the derivation of $M \stackrel{\text { int }}{\Rightarrow} M^{\prime}$ can be neither λ nor var because $M^{\prime} \notin \Lambda_{v}$. The hypothesis $M^{\prime} \notin \Lambda_{v}$ is crucial: for example, $x \stackrel{i n t}{\Rightarrow} x$ and $I \Delta \Rightarrow \Delta$ but $I \Delta \stackrel{i n t}{\Rightarrow} \Delta$ and thus $x(I \Delta) \stackrel{\text { int }}{\nRightarrow} x \Delta$.
4. $\rightarrow_{\mathrm{v}} \subseteq \Rightarrow \subseteq \rightarrow_{\mathrm{v}}^{*}$. As a consequence, $\Rightarrow^{*}=\rightarrow_{v}^{*}$ and (by Proposition 4) \Rightarrow is confluent.
5. $\xrightarrow{\text { int }} \stackrel{\text { v }}{\text { int }} \subseteq \xrightarrow{\text { int }}{ }_{\mathrm{v}}^{\text {in }}$, so $\xrightarrow{\text { int } *}=\xrightarrow{\text { int } *}$. Thus, by Remark 11.3, variables and abstractions are preserved under $\xrightarrow{\text { int }}{ }_{v}$-expansion, i.e., if $M \xrightarrow{\text { int }}{ }_{v} x\left(\right.$ resp. $\left.M \xrightarrow{\text { int } *} \lambda x . N^{\prime}\right)$ then $M=x$ (resp. $M=\lambda x . N$ with $\left.N \rightarrow_{v}^{*} N^{\prime}\right)$.
6. For any $\mathrm{R} \in\left\{\xrightarrow{h}_{\beta_{v}}, \xrightarrow{h} \sigma\right\}$, if $M \mathrm{R} M^{\prime}$ then $M\{V / x\} \mathrm{R} M^{\prime}\{V / x\}$ for any $V \in \Lambda_{v}$. The proof is by straightforward induction on the derivation of $M \mathrm{R} M^{\prime}$ for any $\mathrm{R} \in\left\{\xrightarrow{h}_{\beta_{v}}, \xrightarrow{h} \sigma\right\}$.

As expected, a basic property of parallel reduction \Rightarrow is the following:

- Lemma 13 (Substitution lemma for \Rightarrow). If $M \Rightarrow M^{\prime}$ and $V \Rightarrow V^{\prime}$ then $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$.

Proof. By straightforward induction on the derivation of $M \Rightarrow M^{\prime}$.
The following lemma will play a crucial role in the proof of Lemmas 18-19 and shows that the head σ-reduction $\xrightarrow{h} \sigma$ can be postponed after the head β_{v}-reduction $\xrightarrow{h} \beta_{v}$.

Lemma 14 (Commutation of head reductions).

1. If $M \xrightarrow{h}{ }_{\sigma} L \xrightarrow{h} \beta_{\beta_{v}} N$ then there exists $L^{\prime} \in \Lambda$ such that $M \xrightarrow{h} \beta_{v} L^{\prime} \xrightarrow{h}{ }_{\sigma} N$.
2. If $M \xrightarrow{h}{ }_{\sigma}^{*} L \xrightarrow{h}{ }_{\beta_{v}}^{*} N$ then there exists $L^{\prime} \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} N$.
3. If $M \xrightarrow{h}{ }_{v}^{*} M^{\prime}$ then there exists $N \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} N \xrightarrow{h_{\sigma}^{*}} M^{\prime}$.

Proof. 1. By induction on the derivation of $M \xrightarrow{h}{ }_{\sigma} L$. Let us consider its last rule r.
If $\mathrm{r}=\sigma_{1}$ then $M=\left(\lambda x . M_{0}\right) N_{0} L_{0} M_{1} \ldots M_{m}$ and $L=\left(\lambda x . M_{0} L_{0}\right) N_{0} M_{1} \ldots M_{m}$ where $m \in \mathbb{N}$ and $x \notin \mathrm{fv}\left(L_{0}\right)$. Since $L \xrightarrow{h} \beta_{v} N$, there are only two cases:
= either $N_{0} \xrightarrow{h} \beta_{v} N_{0}^{\prime}$ and $N=\left(\lambda x . M_{0} L_{0}\right) N_{0}^{\prime} M_{1} \ldots M_{m}$ (according to the rule right for $\left.\xrightarrow{h}_{\beta_{v}}\right)$, then $M \xrightarrow{h} \beta_{v}\left(\lambda x . M_{0}\right) N_{0}^{\prime} L_{0} M_{1} \ldots M_{m} \xrightarrow{h} \sigma$;
$=$ or $N_{0} \in \Lambda_{v}$ and $N=M_{0}\left\{N_{0} / x\right\} L_{0} M_{1} \ldots M_{m}$ (by the rule β_{v}, as $x \notin \mathrm{fv}\left(L_{0}\right)$), so $M \xrightarrow{h} \beta_{v} N$.
If $\mathbf{r}=\sigma_{3}$ then $M=V\left(\left(\lambda x . L_{0}\right) N_{0}\right) M_{1} \ldots M_{m}$ and $L=\left(\lambda x . V L_{0}\right) N_{0} M_{1} \ldots M_{m}$ with $m \in \mathbb{N}$ and $x \notin \mathrm{fv}(V)$. Since $L \xrightarrow{h}_{\beta_{v}} N$, there are only two cases:

- either $N_{0} \xrightarrow{h}_{\beta_{v}} N_{0}^{\prime}$ and $N=\left(\lambda x . V L_{0}\right) N_{0}^{\prime} M_{1} \ldots M_{m}$ (according to the rule right for $\left.\xrightarrow{h}_{\beta_{v}}\right)$, then $M \xrightarrow{h} \beta_{v} V\left(\left(\lambda x . L_{0}\right) N_{0}^{\prime}\right) M_{1} \ldots M_{m}{ }_{\rightarrow}^{h} N$;
= or $N_{0} \in \Lambda_{v}$ and $N=V L_{0}\left\{N_{0} / x\right\} M_{1} \ldots M_{m}$ (by the rule β_{v}, as $x \notin \mathrm{fv}(V)$), so $M \xrightarrow{h} \beta_{v} N$. Finally, if $\mathrm{r}=$ right then $M=V N_{0} M_{1} \ldots M_{m}$ and $L=V N_{0}^{\prime} M_{1} \ldots M_{m}$ with $m \in \mathbb{N}$ and $N_{0} \xrightarrow{h}_{\sigma} N_{0}^{\prime}$. By Remark 11.2, $N_{0}^{\prime} \notin \Lambda_{v}$ and thus, since $L \xrightarrow{h} \beta_{v} N$, the only possibility is that $N_{0}^{\prime} \xrightarrow{h}_{\beta_{v}} N_{0}^{\prime \prime}$ and $N=V N_{0}^{\prime \prime} M_{1} \ldots M_{m}$ (according to the rule right for ${ }^{h}{ }_{\beta_{v}}$). By induction hypothesis, there exists $N_{0}^{\prime \prime \prime} \in \Lambda$ such that $N_{0} \xrightarrow{h} \beta_{v} N_{0}^{\prime \prime \prime} \xrightarrow[\rightarrow]{h}_{\sigma} N_{0}^{\prime \prime}$. Therefore, $M \xrightarrow{h} \beta_{v} V N_{0}^{\prime \prime \prime} M_{1} \ldots M_{m} \xrightarrow{h}=$

2. Immediate consequence of Lemma 14.1, using standard techniques of rewriting theory.
3. Immediate consequence of Lemma 14.2, using standard techniques of rewriting theory.

We are now able to travel over again Takahashi's method [17, 4] in our setting with $\beta_{v^{-}}$ and σ-reduction. The next four lemmas govern the strong parallel reduction and will be used to prove Lemma 19.

- Lemma 15. If $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$ and $M^{\prime} \notin \Lambda_{v}$, then $M N \Rightarrow M^{\prime} N^{\prime}$.

Proof. One has $M N \Rightarrow M^{\prime} N^{\prime}$ by Remark 12.1 and since $M \Rightarrow M^{\prime}$. By hypothesis, there exist $m, n \in \mathbb{N}$ and $M_{0}, \ldots, M_{m}, N_{0}, \ldots, N_{n}$ such that $M=M_{0}, M_{m}=N_{0}, N_{n} \stackrel{\text { int }}{\Rightarrow} M^{\prime}$, $M_{i} \xrightarrow{h} \beta_{v} M_{i+1}$ for any $0 \leq i<m$ and $N_{j} \xrightarrow{h}{ }_{\sigma} N_{j+1}$ for any $0 \leq j<n$; by Remark 12.2, $M_{i} N \xrightarrow{h} \beta_{v} M_{i+1} N$ for any $0 \leq i<m$ and $N_{j} N \xrightarrow{h}{ }_{\sigma} N_{j+1} N$ for any $0 \leq j<n$. As $M^{\prime} \notin \Lambda_{v}$, one has $N_{n} N \stackrel{\text { int }}{\Rightarrow} M^{\prime} N^{\prime}$ by Remark 12.3. Therefore, $M N \Rightarrow M^{\prime} N^{\prime}$.

- Lemma 16. If $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$ then $M N \Rightarrow M^{\prime} N^{\prime}$.

Proof. If $M^{\prime} \notin \Lambda_{v}$ then $M N \Rightarrow M^{\prime} N^{\prime}$ by Lemma 15 and since $N \Rightarrow N^{\prime}$.
Assume $M^{\prime} \in \Lambda_{v}: M N \Rightarrow M^{\prime} N^{\prime}$ by Remark 12.1 , as $M \Rightarrow M^{\prime}$ and $N \Rightarrow N^{\prime}$. By hypothesis, there are $m, m^{\prime}, n, n^{\prime} \in \mathbb{N}$ and $M_{0}, \ldots, M_{m}, M_{0}^{\prime}, \ldots, M_{m^{\prime}}^{\prime}, N_{0}, \ldots, N_{n}, N_{0}^{\prime}, \ldots, N_{n^{\prime}}^{\prime}$ such that: - $M=M_{0}, M_{m}=M_{0}^{\prime}, M_{m^{\prime}}^{\prime} \xrightarrow{\text { int }} M^{\prime}, M_{i} \xrightarrow{h} \beta_{v} M_{i+1}$ for any $0 \leq i<m$, and $M_{i^{\prime}}^{\prime} \xrightarrow{h}{ }_{\sigma} M_{i^{\prime}+1}^{\prime}$ for any $0 \leq i^{\prime}<m^{\prime}$,

- $N=N_{0}, N_{n}=N_{0}^{\prime}, N_{n^{\prime}}^{\prime} \xrightarrow{\text { int }} N^{\prime}, N_{j} \xrightarrow{h}_{\beta_{v}} N_{j+1}$ for any $0 \leq j<n$ and $N_{j^{\prime}}^{\prime} \xrightarrow{h}{ }_{\sigma} N_{j^{\prime}+1}^{\prime}$ for any $0 \leq j^{\prime}<n^{\prime}$.
By Remark 11.3, $M_{m^{\prime}}^{\prime} \in \Lambda_{v}$ since $M^{\prime} \in \Lambda_{v}$, therefore $m^{\prime}=0$ by Remark 11.2, and thus $M_{m}=M_{0}^{\prime} \stackrel{\text { int }}{\Rightarrow} M^{\prime}$ (and $M_{m} \Rightarrow M^{\prime}$ since $\stackrel{\text { int }}{\Rightarrow} \subseteq \Rightarrow$) and $M_{m} \in \Lambda_{v}$. Using the rules right for $\xrightarrow{h}_{\beta_{v}}$ and \xrightarrow{h}_{σ}, one has $M_{m} N_{j} \xrightarrow{h}_{\beta_{v}} M_{m} N_{j+1}$ for any $0 \leq j<n$, and $M_{m} N_{j^{\prime}}^{\prime} \xrightarrow{h}{ }_{\sigma} M_{m} N_{j^{\prime}+1}^{\prime}$ for any $0 \leq j^{\prime}<n^{\prime}$. By Remark $12.2, M_{i} N_{0} \xrightarrow{h} \beta_{v} M_{i+1} N_{0}$ for any $0 \leq i<m$. By applying
the rule right for $\stackrel{\text { int }}{\Rightarrow}$, one has $M_{m} N_{n^{\prime}}^{\prime} \stackrel{\text { int }}{\Rightarrow} M^{\prime} N^{\prime}$. Therefore, $M N=M_{0} N_{0} \xrightarrow{h}{ }_{\beta_{v}}^{*} M_{m} N_{0} \xrightarrow{h} \stackrel{*}{\beta_{v}}$ $M_{m} N_{n}=M_{m} N_{0}^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} M_{m} N_{n^{\prime}}^{\prime} \xrightarrow{\text { int }} M^{\prime} N^{\prime}$ and hence $M N \Rightarrow M^{\prime} N^{\prime}$.
- Lemma 17. If $M \stackrel{\text { int }}{\Rightarrow} M^{\prime}$ and $V \Rightarrow V^{\prime}$, then $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$.

Proof. By Lemma 13, one has $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$ since $M \Rightarrow M^{\prime}$ and $V \Rightarrow V^{\prime}$. We proceed by induction on $M \in \Lambda$. Let us consider the last rule r of the derivation of $M \stackrel{\text { int }}{\Rightarrow} M^{\prime}$. If $\mathrm{r}=$ var then there are two cases: either $M=x$ and then $M\{V / x\}=V \Rightarrow V^{\prime}=M^{\prime}\left\{V^{\prime} / x\right\}$; or $M=y \neq x$ and then $M\{V / x\}=y=M^{\prime}\left\{V^{\prime} / x\right\}$, so $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$ by Remark 10 . If $\mathrm{r}=\lambda$ then $M=\lambda y \cdot N$ and $M^{\prime}=\lambda y \cdot N^{\prime}$ with $N \Rightarrow N^{\prime}$; we can suppose without loss of generality that $y \notin \mathrm{fv}(V) \cup\{x\}$. One has $N\{V / x\} \Rightarrow N^{\prime}\left\{V^{\prime} / x\right\}$ according to Lemma 13 . By applying the rule λ for $\stackrel{\text { int }}{\Rightarrow}$, one has $M\{V / x\}=\lambda y \cdot N\{V / x\} \stackrel{\text { int }}{\Rightarrow} \lambda y \cdot N^{\prime}\left\{V^{\prime} / x\right\}=M^{\prime}\left\{V^{\prime} / x\right\}$ and thus $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$.

Finally, if $\mathrm{r}=$ right then $M=U N M_{1} \ldots M_{m}$ and $M^{\prime}=U^{\prime} N^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}$ for some $m \in \mathbb{N}$ with $U, U^{\prime} \in \Lambda_{v}, U \Rightarrow U^{\prime}, N \stackrel{i n t}{\Rightarrow} N^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. By induction hypothesis, $U\{V / x\} \Rightarrow U^{\prime}\left\{V^{\prime} / x\right\}$ (indeed $U \stackrel{\text { int }}{\Rightarrow} U^{\prime}$ according to Remark 11.5) and $N\{V / x\} \Rightarrow$ $N^{\prime}\left\{V^{\prime} / x\right\}$. By Lemma 13, $M_{i}\{V / x\} \Rightarrow M_{i}^{\prime}\left\{V^{\prime} / x\right\}$ for any $1 \leq i \leq m$. By Lemma 16, $U\{V / x\} N\{V / x\} \Rightarrow U^{\prime}\left\{V^{\prime} / x\right\} N^{\prime}\{V / x\}$ and hence, by applying Lemma $15 m$ times since $U^{\prime}\left\{V^{\prime} / x\right\} N^{\prime}\{V / x\} \notin \Lambda_{v}$, one has $M\{V / x\}=U\{V / x\} N\{V / x\} M_{1}\{V / x\} \ldots M_{m}\{V / x\} \Rightarrow$ $U^{\prime}\left\{V^{\prime} / x\right\} N^{\prime}\left\{V^{\prime} / x\right\} M_{1}^{\prime}\left\{V^{\prime} / x\right\} \ldots M_{m}^{\prime}\left\{V^{\prime} / x\right\}=M^{\prime}\left\{V^{\prime} / x\right\}$.

In the proof of the two next lemmas, as well as in the proof of Corollary 21 and Theorem 22, our Lemma 14 plays a crucial role: indeed, since the head σ-reduction well interact with the head β_{v}-reduction, Takahashi's method $[17,4]$ is still working when adding the reduction rules σ_{1} and σ_{3} to Plotkin's β_{v}-reduction.

- Lemma 18 (Substitution lemma for \Rightarrow). If $M \Rightarrow M^{\prime}$ and $V \Rightarrow V^{\prime}$ then $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$.

Proof. By Lemma 13, one has $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$ since $M \Rightarrow M^{\prime}$ and $V \Rightarrow V^{\prime}$. By hypothesis, there exist $m, n \in \mathbb{N}$ and $M_{0}, \ldots, M_{m}, N_{0}, \ldots, N_{n}$ such that $M=M_{0}, M_{m}=N_{0}$, $N_{n} \xrightarrow{\text { int }} M^{\prime}, M_{i} \xrightarrow{h} \beta_{v} M_{i+1}$ for any $0 \leq i<m$ and $N_{j} \xrightarrow{h}_{\sigma} N_{j+1}$ for any $0 \leq j<n$; by Remark 12.6, $M_{i}\{V / x\} \xrightarrow{h} \beta_{v} M_{i+1}\{V / x\}$ for any $0 \leq i<m$, and $N_{j}\{V / x\} \xrightarrow{h}{ }_{\sigma} N_{j+1}\{V / x\}$ for any $0 \leq j<n$. By Lemma 17, one has $N_{n}\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$, thus there exist $L, N \in \Lambda$ such that $M\{V / x\} \xrightarrow{h}{ }_{\beta v} N_{0}\{V / x\} \xrightarrow{h}{ }_{\sigma}^{*} N_{n}\{V / x\} \xrightarrow{h_{\beta_{v}}^{*}} N \xrightarrow{h}{ }_{\sigma}^{*} L \xrightarrow{\text { int }} M^{\prime}\left\{V^{\prime} / x\right\}$. By Lemma 14.2, there exists $N^{\prime} \in \Lambda$ such that $M\{V / x\} \xrightarrow{h}{ }_{\beta_{v}}^{*} N_{0}\{V / x\} \xrightarrow{h}{ }_{\beta_{v}}^{*} N^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{h}{ }_{\sigma} L \xrightarrow{\text { int }}$ $M^{\prime}\left\{V^{\prime} / x\right\}$, therefore $M\{V / x\} \Rightarrow M^{\prime}\left\{V^{\prime} / x\right\}$.

Now we are ready to prove a key lemma, which states that parallel reduction \Rightarrow coincides with strong parallel reduction \Rightarrow (the inclusion $\Rightarrow \subseteq \Rightarrow$ is trivial).

- Lemma 19 (Key Lemma). If $M \Rightarrow M^{\prime}$ then $M \Rightarrow M^{\prime}$.

Proof. By induction on the derivation of $M \Rightarrow M^{\prime}$. Let us consider its last rule r .
If $\mathrm{r}=\operatorname{var}$ then $M=x M_{1} \ldots M_{m}$ and $M^{\prime}=x M_{1}^{\prime} \ldots M_{m}^{\prime}$ where $m \in \mathbb{N}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. By reflexivity of \Rightarrow (Remark 10), $x \Rightarrow x$. By induction hypothesis, $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. Therefore, $M \Rightarrow M^{\prime}$ by applying Lemma $16 m$ times.

If $\mathrm{r}=\lambda$ then $M=\left(\lambda x . M_{0}\right) M_{1} \ldots M_{m}$ and $M^{\prime}=\left(\lambda x . M_{0}^{\prime}\right) M_{1}^{\prime} \ldots M_{m}^{\prime}$ where $m \in \mathbb{N}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $0 \leq i \leq m$. By induction hypothesis, $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. According to Remark 11.4, $\lambda x . M_{0} \Rightarrow \lambda x . M_{0}^{\prime}$. So $M \Rightarrow M^{\prime}$ by applying Lemma $16 m$ times.

If $\mathrm{r}=\beta_{v}$ then $M=\left(\lambda x \cdot M_{0}\right) V M_{1} \ldots M_{m}$ and $M^{\prime}=M_{0}^{\prime}\left\{V^{\prime} / x\right\} M_{1}^{\prime} \ldots M_{m}^{\prime}$ where $m \in \mathbb{N}$, $V \Rightarrow V^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $0 \leq i \leq m$. By induction hypothesis, $V \Rightarrow V^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$
for any $0 \leq i \leq m$. By applying the rule β_{v} for $\stackrel{h}{h}_{\beta_{v}}$, one has $M \xrightarrow{h} \beta_{v} M_{0}\{V / x\} M_{1} \ldots M_{m}$; moreover $M_{0}\{V / x\} M_{1} \ldots M_{m} \Rightarrow M^{\prime}$ by Lemma 18 and by applying Lemma $16 m$ times, thus there are $L, N \in \Lambda$ such that $M \xrightarrow{h} \beta_{v} M_{0}\{V / x\} M_{1} \ldots M_{m} \xrightarrow{h}{ }_{\beta_{v}} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{i n t} M^{\prime}$. So $M \Rightarrow M^{\prime}$.

If $\mathrm{r}=\sigma_{1}$ then $M=\left(\lambda x . M_{0}\right) N_{0} L_{0} M_{1} \ldots M_{m}$ and $M^{\prime}=\left(\lambda x . M_{0}^{\prime} L_{0}^{\prime}\right) N_{0}^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}$ where $m \in \mathbb{N}, L_{0} \Rightarrow L_{0}^{\prime}, N_{0} \Rightarrow N_{0}^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $0 \leq i \leq m$. By induction hypothesis, $N_{0} \Rightarrow N_{0}^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. By applying the rule σ_{1} for ${ }_{\rightarrow}^{h}$, one has $M \xrightarrow{h}{ }_{\sigma}$ $\left(\lambda x . M_{0} L_{0}\right) N_{0} M_{1} \ldots M_{m}$. By Remark 12.1, $M_{0} L_{0} \Rightarrow M_{0}^{\prime} L_{0}^{\prime}$ and thus $\lambda x . M_{0} L_{0} \Rightarrow \lambda x . M_{0}^{\prime} L_{0}^{\prime}$ according to Remark 11.4. So $\left(\lambda x . M_{0} L_{0}\right) N_{0} M_{1} \ldots M_{m} \Rightarrow M^{\prime}$ by applying Lemma $16 m+1$ times, hence there are $L, N \in \Lambda$ such that $M \xrightarrow{h} \sigma\left(\lambda x \cdot M_{0} L_{0}\right) N_{0} M_{1} \ldots M_{m} \xrightarrow{h}{ }_{\beta_{v}} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }} M^{\prime}$. By Lemma 14.2 , there is $L^{\prime} \in \Lambda$ such that $M \xrightarrow{h} \beta_{v} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }} M^{\prime}$ and thus $M \Rightarrow M^{\prime}$.

Finally, if $\mathrm{r}=\sigma_{3}$ then $M=V\left(\left(\lambda x . L_{0}\right) N_{0}\right) M_{1} \ldots M_{m}$ and $M^{\prime}=\left(\lambda x . V^{\prime} L_{0}^{\prime}\right) N_{0}^{\prime} M_{1}^{\prime} \ldots M_{m}^{\prime}$ with $m \in \mathbb{N}, V \Rightarrow V^{\prime}, L_{0} \Rightarrow L_{0}^{\prime}, N_{0} \Rightarrow N_{0}^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. By induction hypothesis, $N_{0} \Rightarrow N_{0}^{\prime}$ and $M_{i} \Rightarrow M_{i}^{\prime}$ for any $1 \leq i \leq m$. By the rule σ_{3} for ${ }_{\rightarrow}^{h}$, one has $M \xrightarrow{h}{ }_{\sigma}\left(\lambda x . V L_{0}\right) N_{0} M_{1} \ldots M_{m}$. By Remark 12.1, V $L_{0} \Rightarrow V^{\prime} L_{0}^{\prime}$ and thus $\lambda x . V L_{0} \Rightarrow \lambda x . V^{\prime} L_{0}^{\prime}$ according to Remark 11.4. So $\left(\lambda x . V L_{0}\right) N_{0} M_{1} \ldots M_{m} \Rightarrow M^{\prime}$ by applying Lemma $16 m+1$ times, hence there are $L, N \in \Lambda$ such that $M \xrightarrow{h} \sigma\left(\lambda x \cdot V L_{0}\right) N_{0} M_{1} \ldots M_{m} \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }} M^{\prime}$. By Lemma 14.2, there is $L^{\prime} \in \Lambda$ such that $M \xrightarrow{h^{*}} \beta_{v} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }} M^{\prime}$, so $M \Rightarrow M^{\prime}$.

Next Lemma 20 and Corollary 21 show that internal parallel reduction can be shifted after head reductions.

- Lemma 20 (Postponement). If $M \stackrel{\text { int }}{\Rightarrow} L$ and $L \xrightarrow{h}{ }_{\beta_{v}} N$ (resp. $L \xrightarrow{h}{ }_{\sigma} N$) then there exists $L^{\prime} \in \Lambda$ such that $M{\xrightarrow{h} \beta_{v}} L^{\prime}\left(\right.$ resp. $\left.M \xrightarrow{h}_{\sigma} L^{\prime}\right)$ and $L^{\prime} \Rightarrow N$.

Proof. By induction on the derivation of $M \stackrel{\text { int }}{\Rightarrow} L$. Let us consider its last rule r .
If $\mathrm{r}=v a r$, then $M=x=L$ which contradicts $L \xrightarrow{h} \beta_{v} N$ and $L \xrightarrow{h}{ }_{\sigma} N$ by Remarks 11.1-2.
If $\mathrm{r}=\lambda$ then $L=\lambda x . L^{\prime}$ for some $L^{\prime} \in \Lambda$, which contradicts $L \xrightarrow{h}{ }_{\beta_{v}} N$ and $L \xrightarrow{h}{ }_{\sigma} N$ by Remarks 11.1-2.

Finally, if $\mathrm{r}=$ right then $M=V M_{0} M_{1} \ldots M_{m}$ and $L=V^{\prime} L_{0} L_{1} \ldots L_{m}$ where $m \in \mathbb{N}$, $V \Rightarrow V^{\prime}\left(\right.$ so $V \stackrel{\text { int }}{\Rightarrow} V^{\prime}$ by Remark 11.5), $M_{0} \stackrel{\text { int }}{\Rightarrow} L_{0}\left(\right.$ thus $M_{0} \Rightarrow L_{0}$ since $\stackrel{\text { int }}{\Rightarrow} \subseteq \Rightarrow$) and $M_{i} \Rightarrow L_{i}$ for any $1 \leq i \leq m$.

- If $L \xrightarrow{h}_{\beta_{v}} N$ then there are two cases, depending on the last rule r^{\prime} of the derivation of $L \xrightarrow{h} \beta_{v} N$.
- If $\mathrm{r}^{\prime}=\beta_{v}$ then $V^{\prime}=\lambda x . N_{0}^{\prime}, L_{0} \in \Lambda_{v}$ and $N=N_{0}^{\prime}\left\{L_{0} / x\right\} L_{1} \ldots L_{m}$, thus $M_{0} \in \Lambda_{v}$ and $V=\lambda x . N_{0}$ with $N_{0} \Rightarrow N_{0}^{\prime}$ by Remark 11.3. By Lemma 13, one has $N_{0}\left\{M_{0} / x\right\} \Rightarrow$ $N_{0}^{\prime}\left\{L_{0} / x\right\}$. Let $L^{\prime}=N_{0}\left\{M_{0} / x\right\} M_{1} \ldots M_{m}$: so $M=\left(\lambda x . N_{0}\right) M_{0} M_{1} \ldots M_{m} \xrightarrow{h}{ }_{\beta_{v}} L^{\prime}$ (apply the rule β_{v} for $\xrightarrow{h} \beta_{v}$) and $L^{\prime} \Rightarrow N$ by applying Remark 12.1 m times.
- If $r^{\prime}=$ right then $N=V^{\prime} N_{0} L_{1} \ldots L_{m}$ with $L_{0}{ }_{\rightarrow}^{h} \beta_{v} N_{0}$. By induction hypothesis, there exists $L_{0}^{\prime} \in \Lambda$ such that $M_{0}{ }^{h} \beta_{v} L_{0}^{\prime} \Rightarrow N_{0}$. Let $L^{\prime}=V L_{0}^{\prime} M_{1} \ldots M_{m}$: so $M \xrightarrow{h} \beta_{v} L^{\prime}$ (apply the rule right for $\xrightarrow{h}_{\beta_{v}}$) and $L^{\prime} \Rightarrow N$ by applying Remark $12.1 m+1$ times.
- If $L \xrightarrow{h}{ }_{\sigma} N$ then there are three cases, depending on the last rule r^{\prime} of the derivation of $L \xrightarrow{h} \sigma$.
- If $\mathrm{r}^{\prime}=\sigma_{1}$ then $m>0, V^{\prime}=\lambda x . N_{0}^{\prime}$ and $N=\left(\lambda x . N_{0}^{\prime} L_{1}\right) L_{0} L_{2} \ldots L_{m}$, thus $V=\lambda x . N_{0}$ with $N_{0} \Rightarrow N_{0}^{\prime}$ by Remark 11.3. Using Remarks 12.1 and 11.4, one has $\lambda x . N_{0} M_{1} \Rightarrow$ $\lambda x . N_{0}^{\prime} L_{1}$. Let $L^{\prime}=\left(\lambda x . N_{0} M_{1}\right) M_{0} M_{2} \ldots M_{m}$: so $M=\left(\lambda x . N_{0}\right) M_{0} M_{1} \ldots M_{m}{ }_{h}^{h}{ }_{\sigma} L^{\prime}$ (apply the rule σ_{1} for ${ }^{h}{ }_{\sigma}$) and $L^{\prime} \Rightarrow N$ by applying Remark 12.1 m times.
- If $\mathbf{r}^{\prime}=\sigma_{3}$ then $L_{0}=\left(\lambda x \cdot L_{01}\right) L_{02}$ and $N=\left(\lambda x \cdot V^{\prime} L_{01}\right) L_{02} L_{1} \ldots L_{m}$. Since $M_{0} \stackrel{\text { int }}{\Rightarrow}$ $\left(\lambda x \cdot L_{01}\right) L_{02}$, necessarily $M_{0}=\left(\lambda x \cdot M_{01}\right) M_{02}$ with $M_{01} \Rightarrow L_{01}$ and $M_{02} \stackrel{\text { int }}{\Rightarrow} L_{02}$ (so $M_{02} \Rightarrow L_{02}$). Using Remarks 12.1 and 11.4, one has $\lambda x . V M_{01} \Rightarrow \lambda x \cdot V^{\prime} L_{01}$. Let
$L^{\prime}=\left(\lambda x . V M_{01}\right) M_{02} M_{1} \ldots M_{m}$: therefore $M=V\left(\left(\lambda x . M_{01}\right) M_{02}\right) M_{1} \ldots M_{m}{ }_{\rightarrow}^{h}{ }_{\sigma} L^{\prime}$ (apply the rule σ_{3} for \xrightarrow{h}_{σ}) and $L^{\prime} \Rightarrow N$ by applying Remark $12.1 \mathrm{~m}+1$ times.
- If $\mathrm{r}^{\prime}=$ right then $N=V^{\prime} N_{0} L_{1} \ldots L_{m}$ with $L_{0}{ }^{h}{ }_{\sigma} N_{0}$. By induction hypothesis, there exists $L_{0}^{\prime} \in \Lambda$ such that $M_{0} \xrightarrow{h}_{\sigma} L_{0}^{\prime} \Rightarrow N_{0}$. Let $L^{\prime}=V L_{0}^{\prime} M_{1} \ldots M_{m}$: so $M \xrightarrow{h}_{\sigma} L^{\prime}$ (apply the rule right for ${ }_{\rightarrow}^{h}$) and $L^{\prime} \Rightarrow N$ by applying Remark $12.1 m+1$ times.
- Corollary 21. If $M \stackrel{\text { int }}{\Rightarrow} L$ and $L \xrightarrow{h} \beta_{v} N_{*}\left(\right.$ resp. $\left.L \xrightarrow{h}{ }_{\sigma} N\right)$, then there exist $L^{\prime}, L^{\prime \prime} \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{+} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} L^{\prime \prime} \xrightarrow{\text { int }} N\left(\right.$ resp. $\left.M \xrightarrow{h_{\beta_{v}}^{*}} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} L^{\prime \prime} \xrightarrow{\text { int }} N\right)$.

Proof. Immediate by Lemma 20 and Lemma 19, applying Lemma 14.2 if $L \xrightarrow{h}{ }_{\sigma} N$.

Now we obtain our first main result (Theorem 22): any v-reduction sequence can be sequentialized into a head β_{v}-reduction sequence followed by a head σ-reduction sequence, followed by an internal reduction sequence. In ordinary λ-calculus, the well-known result corresponding to our Theorem 22 says that a β-reduction sequence can be factorized in a head reduction sequence followed by an internal reduction sequence (see for example [17, Corollary 2.6]).

- Theorem 22 (Sequentialization). If $M \rightarrow_{\vee}^{*} M^{\prime}$ then there exist $L, N \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }}{ }_{v} M^{\prime}$.

Proof. By Remark $12.4, M \Rightarrow^{*} M^{\prime}$ and thus there are $m \in \mathbb{N}$ and $M_{0}, \ldots, M_{m} \in \Lambda$ such that $M=M_{0}, M_{m}=M^{\prime}$ and $M_{i} \Rightarrow M_{i+1}$ for any $0 \leq i<m$. We prove by induction on $m \in \mathbb{N}$ that there are $L, N \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int } *} M^{\prime}$, so $N \xrightarrow{{ }_{\mathrm{v}}{ }^{\text {int }}{ }^{*}} M^{\prime}$ by Remark 12.5.

If $m=0$ then $M=M_{0}=M^{\prime}$ and hence we conclude by taking $L=M^{\prime}=N$.
Finally, suppose $m>0$. By induction hypothesis applied to $M_{1} \Rightarrow^{*} M^{\prime}$, there exist $L^{\prime}, N^{\prime} \in \Lambda$ such that $M_{1} \xrightarrow{h}{ }_{\beta_{v}}^{*} L^{\prime} \xrightarrow{h}{ }_{\sigma}^{*} N^{\prime} \xrightarrow{i n t *} M^{\prime}$. By applying Lemma 19 to M, there exist $L_{0}, N_{0} \in \Lambda$ such that $M \xrightarrow{h^{*}} \beta_{v} L_{0} \xrightarrow{h}{ }_{\sigma}^{*} N_{0} \xrightarrow{\text { int }} M_{1}$. By applying Corollary 21 repeatedly, there exists $N \in \Lambda$ such that $N_{0} \xrightarrow{h}{ }_{V}^{*} N \xrightarrow{\text { int }} N^{\prime}$ and hence $M \xrightarrow{h}{ }_{V}^{*} N \xrightarrow{\text { int }}{ }^{*} M^{\prime}$. According to Lemma 14.3, there exists $L \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \stackrel{\text { int }}{\Rightarrow} M^{\prime}$.

It is worth noticing that in Definition 7 there is no distinction between head σ_{1-} and head σ_{3}-reduction steps, and, according to it, the sequentialization of Theorem 22 imposes no order between head σ-reductions. We denote by $\xrightarrow[\rightarrow]{h} \sigma_{1}$ and $\xrightarrow{h} \sigma_{3}$ respectively the reduction relations $\rightarrow_{\sigma_{1}} \cap \xrightarrow{h}_{\sigma}$ and $\rightarrow_{\sigma_{3}} \cap \xrightarrow{h}_{\sigma}$. So, a natural question arises: is it possible to sequentialize them? The answer is negative, as proved by the next two counterexamples.

- Let $M=x\left(\left(\lambda y \cdot z^{\prime}\right)(z I)\right) \Delta$ and $N=\left(\lambda y \cdot x z^{\prime} \Delta\right)(z I): M \xrightarrow{h} \sigma_{3}\left(\lambda y \cdot x z^{\prime}\right)(z I) \Delta \xrightarrow{h} \sigma_{\sigma_{1}} N$, but there exists no L such that $M \xrightarrow{h}{ }_{\sigma_{1}}^{*} L \xrightarrow{h}{ }_{\sigma_{3}}^{*} N$. In fact M contains only a head σ_{3}-redex and $\left(\lambda y \cdot x z^{\prime}\right)(z I) \Delta$ contains only a head σ_{1}-redex
- Let $M=x\left(\left(\lambda y \cdot z^{\prime}\right)(z I) \Delta\right)$ and $N=\left(\lambda y \cdot x\left(z^{\prime} \Delta\right)\right)(z I): M \xrightarrow{h} \sigma_{\sigma_{1}} x\left(\left(\lambda y \cdot z^{\prime} \Delta\right)(z I)\right) \xrightarrow{h} \sigma_{\sigma_{3}} N$ but there is no L such that $M \xrightarrow{h_{\sigma_{3}}^{*}} L \xrightarrow{h} \stackrel{*}{\sigma_{1}} N$. In fact M contains only a head σ_{1}-redex and $x\left(\left(\lambda y . z^{\prime} \Delta\right)(z I)\right)$ contains only a head σ_{3}-redex.
So, the impossibility of sequentializing a head σ-reduction sequence is due to the fact that a head σ_{1}-reduction step can create a head σ_{3}-redex, and viceversa. This is not a problem, since head σ-reduction is strongly normalizing (by Proposition 4 and since $\xrightarrow{h}{ }_{\sigma} \subseteq \rightarrow_{\sigma}$). Our approach does not force a strict order of head σ-reductions.

4 Standardization

Now we are able to prove the main result of this paper, i.e., a standardization theorem for λ_{v}^{σ} (Theorem 25). In particular we provide a notion of standard reduction sequence that avoids any auxiliary notion of residual redexes, by closely following the definition given in [15].

- Notation. For any $k, m \in \mathbb{N}$ with $k \leq m$, we denote by $\left\lceil M_{0}, \cdots, M_{k}, \cdots M_{m}\right\rceil^{\text {head }}$ a sequence of terms such that $M_{i} \xrightarrow{h} \beta_{v} M_{i+1}$ when $0 \leq i<k$, and $M_{i} \xrightarrow{h} \sigma M_{i+1}$ when $k \leq i<m$.

It is easy to check that $\lceil M\rceil^{\text {head }}$ for any $M \in \Lambda$. The notion of standard sequence of terms is defined by using the previous notion of head-sequence. Our notion of standard reduction sequence is mutually defined together with the notion of inner-sequence of terms (Definition 23). This definition allows us to avoid non-deterministic cases remarked in [7] (we provide more details at the end of this section). We denote by $\left\lceil M_{0}, \cdots, M_{m}\right\rceil^{s t d}$ (resp. $\left\lceil M_{0}, \cdots, M_{m}\right\rceil^{i n}$) a standard (resp. inner) sequence of terms.

- Definition 23 (Standard and inner sequences). Standard and inner sequences of terms are defined by mutual induction as follows:

1. if $\left\lceil M_{0}, \cdots, M_{m}\right\rceil^{\text {head }}$ and $\left\lceil M_{m}, \cdots, M_{m+n}\right\rceil^{\text {in }}$ then $\left\lceil M_{0}, \cdots, M_{m+n}\right\rceil^{\text {std }}$, where $m, n \in \mathbb{N}$;
2. $\lceil M\rceil^{\text {in }}$, for any $M \in \Lambda$;
3. if $\left\lceil M_{0}, \cdots, M_{m}\right\rceil^{s t d}$ then $\left\lceil\lambda z . M_{0}, \cdots, \lambda z . M_{m}\right\rceil^{\text {in }}$, where $m \in \mathbb{N}$;
4. if $\left\lceil V_{0}, \cdots, V_{h}\right\rceil^{s t d}$ and $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{\text {in }}$ then $\left\lceil V_{0} N_{0}, \cdots, V_{0} N_{n}, \cdots, V_{h} N_{n}\right\rceil^{i n}$, where $h, n \in \mathbb{N}$;
5. if $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{i n},\left\lceil M_{0}, \cdots, M_{m}\right\rceil^{\text {std }}$ and $N_{0} \notin \Lambda_{v}$, then $\left\lceil N_{0} M_{0}, \cdots, N_{n} M_{0}, \cdots, N_{n} M_{m}\right\rceil^{i n}$, where $m, n \in \mathbb{N}$.

For instance, let $M=(\lambda y \cdot I x)(z(\Delta I))(I I): M \rightarrow_{\mathrm{v}}(\lambda y \cdot I x)(z(\Delta I)) I \rightarrow_{\mathrm{v}}(\lambda y \cdot x)(z(\Delta I)) I$ and $M \rightarrow_{\mathrm{v}}(\lambda y \cdot I x(I I))(z(\Delta I)) \rightarrow_{\mathrm{v}}(\lambda y \cdot I x(I I))(z(I I))$ are not standard sequences; $M \rightarrow_{\mathrm{v}}$ $(\lambda y \cdot I x)(z(\Delta I)) I$ and $M \rightarrow_{\mathrm{v}}(\lambda y \cdot I x)(z(I I))(I I) \rightarrow_{\mathrm{v}}(\lambda y \cdot I x)(z I)(I I) \rightarrow_{\mathrm{v}}(\lambda y \cdot I x(I I))(z I) \rightarrow_{\mathrm{v}}$ $(\lambda y \cdot x(I I))(z I) \rightarrow_{\mathrm{v}}(\lambda y \cdot x I)(z I)$ are standard sequences.
Remark 24. For any $n \in \mathbb{N}$, if $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{\text {in }}$ (resp. $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{\text {head }}$) then $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{\text {std }}$. Indeed, $\left\lceil N_{0}\right\rceil^{\text {head }}$ (resp. $\left\lceil N_{n}\right\rceil^{\text {in }}$ by Definition 23.2), so $\left\lceil N_{0}, \cdots, N_{n}\right\rceil^{\text {std }}$ by Definition 23.1.

In particular, $\lceil N\rceil^{s t d}$ for any $N \in \Lambda$: apply Definition 23.2 and Remark 24 for $n=0$.

- Theorem 25 (Standardization).

1. If $M \rightarrow_{v}^{*} M^{\prime}$ then there is a sequence $\left\lceil M, \cdots, M^{\prime}\right\rceil^{\text {std }}$.
2. If $M \xrightarrow{\text { int } *} M^{\prime}$ then there is a sequence $\left\lceil M, \cdots, M^{\prime}\right\rceil^{\text {in }}$.

Proof. Both statements are proved simultaneously by induction on $M^{\prime} \in \Lambda$.

1. = If $M^{\prime}=z$ then, by Theorem 22, $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int ** }} z$ for some $L, N \in \Lambda$. By Remarks 12.5 and $11.2, L=N=z$; therefore $M \xrightarrow{h}{ }_{\beta_{v}} z$ and hence there is a sequence $\lceil M, \cdots, z\rceil^{\text {head }}$. Thus, $\lceil M, \cdots, z\rceil^{\text {std }}$ by Remark 24 .

- If $M^{\prime}=\lambda z \cdot N^{\prime}$ then, by Theorem $22, M \xrightarrow{h^{*}}{ }_{\beta_{v}} L \xrightarrow{h}{ }_{\sigma}^{*} L^{\prime} \xrightarrow{\text { int }}{ }_{v}^{*} \lambda z . N^{\prime}$ for some $L, L^{\prime} \in \Lambda$. By Remarks 12.5 and 11.2, $L=L^{\prime}=\lambda z . N$ with $N \rightarrow_{v}^{*} N^{\prime}$. So $M \xrightarrow{h^{*}}{ }_{\beta_{v}} \lambda z . N$ and hence there is a sequence $\lceil M, \cdots, \lambda z \cdot N\rceil^{\text {head }}$. By induction on (1), there is a sequence $\left\lceil N, \cdots, N^{\prime}\right\rceil^{\text {std }}$, thus $\left\lceil\lambda z . N, \cdots, \lambda z . N^{\prime}\right\rceil^{\text {in }}$ by Definition 23.3. Therefore $\left\lceil M, \cdots, \lambda z . N, \cdots, \lambda z . N^{\prime}\right\rceil^{s t d}$ by Definition 23.1.
- If $M^{\prime}=N^{\prime} L^{\prime}$ then, by Theorem $22, M \xrightarrow{h}{ }_{\beta_{v}}^{*} M^{\prime \prime} \xrightarrow{h}{ }_{\sigma}^{*} M_{0} \xrightarrow{\text { int }}{ }_{v} N^{\prime} L^{\prime}$ for some $M^{\prime \prime}, M_{0} \in \Lambda$. By Remark $3, M_{0}=N L$ for some $N, L \in \Lambda$, since $\xrightarrow{\text { int } *} \subseteq \rightarrow_{v}^{*}$ and $M^{\prime} \notin \Lambda_{v}$. Thus there is a sequence $\left\lceil M, \cdots, M^{\prime \prime}, \cdots, N L\right\rceil^{\text {head }}$. By Remark $12.5, N L \stackrel{\text { int } *}{\Rightarrow} N^{\prime} L^{\prime}$; clearly, each step of $\stackrel{\text { int }}{\Rightarrow}$ is an instance of the rule right of Definition 9. There are two sub-cases.
= If $N \in \Lambda_{v}$ then $N \Rightarrow^{*} N^{\prime}$ and $L \stackrel{i n t}{\Rightarrow} L^{\prime}$, so $N \rightarrow_{v}^{*} N^{\prime}$ and $L \xrightarrow{i n t}{ }_{v}^{*} L^{\prime}$ by Remarks 12.4-5. By induction respectively on (1) and (2), there are sequences $\left\lceil N, \cdots, N^{\prime}\right\rceil^{\text {std }}$ and $\left\lceil L, \cdots, L^{\prime}\right\rceil^{\text {in }}$, thus $\left\lceil N L, \cdots, N L^{\prime}, \cdots, N^{\prime} L^{\prime}\right\rceil^{\text {in }}$ by Definition 23.4. Therefore $\left\lceil M, \cdots, M^{\prime \prime}, \cdots, N L, \cdots, N L^{\prime}, \cdots, N^{\prime} L^{\prime}\right\rceil^{\text {std }}$ by Definition 23.1.
- If $N \notin \Lambda_{v}$ (i.e., $N=V M_{1} \ldots M_{m}$ with $m>0$) then $N \stackrel{\text { int } *}{\Rightarrow} N^{\prime}$ and $L \Rightarrow^{*} L^{\prime}$, so $N \xrightarrow{\text { int }}{ }_{v} N^{\prime}$ and $L \rightarrow_{v}^{*} L^{\prime}$ by Remarks 12.4-5. By induction respectively on (2) and (1), there are sequences $\left\lceil N, \cdots, N^{\prime}\right\rceil^{\text {in }}$ and $\left\lceil L, \cdots, L^{\prime}\right\rceil^{\text {std }}$. Hence $\left\lceil N L, \cdots, N^{\prime} L, \cdots, N^{\prime} L^{\prime}\right\rceil^{\text {in }}$ by Definition 23.5. Thus $\left\lceil M, \cdots, M^{\prime \prime}, \cdots, N L, \cdots, N^{\prime} L, \cdots, N^{\prime} L^{\prime}\right\rceil^{\text {std }}$ by Definition 23.1.

2. - If $M^{\prime}=z$ then $M=z$ by Remark 12.5 , hence $\lceil z\rceil^{\text {in }}$ by Definition 23.2.

- If $M^{\prime}=\lambda z \cdot L^{\prime}$ then $M=\lambda z \cdot L$ and $L \rightarrow_{v}^{*} L^{\prime}$ by Remark 12.5 . Hence there is a sequence $\left\lceil L, \cdots, L^{\prime}\right\rceil^{s t d}$ by induction on (1). By Definition $23.3,\left\lceil\lambda z . L, \cdots, \lambda z . L^{\prime}\right\rceil^{i n}$.
- If $M^{\prime}=N^{\prime} L^{\prime}$ then $M=N L$ for some $N, L \in \Lambda$ by Remark 3 , since $\xrightarrow{\text { int } *} \subseteq \rightarrow_{v}^{*}$ and $M^{\prime} \notin \Lambda_{v}$. By Remark $12.5, N L \stackrel{i n t *}{\Rightarrow} N^{\prime} L^{\prime}$; clearly, each step of $\xlongequal{\text { int }}$ is an instance of the rule right of Definition 9. There are two sub-cases.
- If $N \in \Lambda_{v}$ then $N \Rightarrow^{*} N^{\prime}$ and $L \stackrel{\text { int } *}{\Rightarrow} L^{\prime}$, so $N \rightarrow_{v}^{*} N^{\prime}$ and $L \xrightarrow{{ }^{\text {int }} *}{ }_{v}^{\prime} L^{\prime}$ by Remarks 12.4-5. Thus there are sequences $\left\lceil N, \cdots, N^{\prime}\right\rceil^{\text {std }}$ and $\left\lceil L, \cdots, L^{\prime}\right\rceil^{i n}$ by induction respectively on (1) and (2). Therefore, by Definition 23.4, $\left\lceil N L, \cdots, N L^{\prime}, \cdots, N^{\prime} L^{\prime}\right\rceil^{i n}$.
- If $N \notin \Lambda_{v}$ (i.e. $N=V M_{1} \ldots M_{m}$ with $m>0$) then $N \stackrel{\text { int }}{\Rightarrow} N^{\prime}$ and $L \Rightarrow^{*} L^{\prime}$, thus $N \xrightarrow{\text { int } *} N^{\prime}$ and $L \rightarrow_{v}^{*} L^{\prime}$ by Remarks 12.4-5. By induction respectively on (2) and (1), there are sequences $\left\lceil N, \cdots, N^{\prime}\right\rceil^{i n}$ and $\left\lceil L, \cdots, L^{\prime}\right\rceil^{\text {std }}$. So $\left\lceil N L, \cdots, N^{\prime} L, \cdots, N^{\prime} L^{\prime}\right\rceil^{\text {in }}$ by Definition 23.5.

Due to non-sequentialization of head $\sigma_{1^{-}}$and head σ_{3}-reductions, several standard sequences may have the same starting term and ending term: for instance, if $M=I(\Delta I) I$ and $N=(\lambda z \cdot(\lambda x . x I)(z z)) I$ then $M \rightarrow_{\mathrm{v}}(\lambda x \cdot x I)(\Delta I) \rightarrow_{\mathrm{v}} N$ and $M \rightarrow_{\mathrm{v}}(\lambda z \cdot I(z z)) I I \rightarrow_{\mathrm{v}}$ $(\lambda z . I(z z) I) I \rightarrow_{\mathrm{v}} N$ are both standard sequences from M to N.

Finally, we can compare our notion of standardization with that given in [15]. To make the comparison possible we avoid σ-reductions and we recall that ${ }_{h}^{h} \beta_{v}$ is exactly the Plotkin's left-reduction [15, p. 136]. As remarked in [7, §1.5 p. 149], both sequences $(\lambda z . I I)(I I) \rightarrow_{\mathrm{v}}(\lambda z . I)(I I) \rightarrow_{\mathrm{v}}(\lambda z . I) I$ and $(\lambda z . I I)(I I) \rightarrow_{\mathrm{v}}(\lambda z . I I) I \rightarrow_{\mathrm{v}}(\lambda z . I) I$ are standard according to [15]. On the other hand, only the second sequence is standard in our sense. It is easy to check that collapsing the two notions of inner and standard sequence given in Definition 23, we get a notion of standard sequence that accept both the above sequences.

5 Some conservativity results

The sequentialization result (Theorem 22) has some interesting semantic consequences. It allows us to prove that (Corollary 29) the λ_{v}^{σ}-calculus is sound with respect to the call-byvalue observational equivalence introduced by Plotkin in [15] for λ_{v}. Moreover we can prove that some notions, like that of potential valuability and solvability, introduced in [13] for λ_{v}, coincide with the respective notions for λ_{v}^{σ} (Theorem 31). This justifies the idea that λ_{v}^{σ} is a useful tool for studying the properties of λ_{v}. Our starting point is the following corollary.

- Corollary 26.

1. If $M \rightarrow_{v}^{*} V \in \Lambda_{v}$ then there exists $V^{\prime} \in \Lambda_{v}$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} V^{\prime} \xrightarrow{\text { int } *} V$.
2. For every $V \in \Lambda_{v}, M \xrightarrow{h^{*}} \beta_{v} V$ if and only if $M \xrightarrow{h_{v}^{*}} V$.

Proof. The first point is proved by observing that, by Theorem 22 , there are $N, L \in \Lambda$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} L \xrightarrow{h}{ }_{\sigma}^{*} N \xrightarrow{\text { int }}{ }_{v}^{*} V$. By Remark $12.5, N \in \Lambda_{v}$ and thus $L=N$ according to

Remark 11.2. Concerning the second point, the right-to-left direction is a consequence of Lemma 14.3 and Remark 11.2; the left-to-right direction follows from $\xrightarrow{h} \beta_{v} \subseteq \xrightarrow{h}_{\mathrm{v}}$.

Let us recall the notion of observational equivalence defined by Plotkin [15] for λ_{v}.

- Definition 27 (Halting, observational equivalence). Let $M \in \Lambda$. We say that (the evaluation of) M halts if there exists $V \in \Lambda_{v}$ such that $M \xrightarrow{h}{ }_{\beta_{v}}^{*} V$.

The (call-by-value) observational equivalence is an equivalence relation \cong on Λ defined by: $M \cong N$ if, for every context C , one has that $\mathrm{C}(M)$ halts iff $\mathrm{C}(N)$ halts. ${ }^{1}$

Clearly, similar notions can be defined for λ_{v}^{σ} using \xrightarrow{h} instead of $\xrightarrow{h} \beta_{v}$. Head σ-reduction plays no role neither in deciding the halting problem for evaluation (Corollary 26.1), nor in reaching a particular value (Corollary 26.2). So, we can conclude that the notions of halting and observational equivalence in λ_{v}^{σ} coincide with the ones in λ_{v}, respectively.

Now we compare the equational theory of λ_{v}^{σ} with Plotkin's observational equivalence.

- Theorem 28 (Adequacy of v -reduction). If $M \rightarrow_{v}^{*} M^{\prime}$ then: M halts iff M^{\prime} halts.

Proof. If $M^{\prime} \xrightarrow{h_{\beta_{v}}^{*}} V \in \Lambda_{v}$ then $M \rightarrow_{v}^{*} M^{\prime} \rightarrow_{v}^{*} V$ since $\xrightarrow{h}_{\beta_{v}} \subseteq \rightarrow_{v}$. By Corollary 26.1, there exists $V^{\prime} \in \Lambda_{v}$ such that $M \xrightarrow{h_{\beta_{v}}^{*}} V^{\prime}$. Thus M halts.

Conversely, if $M \xrightarrow{h}{ }_{\beta_{v}}^{*} V \in \Lambda_{v}$ then $M \rightarrow_{v}^{*} V$ since $\xrightarrow{h}_{\beta_{v}} \subseteq \rightarrow_{v}$. By confluence of \rightarrow_{v} (Proposition 4, since $M \rightarrow{ }_{v}^{*} M^{\prime}$) and Remark 3 (since $V \in \Lambda_{v}$), there is $V^{\prime} \in \Lambda_{v}$ such that $V \rightarrow_{v}^{*}$ V^{\prime} and $M^{\prime} \rightarrow_{v}^{*} V^{\prime}$. By Corollary 26.1, there is $V^{\prime \prime} \in \Lambda_{v}$ such that $M^{\prime} \xrightarrow{h}{ }_{\beta_{v}}^{*} V^{\prime \prime}$. So M^{\prime} halts.

- Corollary 29 (Soundness). If $M={ }_{\mathrm{V}} N$ then $M \cong N$.

Proof. Let C be a context. By confluence of \rightarrow_{v} (Proposition 4), $M={ }_{v} N$ implies that there exists $L \in \Lambda$ such that $M \rightarrow_{v}^{*} L$ and $N \rightarrow_{v}^{*} L$, hence $\mathrm{C}(M) \rightarrow_{v}^{*} \mathrm{C}(L)$ and $\mathrm{C}(N) \rightarrow_{v}^{*} \mathrm{C}(L)$. By Theorem $28, \mathrm{C}(M)$ halts iff $\mathrm{C}(L)$ halts iff $\mathrm{C}(N)$ halts. Therefore, $M \cong N$.

Plotkin [15, Theorem 5] has already proved that $M=\beta_{v} N$ implies $M \cong N$, but our Corollary 29 is not obvious since our λ_{v}^{σ}-calculus equates more than Plotkin's λ_{v}-calculus $\left(=\beta_{v} \subseteq=_{\mathrm{v}}\right.$ since $\rightarrow_{\beta_{v}} \subseteq \rightarrow_{\mathrm{v}}$, and Example 5 shows that this inclusion is strict).

The converse of Corollary 29 does not hold since $\lambda x \cdot x(\lambda y \cdot x y) \cong \Delta$ but $\lambda x \cdot x(\lambda y \cdot x y)$ and Δ are different v -normal forms and hence $\lambda x \cdot x(\lambda y \cdot x y) \neq v \Delta$ by confluence of \rightarrow_{v} (Proposition 4).

A further remarkable consequence of Corollary 26.1 is that the notions of potential valuability and solvability for λ_{v}^{σ}-calculus (studied in [3]) can be shown to coincide with the ones for Plotkin's λ_{v}-calculus (studied in [13, 14]), respectively. Let us recall their definition.

- Definition 30 (Potential valuability, solvability). Let M be a term:
- M is v-potentially valuable (resp. β_{v}-potentially valuable) if there are $m \in \mathbb{N}$, pairwise distinct variables x_{1}, \ldots, x_{m} and $V, V_{1}, \ldots, V_{m} \in \Lambda_{v}$ such that $M\left\{V_{1} / x_{1}, \ldots, V_{m} / x_{m}\right\} \rightarrow_{v}^{*}$ $V\left(\operatorname{resp} . M\left\{V_{1} / x_{1}, \ldots, V_{m} / x_{m}\right\} \rightarrow_{\beta_{v}}^{*} V\right)$;
- M is v-solvable (resp. β_{v}-solvable) if there are $n, m \in \mathbb{N}$, variables x_{1}, \ldots, x_{m} and N_{1}, \ldots, N_{n} $\in \Lambda$ such that $\left(\lambda x_{1} \ldots x_{m} \cdot M\right) N_{1} \cdots N_{n} \rightarrow_{v}^{*} I\left(\right.$ resp. $\left.\left(\lambda x_{1} \ldots x_{m} \cdot M\right) N_{1} \cdots N_{n} \rightarrow_{\beta_{v}}^{*} I\right)$.
- Theorem 31. Let M be a term:

1. M is v-potentially valuable if and only if M is β_{v}-potentially valuable;
2. M is v-solvable if and only if M is β_{v}-solvable.
[^1]Proof. In both points, the implication from right to left is trivial since $\rightarrow_{\beta_{v}} \subseteq \rightarrow_{\mathrm{v}}$. Let us prove the other direction.

1. Since M is v-potentially valuable, there are variables x_{1}, \ldots, x_{m} and $V, V_{1}, \ldots, V_{m} \in \Lambda_{v}$ (with $m \geq 0$) such that $M\left\{V_{1} / x_{1}, \ldots, V_{m} / x_{m}\right\} \rightarrow_{v}^{*} V$; then, there exists $V^{\prime} \in \Lambda_{v}$ such that $M\left\{V_{1} / x_{1}, \ldots, V_{m} / x_{m}\right\} \rightarrow_{\beta_{v}}^{*} V^{\prime}$ by Corollary 26.1 and because $\xrightarrow{h} \beta_{v} \subseteq \rightarrow_{\beta_{v}}$, therefore M is β_{v}-potentially valuable.
2. Since M is v-solvable, there exist variables x_{1}, \ldots, x_{m} and terms N_{1}, \ldots, N_{n} (for some $n, m \geq 0)$ such that $\left(\lambda x_{1} \ldots x_{m} \cdot M\right) N_{1} \cdots N_{n} \rightarrow_{v}^{*} I$; then, there exists $V \in \Lambda_{v}$ such that $\left(\lambda x_{1} \ldots x_{m} . M\right) N_{1} \cdots N_{n} \rightarrow_{\beta_{v}}^{*} V \xrightarrow{i \text { int }}{ }_{v}^{*} I$ by Corollary 26.1 and because $\xrightarrow{h} \beta_{v} \subseteq \rightarrow_{\beta_{v}}$. According to Remark $12.5, V=\lambda x . N$ for some $N \in \Lambda$ such that $N \rightarrow_{v}^{*} x$. By Corollary 26.1, there is $V^{\prime} \in \Lambda_{v}$ such that $N \xrightarrow{h}{ }_{\beta_{v}} V^{\prime} \xrightarrow{\text { int } *} x$, hence $V^{\prime}=x$ by Remark 12.5 again. Since ${ }^{h}{ }_{\beta_{v}} \subseteq \rightarrow_{\beta_{v}}, N \rightarrow_{\beta_{v}}^{*} x$ and thus $V=\lambda x . N \rightarrow_{\beta_{v}}^{*} I$, therefore M is β_{v}-solvable.

So, due to Theorem 31, the semantic (via a relational model) and operational (via two sub-reductions of \rightarrow_{v}) characterization of v-potential valuability and v-solvability given in [3, Theorems 24-25] is also a semantic and operational characterization of β_{v}-potential valuability and β_{v}-solvability. The difference is that in λ_{v}^{σ} these notions can be studied operationally inside the calculus, while it has been proved in $[13,14]$ that the β_{v}-reduction is too weak to characterize them: an operational characterization of β_{v}-potential valuability and β_{v}-solvability cannot be given inside λ_{v}. Hence, λ_{v}^{σ} is a useful, conservative and "complete" tool for studying semantic properties of λ_{v}.

6 Conclusions

In this paper we have proved a standardization theorem for the λ_{v}^{σ}-calculus introduced in [3]. The used technique is a notion of parallel reduction. Let us recall that parallel reduction in λ-calculus has been defined by Tait and Martin-Löf in order to prove confluence of the β-reduction, without referring to the difficult notion of residuals. Takahashi in [17] has simplified this technique and showed that it can be successfully applied to standardization. We would like to remark that our parallel reduction cannot be used to prove confluence of \rightarrow_{v}. Indeed, take $M=(\lambda x . L)\left((\lambda y . N)\left(\left(\lambda z . N^{\prime}\right) N^{\prime \prime}\right)\right) L^{\prime}, M_{1}=\left(\lambda x . L L^{\prime}\right)\left((\lambda y . N)\left(\left(\lambda z . N^{\prime}\right) N^{\prime \prime}\right)\right)$ and $M_{2}=\left((\lambda y \cdot(\lambda x \cdot L) N)\left(\left(\lambda z \cdot N^{\prime}\right) N^{\prime \prime}\right)\right) L^{\prime}:$ then $M \Rightarrow M_{1}$ and $M \Rightarrow M_{2}$ but there is no term M^{\prime} such that $M_{1} \Rightarrow M^{\prime}$ and $M_{2} \Rightarrow M^{\prime}$. To sum up, \Rightarrow does not enjoy the Diamond Property.

The standardization result allows us to formally verify the correctness of λ_{v}^{σ} with respect to the semantics of λ_{v}, so we can use λ_{v}^{σ} as a tool for studying properties of λ_{v}. This is a remarkable result: in fact some properties, like potential valuability and solvability, cannot be characterized in λ_{v} by means of β_{v}-reduction (as proved in [13, 14]), but they have a natural operational characterization in λ_{v}^{σ} (via two sub-reductions of \rightarrow_{v}).

We plan to continue to explore the call-by-value computation, using λ_{v}^{σ}. As a first step, we would like to revisit and improve the Separability Theorem given in [11] for λ_{v}. Still the issue is more complex than in the call-by-name, indeed in ordinary λ-calculus different $\beta \eta$-normal forms can be separated (by the Böhm Theorem), while in λ_{v} there are different normal forms that cannot be separated, but which are only semi-separable (e.g. I and $\lambda z .(\lambda u . z)(z z))$. We hope to completely characterize separable and semi-separable normal forms in λ_{v}^{σ}. This should be a first step aimed to define a semantically meaningful notion of approximants. Then, we should be able to provide a new insight on the denotational analysis of the call-by-value, maybe overcoming limitations as that of the absence of fully abstract filter models [14, Theorem 12.1.25]. Last but not least, an unexplored but challenging
research direction is the use of commutation rules to improve the call-by-value evaluation. We do not have concrete evidence supporting such possibility, but since λ_{v}^{σ} is strongly related to the calculi presented in $[7,1]$, which are endowed with explicit substitutions, we are confident that a sharp use of commutations can have a relevant impact in the evaluation.
__ References
1 Beniamino Accattoli and Luca Paolini. Call-by-Value Solvability, Revisited. In Tom Schrijvers and Peter Thiemann, editors, Functional and Logic Programming, volume 7294 of Lecture Notes in Computer Science, pages 4-16. Springer-Verlag, 2012.
2 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in logic and the foundation of mathematics. North Holland, 1984.
3 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-byValue Solvability. In Anca Muscholl, editor, Foundations of Software Science and Computation Structures, volume 8412 of Lecture Notes in Computer Science, pages 103-118. Springer-Verlag, 2014.
4 Karl Crary. A Simple Proof of Call-by-Value Standardization. Technical Report CMU-CS-09-137, Carnegie Mellon University, 2009.
5 Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North Holland, 1958.
6 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1-102, 1987.
7 Hugo Herbelin and Stéphane Zimmermann. An Operational Account of Call-by-Value Minimal and Classical lambda-Calculus in "Natural Deduction" Form. In Pierre-Louis Curien, editor, Typed Lambda Calculi and Applications, volume 5608 of Lecture Notes in Computer Science, pages 142-156. Springer-Verlag, 2009.
8 Roger Hindley. Standard and normal reductions. Transactions of the American Mathematical Society, pages 253-271, 1978.
9 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-byvalue, call-by-need and the linear lambda calculus. Theoretical Computer Science, 228(1-2):175-210, 1999.

10 Eugenio Moggi. Computational Lambda-Calculus and Monads. In Logic in Computer Science, pages 14-23. IEEE Computer Society, 1989.
11 Luca Paolini. Call-by-Value Separability and Computability. In Antonio Restivo, Simona Ronchi Della Rocca, and Luca Roversi, editors, Italian Conference in Theoretical Computer Science, volume 2202 of Lecture Notes in Computer Science, pages 74-89. Springer-Verlag, 2002.

12 Luca Paolini and Simona Ronchi Della Rocca. Parametric parameter passing lambdacalculus. Information and Computation, 189(1):87-106, 2004.
13 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value Solvability. Theoretical Informatics and Applications, 33(6):507-534, 1999. RAIRO Series, EDP-Sciences.
14 Luca Paolini and Simona Ronchi Della Rocca. The Parametric λ-Calculus: a Metamodel for Computation. Texts in Theoretical Computer Science: An EATCS Series. Springer-Verlag, 2004.

15 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer Science, 1(2):125-159, 1975.
16 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. Lisp and symbolic computation, 6(3-4):289-360, 1993.
17 Masako Takahashi. Parallel reductions in lambda-calculus. Information and Computation, 118(1):120-127, 1995.

[^0]: * This work was partially supported by LINTEL TO_Call1_2012_0085, i.e. a Research Project funded by the "Compagnia di San Paolo".

[^1]: ${ }^{1}$ Original Plotkin's definition of call-by-value observational equivalence (see [15]) also requires that $\mathrm{C}(M)$ and $\mathrm{C}(N)$ are closed terms, according to the tradition identifying programs with closed terms.

