
Observability for Pair Pattern Calculi
Antonio Bucciarelli1, Delia Kesner1, and
Simona Ronchi Della Rocca2

1 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS, Paris,
France

2 Dipartimento di Informatica, Università di Torino, Italy

Abstract
Inspired by the notion of solvability in the λ-calculus, we define a notion of observability for a
calculus with pattern matching. We give an intersection type system for such a calculus which
is based on non-idempotent types. The typing system is shown to characterize the set of terms
having canonical form, which properly contains the set of observable terms, so that typability
alone is not sufficient to characterize observability. However, the inhabitation problem associated
with our typing system turns out to be decidable, a result which – together with typability – allows
to obtain a full characterization of observability.

1998 ACM Subject Classification F.4.1 Lambda calculus and related systems, F.3.2 Operational
Semantics, F.4.1 Proof theory

Keywords and phrases Solvability, pattern calculi, intersection types, inhabitation

Digital Object Identifier 10.4230/LIPIcs.TLCA.2015.123

1 Introduction

In these last years there has been a growing interest in pattern λ-calculi [16, 11, 6, 12, 10, 15]
which are used to model the pattern-matching primitives of functional programming languages
(e.g. OCAML, ML, Haskell) and proof assistants (e.g. Coq, Isabelle). These calculi are
extensions of λ-calculus, where abstractions are written as λp.t, where p is a pattern specifying
the expected structure of the argument. In this paper we restrict our attention to pair patterns,
which are expressive enough to illustrate the challenging notion of solvability/observability
in the framework of pattern λ-calculi.

In order to implement different evaluation strategies, the use of explicit pattern-matching
becomes appropriate, giving rise to different languages with explicit pattern-matching [6, 7, 1].
In all of them, an application (λp.t)u reduces to t[p/u], where [p/u] is an explicit matching,
defined by means of suitable reduction rules, which are used to decide if the argument u
matches the pattern p. If the matching is possible, the evaluation proceeds by computing a
substitution which is applied to the body t. Otherwise, two cases arise: either a successful
matching is not possible at all, and then the term t[p/u] reduces to a failure, denoted by the
constant fail, or it could become possible after the application of some pertinent substitution
to the argument u, in which case the reduction is simply blocked. An example of failure is
caused by the term (λ〈z1, z2〉.z1)(λy.y), while a blocked reduction is caused by the term
(λ〈z1, z2〉.z1)y.

Inspired by the notion of solvability in the λ-calculus, we define a notion of observability
for a pair pattern calculus with explicit matching. A term t is said to be observable if there
is a head-context C such that C[t] reduces to a pair, which is the only data structure of
the language. This notion is conservative with respect to the notion of solvability in the
λ-calculus, i.e. t is solvable in the λ-calculus if and only if t is observable in our calculus.

© Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY

13th International Conference on Typed Lambda Calculi and Applications (TLCA’15).
Editor: Thorsten Altenkirch; pp. 123–137

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.123
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

124 Observability for Pair Pattern Calculi

Solvability in the λ-calculus is of course undecidable, but it has been characterized at least
in three different ways: syntactically by the notion of head-normal form [2], operationally by
the notion of head-reduction [2], and logically by an intersection type assignment system [3, 13].
The problem becomes harder when changing from the call-by-name to the call-by-value
setting. Indeed, in the call-by-value λ-calculus, there are normal forms that are unsolvable,
like the term (λz.∆)(xI)∆, where ∆ = λx.xx. The problem for the pair pattern calculus
is similar to that for the call-by-value, but even harder. As in the call-by-value setting,
an argument needs to be partially evaluated before being consumed. Indeed, in order to
evaluate an application (λp.t)u, it is necessary to verify if u matches the pattern p, and thus
the subterm u can be forced to be partially evaluated. However, while only discrimination
between values and non-values are needed in the call-by-value setting, the possible shapes of
patterns are infinite here.

The difficulty of the problem depends on two facts. First, there is no simple syntactical
characterization of observability: indeed, we supply a notion of canonical form such that
reducing to some canonical form is a necessary condition for being observable. But this is
not sufficient: canonical forms may contain blocking explicit matchings, so that we need to
know whether or not there exists a substitution being able to unblock simultaneously all
these blocked forms.

This theoretical complexity is reflected in the logical characterization we supply for
observability: a term t turns out to be observable if and only if it is typable, say with a
type of the shape A1 → A2 → ...→ An → α (where α is a product type), and all the types
Ai (1 ≤ i ≤ n) are inhabited. The inhabitation problem for idempotent intersection types
is known to be undecidable [17], but it has recently been proved that it is decidable in the
non-idempotent case [5]. More precisely, there is a sound and complete algorithm solving the
inhabitation problem of non-idempotent intersection types for the λ-calculus. In this paper,
we supply a type assignment system, based on non-idempotent intersection, which assigns
types to terms of our pair pattern calculus. We then extend the inhabitation algorithm given
in [5] to this framework, that is substantially more complicated, due to the explicit pattern
matching and the use of structural information of patterns in the typing rules. However,
the paper does not only show decidability of inhabitation for the pair pattern calculus, but
it uses the decidability result to derive a full characterization of observability, which is the
main result of the paper. We thus combine typability with inhabitation in order to obtain
an interesting characterization of the set of meaningful terms of the pair pattern calculus.

The paper is organized as follows. Sec. 2 introduces the pattern calculus. Sec. 3 presents
the type system and proves a characterization of terms having canonical forms by means
of typability. Sec. 4 discusses the relationship between observability and inhabitation and
Sec. 5 presents a sound and complete algorithm for the inhabitation problem associated to
our typing system. Sec. 6 shows a complete characterization of observability, and Sec. 7
concludes by discussing some future work.

2 The Pair Pattern Calculus

We now introduce the Λp-calculus, a generalization of the λ-calculus where abstraction is
extended to patterns and terms to pairs. Pattern matching is specified by means of an explicit
operation. Reduction is performed only if the argument matches the abstracted pattern.

Terms and contexts of the Λp-calculus are defined as follows:

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 125

(Patterns) p, q ::= x | 〈p, p〉
(Terms) t, u, v ::= x | λp.t | 〈t, t〉 | tt | t[p/t] | fail
(Contexts) C ::= � | λp.C | 〈C, t〉 | 〈t, C〉 | Ct | tC

where x, y, z range over a countable set of variables, and every pattern p is linear, i.e. every
variable appears at most once in p. We denote by Id the identity function λx.x. As
usual we use the abbreviation λp1 . . . pn.t1 . . . tm for λp1(. . . (λpn.((t1t2) . . . tm)) . . .), n ≥ 0,
m ≥ 1. Remark that every λ-term is a Λp-term.

The operator [p/t] is called an explicit matching. The constant fail denotes the failure
of the matching operation. Free and bound variables of terms are defined as expected,
in particular fv(λp.t) := fv(t) \ fv(p) and fv(t[p/u]) := (fv(t) \ fv(p)) ∪ fv(u). We write
p#q iff fv(p) and fv(q) are disjoint. As usual, terms are considered modulo α-conversion.
Given a context C and a term t, C[t] denotes the term obtained by replacing the unique
occurrence of � in C by t, allowing the capture of free variables of t. A head-context is a
context of the shape (λp1...pn.�)t1...tm (n,m ≥ 0).

The reduction relation of the Λp-calculus, denoted by →, is the contextual closure of
the following reduction rules:

(r1) (λp.t)u 7→ t[p/u] (r6) t[〈p1, p2〉/λy.u] 7→ fail
(r2) t[x/u] 7→ t{x/u} (r7) t[〈p1, p2〉/fail] 7→ fail
(r3) t[〈p1, p2〉/〈u1, u2〉] 7→ t[p1/u1][p2/u2] (r8) fail t 7→ fail
(r4) t[p/v]u 7→ (tu)[p/v] (r9) fail[p/t] 7→ fail
(r5) t[〈p1, p2〉/u[q/v]] 7→ t[〈p1, p2〉/u][q/v] (r10) λp.fail 7→ fail

(r11) 〈t, u〉v 7→ fail

where t{x/u} denotes the substitution of all the free occurrences of x in t by u. By α-
conversion, and without loss of generality, no reduction rule captures free variables. Thus
for example in rule r4 the bound and free variables of the term t[p/v]u are supposed to be
disjoint, so that the variables of p (which are bound in the whole term) cannot be free in u.
The reflexive and transitive closure of → is written →∗.

The rule (r1) triggers the pattern operation while rule (r2) performs substitution, rules
(r3), (r6) and (r7) implement (successful or unsuccessful) pattern matching. Rules (r8), (r9)
and (r10) deal with propagation of failure. Rules (r4) and (r5) may seem unnecessary, and
the calculus would be also confluent without them, but they are particularly useful for the
design of the inhabitation algorithm (see Sec. 5). Indeed, rule (r4) pushes head explicit
matchings out, and rule (r5) eliminates nested explicit matchings, i.e. matchings of the form
t[〈p1, p2〉/u[q/v]]. Notice that confluence would be lost if we allow (r5) on the more general
form: t[p/u[q/v]] 7→ t[p/u][q/v]. Indeed, the following critical pair could not be closed:
y[〈z1, z2〉/z] ∗

r5,r2
← y[x/u[〈z1, z2〉/z]]→r2 y.

I Lemma 1.
1. The reduction relation → is confluent.
2. Every infinite →-reduction sequence contains an infinite number of →r2-reduction steps.

The proof of the first item relies on the decreasing diagram technique [18]; that of the
second one is by induction on a suitable syntactic measure.

Canonical forms are terms defined by the following grammar:

J ::= λp.J | 〈t, t〉 | K | J [〈p, q〉/K] K ::= x | Kt

TLCA’15

126 Observability for Pair Pattern Calculi

A term t is in canonical form (or it is canonical), written cf , if it is generated by J , and it
has a canonical form if it reduces to a term in cf . Note that the cf of a term is not unique,
e.g. both 〈Id, Id Id〉 and 〈Id, Id〉 are cfs of (λxy.〈x, y〉) Id (Id Id). It is worth noticing that
cfs and normal forms do not coincide. For example, the terms λ〈x, y〉.(x(∆∆))[〈z1, z2〉/yId]
and 〈Id, Id Id〉 are in cf , but not in normal form, while fail is in normal form but not in
cf . Every head normal-form in the λ-calculus is a cf in the Λp-calculus.

On the pathway towards the definition of an adequate notion of solvability for the Λp-
calculus, we first recall the notion of solvability for the λ-calculus. A term t is solvable
iff there is a head-context C such that C[t] reduces to Id. It is clear that pairs have to be
taken into account in order to extend the notion of solvability to the pair pattern calculus.
When should a pair be considered as meaningful? At least two choices are possible: the
lazy semantics considers a pair as meaningful in itself, the strict one requires both of its
components to be meaningful. The first choice is adopted in this paper, since being a pair
is already an observable property, particularly sufficient to unblock an explicit matching,
independently from the observability of its components.

Thus, a term t is said to be observable iff there is a head-context C such that C[t]
reduces to a pair, i.e. C[t] →∗ 〈t1, t2〉, for some terms t1, t2 ∈ Λp. Thus for example, the
term 〈∆∆,∆∆〉, consisting of a pair of unsolvable terms ∆∆, is observable. This notion of
observability turns out to be conservative with respect to that of solvability for the λ-calculus
(see Theorem 23).

3 The Type System P

In this section we present a type system for the Λp-calculus, and we show that it characterizes
terms having canonical form.

The set T of types is generated by the following grammar:

α ::= o | ×1(τ) | ×2(τ) (product types)
σ, τ, π, ρ ::= α | A→ σ (strict types)
B ::= [σi]i∈I (I 6= ∅) (non-empty multiset types)
A ::= [] | B (multiset types)

where I is a finite set of indices. The arrow constructor is right associative. We consider a
unique type constant o, which can be assigned to any pair.

We write supp(A) to denote the support set of the multiset A, t for multiset union and ∈
to denote multiset membership. The product operation X on multisets is defined as follows:

[] X [] := [o]
[σi]i∈I X [ρj]j∈J := [×1(σi)]i∈I t [×2(ρj)]j∈J if I 6= ∅ or J 6= ∅

Remark that ti∈IAiX ti∈I A′i v ti∈I(AiXA′i), the multiset inclusion being strict for example
in the following case: ([] t [])X([] t []) = [o] @ [o, o] = ([]X[]) t ([]X[]).

The structure of a pattern describes its shape, it is defined as follows:

S(x) := []
S(〈p1, p2〉) := S(p1)XS(p2)

E.g. S(〈x, y〉) = [o], S(〈x, 〈y, z〉〉) = [×2(o)] and S(〈〈x, w〉, 〈y, z〉〉) = [×1(o),×2(o)]. Notice
that S(p) is nothing but a description of p seen as a binary tree whose leaves are distinct
variables, and whose nodes are labeled by the pair constructor. Indeed, each element of S(p)
specifies a maximal branch of such a tree, i.e. a branch whose last node is a pair constructor,
and whose children are both leaves (i.e. variables). S(p) should be understood as the multiset

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 127

x : B x : B
(varpat)

 x : []
(weakpat)

Γ p : A1 ∆ q : A2 p#q

Γ + ∆ 〈p, q〉 : A1XA2
(pairpat)

x : [π] ` x : π
(var)

Γ ` t : π Γ|p p : [σi]i∈I (σj ∈ S(p))j∈J I ∩ J = ∅
Γ \ Γ|p ` λp.t : [σk]k∈I∪J → π

(→ i)

Γ ` t : [σi]i∈I → π (∆i ` u : σi)i∈I
Γ +i∈I ∆i ` tu : π

(→ e)

` 〈t, u〉 : o
(emptypair)

Γ ` t : σ
Γ ` 〈t, u〉 : ×1(σ)

(pair1)
Γ ` u : τ

Γ ` 〈t, u〉 : ×2(τ)
(pair2)

Γ ` t : σ Γ|p p : [σi]i∈I (σj ∈ S(p))j∈J (∆k ` u : σk)k∈I∪J I ∩ J = ∅
(Γ \ Γ|p) +k∈I∪J ∆k ` t[p/u] : σ

(sub)

Figure 1 The type assignment system P.

of non depletable resources associated with p; the persistent character of these resources is
highlighted in the forthcoming typing system.

Typing environments, written Γ,∆, are functions from variables to multiset types,
assigning the empty multiset to almost all the variables. The domain of Γ, written dom(Γ), is
the set of variables whose image is different from []. We write Γ#∆ iff dom(Γ) ∩ dom(∆) = ∅.

I Notation 2. Given the environments {Γi}i∈I , we write +i∈IΓi for the environment which
maps x to ti∈IΓi(x). If I = ∅, the resulting environment is the one having an empty domain.
Note that Γ + ∆ and Γ +i∈I ∆i are just particular cases of the previous general definition.
When Γ#∆ we write Γ; ∆ instead of Γ + ∆. We write Γ \ x for the environment assigning []
to x, and acting as Γ otherwise; x1 :A1; . . . ; xn :An is the environment assigning Ai to xi, for
1 ≤ i ≤ n, and [] to any other variable; Γ|p denotes the environment such that Γ|p(x) = Γ(x),
if x ∈ fv(p), [] otherwise.

The type assignment system P (see Fig. 1) is a set of typing rules assigning strict
types of T to terms of Λp. We write Π . Γ ` t : σ (resp. Π . Γ p : A) to denote a typing
derivation ending in the sequent Γ ` t : σ (resp. Γ p : A), in which case t (resp. p) is
called the subject of Π; by abuse of notation, Γ ` t : σ (resp. Γ p : A) also denotes the
existence of some typing derivation ending in this sequent, in which case t (resp. p) is said
to be typable. The measure of a typing derivation Π, written meas(Π), is the number of
typing rules in Π.

Rules (var) and (→ e) are those used for λ-calculus in [5, 8]. Linearity of patterns is
guaranteed by the clause p#q in rule (pairpat). Rule (weakpat) is essential to type erasing
functions such as for example λx.Id. The rule (emptypair) types for example 〈∆∆,∆∆〉,
and thus (λ〈x, y〉.Id)〈∆∆,∆∆〉. Rules (pair1) and (pair2) type pairs having just one typed
component, whereas standard typed calculi with pairs (e.g. [6]) requires both components to
be typed. This is necessary to type terms like (λ〈x, y〉.x)〈Id,∆∆〉. Moreover, the standard
policy can be easily recovered from ours by typing a pair whose components are both typed
using (pair1) and (pair2) successively.

TLCA’15

128 Observability for Pair Pattern Calculi

The rules (→ i) and (sub) are the most subtle ones 1. Here is where the structural types
come into play: they can be used ad libitum (whence the notation (σj ∈ S(p))j∈J), thanks
to non depletable nature of the information provided by the structure of patterns (whereas
the type information of variables should be understood as depletable). Concerning more
specifically the rule (sub): in order to type t[p/u], on one hand we need to type t and on
the other one we need to check that p and u can be assigned the same types. Since the
system is relevant, we need to collect the environments used in all the premises typing p and
u. Remark however that there is a lack of symmetry between patterns and terms: while the
only information we can use about terms is the one concerning their types, a pattern p has
not only a type (description of its depletable resources), but also an intrinsic shape that is
completely described by the structural (non depletable) types in the set S(p).

Actually the structural information on patterns is necessary, in particular, to guaran-
tee subject reduction for rule (r5). Indeed, given t = λw.(zz′)[〈z, z′〉/(yx)[〈x, x′〉/w]] →r5

λw.(zz′)[〈z, z′〉/(yx)][〈x, x′〉/w] = t′, and Γ = y : [[] → ×1(τ), [π] → ×2(σ)], we have that
Γ ` t : [o,×1(π)] → σ, but Γ ` t′ : [o,×1(π)] → σ holds only by using the fact that
o ∈ S(〈x, x′〉). This counterexample shows that a clear tension appears between the rewriting
rule (r5) and the use of the structural set S(p) in the typing rules (→ i) and (sub). Elimin-
ating (r5) from the reduction system would certainly simplify the typing system, but would
significantly complicate the inhabitation algorithm that will be presented in Sec. 5.

I Example 3. The following (partially described) derivation is valid:

(a) x : [α] ` x : α (b) x : [α] 〈x, y〉 : [×1(α)]
(c) (o ∈ S(〈x, y〉)) (d) z : [o] ` z : o (e) z : [×1(α)] ` z : ×1(α)

z : [o,×1(α)] ` x[〈x, y〉/z] : α
(sub)

Using only the hypothesis (a), (b) and (e) we get another valid typing derivation ending
in z : [×1(α)] ` x[〈x, y〉/z] : α which does not use structural information about the pattern
〈x, y〉.

The system is relevant, in the sense that only the used premises are registered in the
typing environments. This property, formally stated in the following lemma, will be an
important technical tool used to develop the inhabitation algorithm.

I Lemma 4 (Relevance).
If Γ p : A, then dom(Γ) ⊆ fv(p).
If Γ ` t : σ, then dom(Γ) ⊆ fv(t).

Proof. By induction on the typing derivations. J

Some useful properties will be needed in the sequel. In particular, the next technical
lemma says that, given different types Ai for a given pattern p, it is always possible to split
ti∈IAi into a bunch of resource types A and another one of structural types A′.

I Lemma 5. Let I 6= ∅. If (Γi p : Ai)i∈I , then there exist A, A′ such that
1. A t A′ = ti∈IAi,
2. +i∈IΓi p : A

1 Notice that “Γ”, “Γ|p” and “Γ \ Γ|p” in rules (→ i) and (sub) could be replaced by “Γ1; Γ2”, “Γ2” and
“Γ1”, respectively, only if dom(Γ1) ∩ fv(p) = ∅. Otherwise, for instance, λx.x would be typable with type
[] → σ.

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 129

3. A = [] implies A′ = [],
4. supp(A′) ⊆ S(p),
5. meas(+i∈IΓi p : A) ≤ Σi∈Imeas(Γi p : Ai).

Proof. By induction on p. J

The following lemma can be shown by induction on typing derivations; it is used in the
forthcoming subject reduction property.

I Lemma 6 (Substitution Lemma). If Π . Γ; x : [ρi]i∈I ` t : τ , and (Θi .∆i ` u : ρi)i∈I then
Π′ . Γ +i∈I ∆i ` t{x/u} : τ where meas(Π′) < meas(Π) +

∑
i∈I meas(Θi).

Notice that, in the process of assigning a type to a term t, some subterms of t may be
left untyped. Typically, this happens when t contains occurrences of non typable terms,
like in λx.x(∆∆). We are then going to define the notion of typed occurrence of a typing
derivation, which plays an essential role in the rest of this paper: indeed, thanks to the use of
non-idempotent intersection types, a combinatorial argument based on a measure on typing
derivations (cf. Lem. 9.1), allows to prove the termination of reduction of redexes occurring
in typed occurrences of their respective typing derivations.

Let us then define an occurrence of a subterm u in a term t as a context C such that
C[u] = t. Then, given a typing derivation Π . Γ ` t : σ, an occurrence of a subterm of t is a
typed occurrence of Π if and only if it is the subject of a subderivation of Π. More precisely:

I Definition 7. Given a type derivation Π, the set of typed occurrences of Π, written
toc(Π), by induction on the last rule of Π.

If Π ends with (var), then toc(Π) := {�}.
If Π ends with (pair1) with subject 〈u, v〉 and premise Π′, then
toc(Π) := {�} ∪ {〈C, v〉 | C ∈ toc(Π′)}.
If Π ends with (pair2) with subject 〈u, v〉 and premise Π′ then
toc(Π) := {�} ∪ {〈u, C〉 | C ∈ toc(Π′)}.
If Π ends with (→ i) with subject λp.u and premise Π′ then
toc(Π) := {�} ∪ {λp.C | C ∈ toc(Π′)} .
If Π ends with (→ e) with subject tu and premises Π1 and Πk (k ∈ K) with subjects t
and u respectively, then toc(Π) := {�}∪{tC | C ∈ toc(Πk), k ∈ K}∪{Cu | C ∈ toc(Π1)}.
If Π ends with (sub) with subject t[p/u] and premises Π1 and Πk (k ∈ K) with subjects
t and u respectively, then toc(Π) := {�} ∪ {C[p/u] | C ∈ toc(Π1)} ∪ {t[p/C] | C ∈
toc(Πk), k ∈ K}.

I Example 8. Given the following derivations Π and Π′, the occurrences � and �y belong
to both toc(Π) and toc(Π′) while x� belongs to toc(Π) but not to toc(Π′).

Π .
x : [[τ]→ τ] ` x : [τ]→ τ y : [τ] ` y : τ

x : [[τ]→ τ], y : [τ] ` xy : τ
Π′ .

x : [[]→ τ] ` x : []→ τ

x : [[]→ τ] ` xy : τ

Given Π . Γ ` t : τ , t is said to be in Π-normal form, also written Π-nf, if for every
typed occurrence C ∈ toc(Π) such that t = C[u], the subterm u is not a redex.

The system P enjoys both subject reduction and subject expansion. In particular, thanks
to the use of multisets, subject reduction decreases the measure of the derivation, in case a
substitution is performed by rule (r2) and the redex is typed. This property allows for a
simple proof of the “only if” part of the characterization theorem.

TLCA’15

130 Observability for Pair Pattern Calculi

I Lemma 9.
1. (Weighted Subject Reduction) If Π . Γ ` t : τ and t → v, then Π′ . Γ ` v : τ and

meas(Π′) ≤ meas(Π). Moreover, if the reduced redex is (r2) and it occurs in a typed
occurrence of Π, then meas(Π′) < meas(Π).

2. (Subject Expansion) If Γ ` v : σ and t→ v, then Γ ` t : σ.

Proof. 1. By induction on t→ v using Lemmas 5, 6 and 4.
2. By induction on t→ v.

J

We are now ready to provide the logical characterization of terms having canonical form.

I Theorem 10 (Characterization). A term t is typable iff t has a canonical form.

Proof. (if) We reason by induction on the grammar defining the canonical forms. We
first prove that for all type σ and for all K-canonical form t, t can be typed by σ. In
fact every K-canonical form is of the shape xt1...tn, for n ≥ 0. It is easy to check that
x : []→ ...→ []︸ ︷︷ ︸

n

→ σ ` xt1...tn : σ. Let t be a J -canonical form. If t = 〈u, v〉 then by

rule (emptypair) ` 〈u, v〉 : o. If t = λp.u, then by induction u can be typed and the
result follows from rule (→ I). Let t = t′[〈p, q〉/v], where t′ (resp. v) is a J (resp. K)
canonical form. By the i.h. there are Γ, σ such that Γ ` t′ : σ. Moreover, it is easy to
see that Γ|〈p,q〉 〈p, q〉 : [σi]i∈I , for some [σi]i∈I . Since v is a K-canonical form, then
∆i ` v : σi for all i ∈ I, as shown above. Thus Γ +i∈I ∆i ` t′[〈p, q〉/v] : σ by rule (sub)
with J = ∅.
(only if) Let t be a typable term, i.e. Π . Γ ` t : σ. Consider a reduction strategy ST
that always chooses a typed redex occurrence. By Lem. 9.1 and Lem. 1.2 the strategy ST
always terminates. Let t′ be a normal-form of t for the strategy ST , i.e. t reduces to t′

using ST , and ST applied to t′ is undefined. We know that Π′ . Γ ` t′ : σ by Lem. 9.1.
Then, by definition of ST , t′ has no typed redex occurrence. A simple induction on t′

allows to conclude that it is a canonical form. J

4 From canonicity to observability

We proved in the previous section that system P gives a complete characterization of terms
having canonical forms. The next theorem proves that system P is complete with respect to
observability.

I Theorem 11. Observability implies typability.

Proof. If t is observable, then there is a head context C such that C[t] reduces to 〈u, v〉, for
some u and v. Since all pairs are typable, the term C[t] is typable by Lem. 9.2. Remember
that C[t] = (λp1 . . . pn.t)t1...tm so that t is typable too, by easy inspection of the typing
system. J

Unfortunately, soundness does not hold, i.e. the set of observable terms is strictly included
in the set of terms having canonical form, as shown below.

I Example 12. The term t1 = λx.Id[〈y, z〉/x][〈y′, z′〉/xId] is canonical, hence typable
(by Thm. 10), but not observable. In fact, it is easy to see that there is no term u
such that both u and uId reduce to pairs. A less trivial example is the term t2 =
λx.Id[〈y, z〉/x〈Id, Id〉][〈y′, z′〉/xIdId], which is canonical, hence typable, but not observ-
able, as proved in the next lemma.

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 131

I Lemma 13. There is no closed term u s.t. both u〈Id, Id〉 and uIdId reduce to pairs.

Proof. By contradiction. Indeed, assume that there exist a closed term u such that both
u〈Id, Id〉 and uIdId reduce to pairs. Since pairs are always typable, then u〈Id, Id〉 and
uIdId are typable by Lem. 9.2. In any of the typing derivations of such terms, u occurs in a
typed position, so that u turns out to be also typable.
Now, since u is typable and closed, then it reduces to a (typable and closed) canonical form
v ∈ J by Thm. 10. But v cannot be in K, which only contains open terms. Moreover,
v cannot be a pair, otherwise u〈Id, Id〉 →∗ v〈Id, Id〉 →∗ 〈v1, v2〉〈Id, Id〉 →∗ fail which
contradicts (by Lem. 1) the fact that u〈Id, Id〉 reduces to a pair. We then have two possible
forms for v.
If v = s[〈p1, p2〉/k], where s ∈ J and k ∈ K. Then k is an open term which implies v is an
open term. Contradiction.
If v = λp.s, where s ∈ J , then p is necessarily a variable, say z, since otherwise vId reduces
to fail, and hence uIdId→∗ vIdId→∗ fail, which contradicts (by Lem. 1) the fact that
uIdId reduces to a pair. We analyze the possible forms of s.

If s is a pair, then uIdId →∗ (λz.s)IdId →∗ fail, which contradicts (by Lem. 1) the
fact that uIdId reduces to a pair.
If s is an abstraction, then u〈Id, Id〉 →∗ (λz.s)〈Id, Id〉 which reduces to an abstraction,
contradicting (by Lem. 1) the fact that u〈Id, Id〉 reduces to a pair.
If s is in K, then s = xt1 . . . tn with n ≥ 0. Remark that z 6= x is not possible since
v = λz.s is closed. Then z = x. If s = z, then uIdId reduces to Id which contradicts (by
Lem. 1) the fact that uIdId reduces to a pair. Otherwise, s = zt1 . . . tn with n ≥ 1, and
thus u〈Id, Id〉 reduces to 〈Id, Id〉t1 . . . tn →∗ fail, which contradicts again (by Lem. 1)
the fact that u〈Id, Id〉 reduces to a pair.
If s is s′[〈p1, p2〉/k], with k ∈ K, then k = zt1 . . . tn with n ≥ 0, since any other head
variable for k would contradict v closed. Now, in the first case we have uIdId reduces to
fail which contradicts (by Lem. 1) the fact that uIdId reduces to a pair. Otherwise,
k = zt1 . . . tn with n ≥ 1 implies u〈Id, Id〉 reduces to fail which contradicts (by Lem. 1)
the fact that u〈Id, Id〉 reduces to a pair. J

The first non-observable term t1 in Ex. 12 could be ruled out by introducing a notion of
compatibility between types and requiring multiset types to be composed only by compatible
strict types. Unfortunately, we claim that a compatibility relation defined syntactically, let
us call it comp, cannot lead to a sound and complete characterization of observability. By
“defined syntactically” we mean that the value of comp(σ → σ′, ρ→ ρ′) should only depend
on the values of comp(σ, ρ) and comp(σ′, ρ′). Another basic requirement of comp would be
that every product type is incompatible with any functional type. The second non-observable
term t2 in Ex. 12 is appropriate to illustrate our claim, by keeping in mind that any pair of
types assignable to x in any typing derivation for t2 need to be incompatible.

Indeed, the shortest typing for t2 above is obtained by assigning to x the two types []→ o

and []→ []→ o, and in order to state the incompatibility between them it would be necessary
to define that comp(σ, ρ) and ¬comp(σ′, ρ′) imply ¬comp([σ]→ σ′, [ρ]→ ρ′). Another typing
for t2 is obtained by assigning to x the two types [o]→ o and [τ]→ [τ]→ o respectively, where
τ = [o]→ o, so that ¬comp(σ, ρ) and ¬comp(σ′, ρ′) should imply ¬comp([σ]→ σ′, [ρ]→ ρ′).
We conclude that ¬comp(σ′, ρ′) alone should imply ¬comp([σ] → σ′, [ρ] → ρ′). However,
arrow types [σ]→ σ′ and [ρ]→ ρ′ having incompatible right-hand sides may very well be
compatible. For instance, letting σ = σ′ = o and ρ = ρ′ = [o]→ o, one gets two types for Id

TLCA’15

132 Observability for Pair Pattern Calculi

which need of course to be compatible. Hence, a syntactic characterization of such a notion
of compatibility seems out of reach.

Fortunately, there exists a sound and complete semantical notion of compatibility between
types, obtained a posteriori as follows: given two strict types π1 and π2, build the corres-
ponding sets of inhabitants T(∅, π1) and T(∅, π2), using the inhabitation algorithm presented
in Sec. 5. Then π1 and π2 are semantically compatible if and only if T(∅, π1) ∩ T(∅, π2) is
non-empty.

While the inhabitation problem for (idempotent) intersection types is undecidable [17], it
becomes decidable for non-idempotent intersection types [5], which is just a subsystem of
our typing system P introduced in Sec. 3. We will prove in the following that inhabitation is
also decidable for the non-trivial extension P . We will then use this result for characterizing
observability in the pattern calculus without referring to a complete syntactic characterization,
which is not possible in this framework, as illustrated by Example 12.

5 Inhabitation for System P

We now show a sound and complete algorithm to solve the inhabitation problem for System
P. Given a strict type σ, the inhabitation problem consists in finding a closed term t such
that ` t : σ is derivable. We extend the problem to multiset types by defining A to be
inhabited if and only if there is a closed term t such that ` t : σi for every σi ∈ A. These
notions will naturally be generalized later to non-closed terms.

We already noticed that the system P allows to type terms containing untyped subterms
through the rule (→ e) with I = ∅ and the rule (sub) with I = J = ∅. In order to identify
inhabitants in such cases we introduce a term constant Ω to denote a generic untyped subterm.
Our inhabitation algorithm produces approximate normal forms (a, b, c), also written
anf , defined as follows:

a, b, c ::= Ω | N N ::= λp.N | 〈a, b〉 | L | N [〈p, q〉/L]
L ::= x | La

Note that anfs do not contain redexes, differently from canonical forms. In particular,
thanks to the reduction rule (r4) (resp. (r5)), they do not contain head (resp. nested) explicit
matchings. This makes the inhabitation algorithm much more intuitive and simpler.

I Example 14. the term λ〈x, y〉.(x(IdId))[〈z1, z2〉/yId] is canonical but not an anf , while
λ〈x, y〉.(xΩ)[〈z1, z2〉/yId] is an anf .

Anfs are ordered by the smallest contextual order ≤ such that Ω ≤ a, for any a. We also
write a ≤ t when the term t is obtained from a by replacing each occurrence of Ω by a term
of Λp: For example xΩΩ ≤ x(Id∆)(∆∆) is obtained by replacing the first (resp. second)
occurrence of Ω by Id∆ (resp. ∆∆).

Let A(t) = {a | ∃u t→∗ u and a ≤ u} be the set of approximants of the term t, and let∨
denote the least upper bound with respect to ≤. We write ↑i∈I ai to denote the fact that∨
{ai}i∈I does exist. It is easy to check that, for every t and a1, . . . an ∈ A(t), ↑i∈{1,...,n} ai.

An anf a is a head subterm of b if either b = a or b = cc′ and a is a head subterm of
c. System P can also be trivially extended to give types to anfs, simply assuming that no
type can be assigned to the constant Ω. It is easy to check that, if Γ ` a : σ and a ≤ b (resp.
a ≤ t) then Γ ` b : σ (resp. Γ ` t : σ).

Given Π . Γ ` t : τ , where t is in Π-nf (cf. Sec. 3), A(Π) is the minimal approximant b of
t such that Π . Γ ` b : τ . Formally, given Π . Γ ` t : σ, where t is in Π-nf, the minimal
approximant of Π, written A(Π), is defined by induction on meas(Π) as follows:

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 133

A(Γ ` x : ρ) = x; A(Γ ` 〈t, u〉 : o) = 〈Ω,Ω〉.
If Π . Γ ` λp.t : A → ρ follows from Π′ . Γ′ ` t : ρ, then A(Π) = λp.A(Π′), t being in
Π′-nf.
If Π . Γ ` 〈t, u〉 : ×1(τ) follows from Π′ . Γ ` t : τ , then A(Π) = 〈A(Π′),Ω〉, t being in
Π′-nf. Similarly for a pair of type ×2(τ).
If Π.Γ = Γ′+i∈I∆i ` tu : ρ follows from Π′.Γ′ ` t : [σi]i∈I → ρ and (Π′i.∆i ` u : σi)i∈I ,
then A(Π) = A(Π′)(

∨
i∈I A(Π′i))

If Π . Γ = Γ′ +i∈I ∆i ` t[p/u] : τ follows from Π′ . Γ′′ ` t : τ and (Ψi .∆i ` u : ρi)i∈I ,
then A(Π) = A(Π′)[p/

∨
i∈I A(Ψi)]

Remark that, in the application case of the definition above, the anf corresponding to
I = ∅ is A(Π′)Ω. Moreover, in the last case, p cannot be a variable, t being in Π-nf. A
simple inspection of the typing rules for shows that in this case I 6= ∅.

I Example 15. Consider the following derivation Π:

y : [[]→ o] ` y : []→ o

y : [[]→ o] ` y(∆∆) : o
 〈z1, z2〉 : o

x : [[]→ o] ` x : []→ o

x : [[]→ o] ` xId : o
x : [[]→ o]; y : [[]→ o] ` y(∆∆)[〈z1, z2〉/xId] : o
` λxy.y(∆∆)[〈z1, z2〉/xId] : [[]→ o]→ [[]→ o]→ o

The minimal approximant of Π is λxy.yΩ[〈z1, z2〉/xΩ].

A simple induction on meas(Π) allows to show the following:

I Lemma 16. If Π . Γ ` t : σ and t is in Π-nf, then Π . Γ ` A(Π) : σ.

5.1 The inhabitation algorithm
The inhabitation algorithm is presented in Fig. 2. As usual, in order to solve the problem for
closed terms, it is necessary to extend the algorithm to open ones, so, given an environment Γ
and a strict type σ, the algorithm builds the set T(Γ, σ) containing all the anfs a such that
there exists a derivation Π . Γ ` a : σ, with a = A(Π), then stops2. Thus, our algorithm is
not an extension of the classical inhabitation algorithm for simple types [4, 9]. In particular,
when restricted to simple types, it constructs all the anfs inhabiting a given type, while
the original algorithm reconstructs just the long η-normal forms. The algorithm uses four
auxiliary predicates, namely

PV(A), where V is a finite set of variables, contains the pairs (Γ, p) such that (i) Γ p : A,
and (ii) p does not contain any variable in V.
TI(Γ, [σi]i∈I), contains all the anfs a =

∨
i∈I ai such that Γ = +i∈IΓi, ai ∈ T(Γi, σi) for

all i ∈ I, and ↑i∈I ai.
H∆

b (Γ, σ) . τ contains all the anfs a such that b is a head subterm of a, and such that if
b ∈ T(∆, σ) then a ∈ T(Γ + ∆, τ).
HI∆

b (Γ, [σi]i∈I) . [ρi]i∈I contains all the anf a =
∨
i∈I ai such that ∆ = +i∈I∆i, Γ =

+i∈IΓi, ai ∈ H∆
b (Γ, σi) . ρi and ↑i∈I ai.

2 It is worth noticing that, given Γ and σ, the set of anfs a such that there exists a derivation Π.Γ ` a : σ
is possibly infinite. However, the subset of those verifying a = A(Π) is finite; they are the minimal ones,
those generated by the inhabitation algorithm (this is proved in Lem. 19).

TLCA’15

134 Observability for Pair Pattern Calculi

Note that the algorithm has different kinds of non-deterministic behaviours, i.e. different
choices of rules can produce different results. Indeed, given an input (Γ, σ), the algorithm
may apply a rule like (Abs) in order to decrease the type σ, or a rule like (Head) in order to
decrease the environment Γ. Moreover, every rule (R) which is based on some decomposition
of the environment and/or the type, like (Subs), admits different applications. In what
follows we illustrate the non-deterministic behaviour of the algorithm. For that, we represent
a run of the algorithm as a tree whose nodes are labeled with the name of the rule applied.

I Example 17. We consider different inputs of the form (∅, σ), for different strict types σ.
For every such input, we give an output and the corresponding run.
1. σ = [[α]→ α]→ [α]→ α.

a. output: λxy.xy, run: Abs(Abs(Head(Prefix(TUn(Head(Final)), Final)), Varp), Varp).
b. output: λx.x, run: Abs(Head(Final), Varp).

2. σ = [[]→ α]→ α. output: λx.xΩ, run: Abs(Head(Prefix(TUn, Final)), Varp).
3. σ = [[o]→ o, o]→ o.

a. output: λx.xx, run: Abs(Head(Prefix(TUn(Head(Final)), Final)), Varp).
b. Explicit substitutions may be used to consume some, or all, the resources in [[o]→ o, o]

output: λx.x[〈y, z〉/x〈Ω,Ω〉], run:
Abs(Subs(HUn(Prefix(TUn(Pair), Final)), Pairp(Weakp, Weakp), Head(Final)), Varp).

c. There are four additional runs, producing the following outputs:
λx.x〈Ω,Ω〉[〈y, z〉/x],
λx.〈Ω,Ω〉[〈y, z〉/xx],
λx.〈Ω,Ω〉[〈y, z〉/x][〈w, s〉/x〈Ω, Ω〉],
λx.〈Ω,Ω〉[〈y, z〉/x〈Ω,Ω〉][〈w, s〉/x].

Along the recursive calls of the inhabitation algorithm, the parameters (type and/or
environment) decrease strictly, for a suitable notion of measure, so that every run is finite:

I Lemma 18. The inhabitation algorithm terminates.

5.2 Soundness and completeness

We now prove soundness and completeness of our inhabitation algorithm.

I Lemma 19. a ∈ T(Γ, σ) ⇔ ∃Π . Γ ` a : σ such that a = A(Π).

Proof. The “only if” part is proved by induction on the rules in Fig. 2, and the “if” part
is proved by induction on the definition of A(Π). In both parts, additional statements
concerning the predicates of the inhabitation algorithm other than T are required, in order
to strenghten the inductive hypothesis. J

I Theorem 20 (Soundness and Completeness).
1. If a ∈ T(Γ, σ) then, for all t such that a ≤ t, Γ ` t : σ.
2. If Π.Γ ` t : σ then there exists Π′.Γ ` t′ : σ such that t′ is in Π′-nf, and A(Π′) ∈ T(Γ, σ).

Proof. Soundness follows from Lem. 19 (⇒) and the fact that Γ ` a : σ and a ≤ t imply
Γ ` t : σ. For completeness we first apply Lem. 9.1 that guarantees the existence of
Π′ . Γ ` t′ : σ such that t′ is in Π′-nf, and then Lem. 16 and Lem. 19 (⇐). J

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 135

x /∈ V
(∅; x) ∈0 PV([])

(Weakp)
x /∈ V

(x : B; x) ∈0 PV(B)
(Varp)

(Γ; p) ∈i PV(A1) (∆; q) ∈j PV(A2) p#q

(Γ; ∆; 〈p, q〉) ∈1 PV(A1XA2)
(Pairp)

a ∈ T(Γ; ∆, τ) A = A1 t A2 (∆; p) ∈i Pdom(Γ)(A1) supp(A2) ⊆ S(p)
λp.a ∈ T(Γ, A→ τ)

(Abs)

(ai ∈ T(Γi, σi))i∈I ↑i∈I ai∨
i∈I

ai ∈ TI(+i∈IΓi, [σi]i∈I)
(TUn)

(ai ∈ H∆i
b (Γi, σi) . ρi)i∈I ↑i∈I ai∨

i∈I
ai ∈ HI+i∈I∆i

b (+i∈IΓi, [σi]i∈I) . [ρi]i∈I
(HUn)

〈Ω,Ω〉 ∈ T(∅, o)
(Pair)

a ∈ T(Γ, τ)
〈a,Ω〉 ∈ T(Γ,×1(τ))

(Prod1)
a ∈ T(Γ, τ)

〈Ω, a〉 ∈ T(Γ,×2(τ))
(Prod2)

a ∈ Hx:[σ]
x (Γ, σ) . τ

a ∈ T(Γ + (x : [σ]), τ)
(Head)

σ = τ

a ∈ H∆
a (∅, σ) . τ

(Final)

Γ = Γ0 + Γ1 b ∈ TI(Γ0, A) a ∈ H∆+Γ0
cb (Γ1, σ) . τ

a ∈ H∆
c (Γ, A→ σ) . τ

(Prefix)

Γ = Γ0 + Γ1 c ∈ HIx:B
x (Γ0, B) . F(B) F(B) = A1 t A2(∗)

(∆, p) ∈1 Pdom(Γ0+Γ1+(x:B))(A1) supp(A2) ⊆ S(p) b ∈ T(Γ1; ∆, τ)
b[p/c] ∈ T(Γ + (x : B), τ)

(Subs)

(*) where the operator F() is defined as follows:
F(α) := α F(A→ τ) := F(τ) F([]) := [] F([σi]i∈I) := [F(σi)]i∈I

Figure 2 The inhabitation algorithm.

6 Characterizing Observability

We are now able to state the main result of this paper, i.e. the characterization of observability
for the pattern calculus. The following lemma assures that types reflect correctly the structure
of the data types.

I Lemma 21. Let t be a closed and typable term, then
If t has functional type, then t reduces to an abstraction.
If t has product type, then t reduces to a pair.

Proof. Let t be a closed and typable term. By Thm. 10 we know that t reduces to a (closed)
canonical form in J . The proof is by induction on the maximal length of such reduction
sequences.

If t is already a canonical form, we analyze all the cases.
If t is a variable, then this gives a contradiction with t closed.
If t is a function, then the property trivially holds.

TLCA’15

136 Observability for Pair Pattern Calculi

If t is a pair, then the property trivially holds.
If t is an application, then t has the form xt1 . . . tn. Therefore at least x belongs to the
set of free variables of t, which leads to a contradiction with t closed.
If t is a closure, i.e. t = u[〈p1, p2〉/v], where v ∈ K has the form xt1 . . . tn, then at least
x belongs to the set of free variables of t, which leads to a contradiction with t closed.

Otherwise, t → t′ →∗ u, where u is in J . The term t′ is also closed and typable
(Lem. 9.1), then the i.h. gives the desired result for t′, so the property holds also for t. J

I Theorem 22 (Characterizing Observability). A term t is observable iff Π . x1 : A1; . . . ; xn :
An ` t : B1 → . . . → Bm → α, where n ≥ 0,m ≥ 0, α is a product type and all
A1, . . . An, B1, . . . Bm are inhabited.

Proof. The left-to-right implication: if t is observable, then there exists a head-context C
such that C[t]→∗ 〈u, v〉. Since ` 〈u, v〉 : o, we get Π′. ` C[t] : o by Lem. 9.2. By definition
C[t] = (λp1...λpn.t)u1...um, so Π has a subderivation Π′. ` λp1...λpn.t : B1 → . . .→ Bm → o

(by rule (→ e)), where Bi is inhabited by ui (1 ≤ i ≤ m). Since n ≤ m, Π′ has a subderivation
Π′′ . Γ ` t : Bn+1 → . . . → Bm → o (by rule (→ i)), where Γ|pi

 pi : Bi (1 ≤ i ≤ n). The
result follows since x1 : A1, . . . , .xl : Al p : B and B is inhabited implies that all the Ai
are inhabited. The right-to-left implication: if A1, . . . An, B1, . . . Bm are all inhabited, then
there exist u1, . . . un, v1, . . . vm such that ` ui : σji for every type σji of Ai (1 ≤ i ≤ n) and
` vi : ρji for every type ρji of Bi (1 ≤ i ≤ m). Let C = (λx1 . . . xn.�)u1 . . . unv1 . . . vn be
a head-context. We have ` C[t] : α, which in turn implies that C[t] reduces to a pair, by
Lem. 21. Then the term t is observable by definition. J

The notion of observability is conservative with respect to that of solvability in λ-calculus.

I Theorem 23 (Conservativity). A λ-term t is solvable in the λ-calculus if and only if t is
observable in Λp.

Proof. (if) Take an unsolvable λ-term t so that t does not have head normal-form. Then
t (seen as a term of our calculus) has no canonical form, and thus t is not typable by
Thm. 10. It turns out that t is not observable in Λp by Thm. 22.
(only if) Take a solvable λ-term t so that there exist a head-context C such that C[t]
reduces to Id, then it is easy to construct a head context C′ such that C′[t] reduces to a
pair (just take C′ = C 〈t1, t2〉 for some terms t1, t2). J

7 Conclusion and Further Work

We propose a notion of observability for pair pattern calculi which is conservative with
respect to the notion of solvability for λ-calculus.

We provide a logical characterization of observable terms by means of typability and
inhabitation.

Further work will be developed in different directions. As we already discussed in Sec. 2,
different definitions of observability would be possible. We explored the one based on a
lazy semantics, but it would be also interesting to obtain a full characterization based on
a strict semantics. Another point to be developed is the definition of a suitable notion of
head reduction, which, despite its relative simplicity, turn out to be quite cumbersome. On
the semantical side, it is well known that non-idempotent intersection types can be used to
supply a logical description of the relational semantics of λ-calculus [8, 14]. We would like
to start from our type assignment system for building a denotational model of the pattern

A. Bucciarelli, D. Kesner, and S. Ronchi Della Rocca 137

calculus. Last but not least, a challenging question is related to the characterization of
observability in a more general framework of pattern λ-calculi allowing the patterns to be
dynamic [10].

References
1 Thibaut Balabonski. On the implementation of dynamic patterns. In Eduardo Bonelli,

editor, HOR, volume 49 of EPTCS, pages 16–30, 2010.
2 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies

in logic and the foundation of mathematics. North-Holland, Amsterdam, revised edition,
1984.

3 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. The Journal of Symbolic Logic, 48(4):931–
940, 1983.

4 C. Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics. PhD thesis,
University of Wales Swansea, 1979.

5 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. The inhabitation
problem for non-idempotent intersection types. In Josep Díaz, Ivan Lanese, and Davide
Sangiorgi, editors, TCS, LNCS. Springer, 2014. To appear.

6 Serenella Cerrito and Delia Kesner. Pattern matching as cut elimination. Theoretical
Computer Science, 323(1-3):71–127, 2004.

7 Horatiu Cirstea, Germain Faure, and Claude Kirchner. A rho-calculus of explicit constraint
application. Higher-Order and Symbolic Computation, 20(1-2):37–72, 2007.

8 Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and inter-
section types. CoRR, abs/0905.4251, 2009.

9 J. Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Amsterdam, 2008.

10 Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Programming,
19(2):191–225, 2009.

11 Wolfram Kahl. Basic pattern matching calculi: A fresh view on matching failure. In
Yukiyoshi Kameyama and Peter Stuckey, editors, FLOPS, volume 2998 of LNCS, pages
276–290. Springer, 2004.

12 Jan-Willem Klop, Vincent van Oostrom, and Roel de Vrijer. Lambda calculus with patterns.
Theoretical Computer Science, 398(1-3):16–31, 2008.

13 Jean Louis Krivine. Lambda-Calculus, Types and Models. Masson, Paris, and Ellis Horwood,
Hemel Hempstead, 1993.

14 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Logical relational lambda-
models. To appear in Mathematical Structures in Computer Science.

15 Barbara Petit. A polymorphic type system for the lambda-calculus with constructors.
In Pierre-Louis Curien, editor, Typed Lambda Calculi and Applications, 9th International
Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings, volume 5608 of
Lecture Notes in Computer Science, pages 234–248. Springer, 2009.

16 Simon Peyton-Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, Inc., 1987.

17 Pawel Urzyczyn. The emptiness problem for intersection types. Journal of Symbolic Logic,
64(3):1195–1215, 1999.

18 Vincent van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

TLCA’15

	Introduction
	The Pair Pattern Calculus
	The Type System P
	From canonicity to observability
	Inhabitation for System P
	The inhabitation algorithm
	Soundness and completeness

	Characterizing Observability
	Conclusion and Further Work

