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Abstract
Recently a new connection between proof theory and formal language theory was introduced. It
was shown that the operation of cut elimination for proofs in first-order predicate logic involving
Π1-cuts corresponds to computing the language of a particular class of regular tree grammars.
The present paper expands this connection to the level of Π2-cuts. Given a proof π of a Σ1
formula with cuts only on Π2 formulæ, we show there is associated to π a natural context-free
tree grammar whose language is finite and yields a Herbrand disjunction for π.
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1 Introduction

The computational content of proofs is a central topic of proof theory. In intuitionistic
first-order logic the existential witness property states that the provability of ∃xF entails
the existence of some ground term t such that F (x/t) is provable. The analogue of this
property in classical logic is Herbrand’s theorem [12] (see also [5]). In its simplest version
Herbrand’s theorem states that if ∃xF is valid and F quantifier-free there exist closed terms
t1, . . . , tk such that

∨k
i=1 F (x/ti) is a tautology. Such formulæ, quantifier-free disjunctions

of instances, are hence also called Herbrand disjunctions. Herbrand’s theorem applies not
only to existential but arbitrary first-order formulæ, providing a tautology by replacing each
non-prenex quantifier with a suitable finite disjunction or conjunction of instances. Provided
one is willing to speak about provability instead of validity Herbrand’s theorem even extends
to classical higher-order logic, see for example [25].

A Herbrand disjunction can be read off directly from a cut-free proof though proofs with
cut may be non-elementarily smaller than the shortest Herbrand disjunction [30, 26, 27].
Therefore, in general, cut elimination (or an equivalent normalisation process) is necessary
in order to obtain a Herbrand disjunction. However, if one is only interested in the witness
terms of a Herbrand disjunction and not in the complete cut-free proof then it would be
desirable to circumvent the cumbersome process of cut elimination.

For instance, in [13, 14] it was shown that a proof π ` ∃xF in which all cut formulæ have
at most one quantifier induces a (totally rigid acyclic) tree grammar Gπ, of size no greater
than the size of the proof, with a finite language that, when interpreted as a collection of
witness terms, forms a Herbrand disjunction for ∃xF (see Figure 2).
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A(α)
∀xA
...

Γ,∀xA

t1, t2, . . . , tk

...
∆,∃xĀ

cut
Γ,∆

Figure 1 Π1 cut.

π ` ∃xF c.e.−−−−→ π′ `cf ∃xF

definition
y yHerbrand extraction

Gπ (of size ≤ |π|) L−−−−→ L(Gπ) ⊇ H(π′)

L(Gπ): language of Gπ H(π′): Herbrand set of π′

Figure 2 Proof grammars.

Grammars for proofs with only cuts of the form ∃xA or ∀xA with A quantifier free are
remarkably simple. Let π be such a proof with end sequent ∃xF where F is quantifier free.
Suppose u1, u2, . . . , um are the witnesses to the existential quantifier as they appear in π.
The induced grammar Gπ consists of the production rules i) σ → F (u1) | F (u2) | . . . | F (um)
where σ is the starting symbol of the grammar, and ii) α→ t1 | t2 | · · · | tk for every Π1 cut
in π of the form given in Figure 1, where α is the eigenvariable of the cut and t1, t2, . . . , tk
are witness terms of existential quantifier in the right subproof.

1.1 Contributions
In this paper we show how the correspondence between proofs and grammars can be extended
to the level of Π2 cuts. This class of cuts is particularly important for computational
applications: a Π2 formula can be read as a specification of a program and its proof as
providing an (non-deterministic) algorithm in line with the Curry–Howard correspondence.

We consider Π2-proofs in which all cut formulæ have at most one quantifier of each
sort i.e. of the form ∀x∃yA or ∀xA with A quantifier free. It turns out that these proofs
correspond to (rigid) context-free tree grammars:

I Theorem 1. Let π be a Π2-proof of a Σ1 formula F . There is an associated rigid context-
free tree grammar Gπ (whose number of production rules is bounded by the size of π) with a
finite language yielding a Herbrand disjunction for F .

In fact, if we consider proofs in which every universal introduction rule is immediately
followed by a cut or an existential introduction (henceforth called simple proofs) we have

I Theorem 2. Let π0, π1, . . . , πk be a sequence of simple Π2-proofs such that πi+1 is obtained
from πi by an application of a cut reduction rule (as in Figure 4) to a subproof of πi. For
every i ≤ k, L(Gπ0) ⊇ L(Gπi). In particular, if the proof πk contains only quantifier-free
cuts L(Gπ0) ⊇ H(πk).

Rigid tree languages were first introduced in [21, 22] with applications to verification in mind.
Later in [14] rigid regular grammars were defined by restricting the admissible derivations
in the grammar with an equality constraint. In this paper we extend the notion of rigidity
to context-free grammars. It plays an important role in obtaining a concise grammar for our
proofs. For a Π2-proof π, we prove the language of the induced rigid context-free grammar
Gπ has a bound double exponential in the size of π (see Theorem 10). This bound is optimal
as it matches the blow up from cut elimination.

Structure of the article. In Section 2 we fix the calculus and cut reduction steps, and define
the class of proofs under consideration. Section 3 develops the theory of rigid context-free
tree grammars. In Section 4 we present the proof grammars induced by Π2-proofs: an
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Axioms: A, Ā for A an atomic formula
Inference rules:

Γ, A,B
∨Γ, A ∨B

Γ, A ∆, B
∧

Γ,∆, A ∧B

Γ, A[x/α]
∀Γ, ∀xA

Γ, A[x/s]
∃Γ,∃xA

Γ, A ∆, Ā
cut

Γ,∆

Γ w
Γ,∆

Γ,∆,∆∗ c
Γ,∆

Figure 3 Axioms and rules of sequent calculus.

elementary grammar is given in Section 4.1 to motivate the definition laid out in Section
4.2. Section 5 establishes the preservation of the language of our proof grammars under
transitive closure of cut reduction steps. In Section 6 we conclude by describing future work
and potential applications of our results and techniques.

1.2 Related work
In [9] Gerhardy and Kohlenbach adapt Shoenfield’s variant of Gödel’s Dialectica interpreta-
tion to a system of pure predicate logic by explicitly adding decision-by-case constants to the
target language. The resulting λ-term is first normalised and then used to directly read off
a Herbrand disjunction. Heijltjes [10] and McKinley [24] study graphical formalisms of local
reductions in classical first-order logic to derive a normal form corresponding to a cut-free
proof from which a Herbrand disjunction is obtained. An approach similar to [10, 24] in the
formalism of expansion trees [25] can be found in [19]. Historically, Hilbert’s ε-calculus [20]
is the first formalism which allows a step-wise computation of a Herbrand disjunction in a
way that abstracts from the propositional layer of predicate logic.

Like the aforementioned formalisms, the results presented in this paper allow the com-
putation of a Herbrand disjunction in a way that bypasses literal cut elimination. The
novelty of our approach lies in the fact that this is achieved via formal grammars. On the
one hand this has the consequence that standard problems from formal language theory
assume a proof-theoretic meaning and hence standard algorithms can be used to solve the
corresponding proof-theoretic problems. For example, an algorithm for solving the mem-
bership problem for an adequate class of grammars also solves the following proof-theoretic
problem (for the corresponding class of proofs): given a proof π and a term t, is t a witness
obtainable by cut-elimination from π? Usually, these ‘induced’ algorithms have a smaller
asymptotic complexity (polynomial to at most exponential time; see e.g. [23, 22]) than the
naive proof-theoretic algorithms which rely on explicitly computing the cut-free proof(s)
(and need iterated-exponential time). On the other hand, the strong grip on the struc-
ture of a Herbrand disjunction afforded by a formal grammar opens the door to interesting
theoretical and applied investigations (see Section 6).

2 Proof calculus

We work with a Tait-style (one-sided) sequent calculus for first-order logic with explicit
weakening and contraction rules. A proof is a finite tree obtained from the axioms and rules
laid out in Figure 3. We use capital Greek letters Γ, ∆, etc. for multisets of formulæ, Ā to
denote the dual of the formula A obtained by de Morgan laws, and A[x/s] for the formula

TLCA’15
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Axiom:
π

Γ, A A, Ā
−−−−−−−−−−−−−−−− cutΓ, A

 
π

Γ, A

Boolean:

π0

Γ, A

π1

∆, B
−−−−−−−−−−−−−−−−−−− ∧Γ,∆, A ∧B

π2

Π, Ā, B̄
−−−−−−−−−− ∨
Π, Ā ∨ B̄

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

 π0

Γ, A

π1

∆, B

π2

Π, Ā, B̄
−−−−−−−−−−−−−−−−−−−−− cut

∆,Π, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆,Π

Quantifier:

π0

Γ, A[x/α]
−−−−−−−−−−− ∀Γ,∀xA

π1

∆, Ā[x/s]
−−−−−−−−−−− ∃
∆, ∃x Ā

−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

 
π0[α/s]

Γ, A[x/s]

π1

∆, Ā[x/s]
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

Weakening:

π0

Γ′
−−−− wΓ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−− cutΓ,∆

 
π0

Γ′
−−−−− wΓ,∆

Contraction:

π0

Γ′,Γ, A,Γ∗, A∗
−−−−−−−−−−−−−−−−− c

Γ′,Γ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ′,Γ,∆

 

π0

Γ′,Γ, A,Γ∗, A∗
π1

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ′,Γ,Γ∗, A∗,∆

π∗1

∆∗, Ā∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ′,Γ,Γ∗,∆,∆∗
−−−−−−−−−−−−−−−−−− c

Γ′,Γ,∆

Unary inf.:

π0

Γ′, A
−−−−− rΓ, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−− cutΓ,∆

 

π0

Γ′, A

π1

∆, Ā
−−−−−−−−−−−−−−−−−−− cut

Γ′,∆
−−−−−− rΓ,∆

Binary inf.:

π0

Γ′
π1

Γ′′, A
−−−−−−−−−−−−−−−−−− rΓ, A

π2

∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−− cutΓ,∆

 
π0

Γ′

π1

Γ′′, A

π2

∆, Ā
−−−−−−−−−−−−−−−−−−− cut

Γ′′,∆
−−−−−−−−−−−−−−−−−−−−−−−−− rΓ,∆

Figure 4 One-step cut reduction and permutation rules.

obtained from A by replacing x with the term s assuming this will not create any variable
capture. Γ,∆ and Γ, A denote respectively the disjoint union of Γ,∆ and Γ, {A}.

In the (∀) rule, α is called the eigenvariable and must not appear free in Γ,∀xA; in (∃)
rule the term s is assumed to be free for x; and in the contraction rule (c), the set ∆∗
denotes a renaming of ∆. Those formulæ which are explicitly mentioned in the premise
of an inference rule are said to be principal in the rule applied, for example A and B are
principal in (∧) rule, every formula from ∆∗ is principal in (c), and there are no principal
formulæ in the weakening rule (w).

We assume all proofs are regular namely, all quantifiers’ eigenvariables are distinct and
different from any free variables. We use the following naming convention for proofs through-
out the paper: lower-case Greek letters α, β, γ, etc. represent eigenvariables; x, y for bound
variable symbols; and π, π′, etc. for proofs. π[α/s] is the result of replacing throughout the
proof π each occurrence of the variable symbol α by the term s. We write π ` Γ to express
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π is a proof of Γ and EV(π) to denote the set of eigenvariables in π. For a position p in
(the tree) π, π|p denotes the subproof of π at position p with the convention that π|〈〉 = π,
and π|p0 and π|p1 are respectively the left (or only) subproof and right subproof of π|p. We
write q < p if q is a proper prefix of p.

It is useful to isolate a particular class of Π2-proofs:

I Definition 3 (Simple Π2-proof). A simple Π2-proof is a proof in which i) each sequent is a
finite set of prenex Π2 formulæ, ii) the conclusion is a set of closed Π1 and Σ1 formulæ, iii)
cut formulæ feature at most one quantifier of each sort, and iv) every universally quantified
formula appearing above a cut is principal in the inference directly after its introduction
(either a cut or existential introduction).

Condition (ii) above is stipulated primarily for expository purposes. Note that every se-
quent can be transformed into a sequent containing only Σ1 formulæ by Skolemization and
prenexification. In contrast, it is impossible to Skolemize cut formulæ in a proof since the
two (dual) occurrences of the cut formula would yield dual Skolemizations. Also note that
condition (iv) does not restrict provability, as any proof satisfying (i)–(iii) can be modified
using simple rule permutations to also satisfy (iv). This transformation will not increase the
size (number of inference rules) of the proof.

Cut reduction and Herbrand sets

The standard cut reduction rules are given in Figure 4. For proofs π, π′ we write π  π′

if π′ is the result of applying one of the rules to π (and not to a subproof). Notice that in
contraction reduction a subproof is duplicated and care is taken to rename the eigenvariables
(expressed by annotating the proof/sequent/formula in question by an asterisk) to maintain
regularity.

Let π be a cut-free proof of Γ and suppose A ∈ Γ has the form ∃x1 · · · ∃xkB with B

quantifier free. If
∨

(s1,...,sk)∈X B[x1/s1, . . . , xk/sk] is the Herbrand disjunction for A read
off from π, we call X the Herbrand set of A in π and define H(π,A) = X. In addition,
H(π) := {{A} ×H(π,A) | A ∈ Γ ∩ Σ1}.

Running example

We consider a formal proof of the pigeonhole principle for two boxes via the infinite pi-
geonhole principle. The question of the computational content of this proof is attributed
to G. Stolzenberg in [6]. A variety of analytic methods have since been applied to this
proof [11, 33, 3, 2] and its generalisations [29, 28]. Despite its relatively short and symmet-
ric nature it allows us to adequately demonstrate grammars for proofs with Π2 cuts.

Let f : N→ {0, 1} be a total Boolean function, let Ii express that there are infinitely many
m ∈ N for which f(m) = i and T express that there exists m < n such that f(m) = f(n).
A consequence of the law of excluded middle is I0 ∨ I1. Moreover Ii implies T for each i:
assuming Ii, there exists m ≥ 0 and n ≥ m + 1 for which f(m) = f(n) = i. Combining
these observations we conclude that T holds.

The following formalises the above argument. The formal language, Σ, consist of two
unary function symbols f, s, one binary function symbol M, a constant symbol 0 and a
binary relation ≤. We make the following definitions and abbreviations:

T = ∃x∃y(x < y ∧ fx = fy),
Ii = ∀x∃y(x ≤ y ∧ fy = i) for i ∈ {0, 1} where 0 = 0 and 1 = s0,
Γ = {∀x∀y(x ≤ Mxy ∧ y ≤ Mxy),∀x(fx = 0 ∨ fx = s0)},

TLCA’15
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Γ, Iα,Mαα̂0 , I α̂,Mαα̂1 ∃∗
Γ, Iα0 , I α̂1 ∀Γ, Iα0 , I1

∆, Tβ̂,β̂′ , Ī
0,β̂
1 , Īsβ̂,β̂′

1
∃∗

∆, T, Ī1 cut
Γ,∆, T, Iα0 ∀Γ,∆, T, I0

∆, Tβ,β′ , Ī0,β
0 , Īsβ,β′

0 ∃∗
∆, T, Ī0 cut,c

Γ,∆, T

Figure 5 Simple Π2-proof π∞ of pigeonhole principle. The inference rules labelled ∃∗ represent
finitely many existential introduction rules (the order of which is unimportant).

∆ = {∀x∀y∀z(x = y ∧ z = y → x = z),∀x∀y(sx ≤ y → x < y))},
Isi and Is,ti denote, respectively, ∃y(s ≤ y ∧ fy = i) and (s ≤ t ∧ ft = i),
Ts,t denotes (s < t ∧ fs = ft).

The intended interpretation of the symbols is: f represents the (arbitrary) function f , s the
successor function on N, ≤ the standard ordering and M the binary max function.

A formal proof of the pigeonhole principle is given by the simple Π2-proof in Figure 5
which we name π∞. For brevity only eigenvariables and witnesses of the quantifiers and in-
stances of the existential formula T are displayed in π∞. The proof uses about 50 application
of the axioms and rules of the calculus but the only cuts in π∞ are the two Π2 cuts shown
in the figure. Two normal forms of the proof (of size ∼200) have been computed in a case
study [33] from which one can read off the Herbrand set {(0, 1), (1, 2), (2, 3), (0, 2), (1, 3)} (up
to interpretation of the logical symbols) relative to the formula T . Once we have introduced
our grammars we shall see how this Herbrand set can be directly computed from π∞.

3 Context-free tree grammars

In [14] and elsewhere a refinement of regular tree grammars was studied that mimics the
construction of terms appearing in cut-elimination for first-order logic with Π1 cuts. These
grammars were called rigid tree grammars and are equivalent to the notion of rigid automata
introduced and explored in [21, 22]. In this section we provide a generalisation to the class
of context-free tree grammars corresponding to Π2-proofs.

Given a ranked alphabet Σ, we let Terms(Σ) denote the set of terms in the simply-typed
λ-calculus built from Σ. For a T ∈ Terms(Σ) we write Pos(T ) for the set of positions in
term (tree) T . For p ∈ Pos(T ), T |p is the subterm of T at position p.

A context-free tree grammar (CFG) is a tuple G = 〈N,Σ, σ,Pr〉 where N is a set of typed
non-terminals of order at most 1, σ ∈ N is a designated start symbol (of base-type ι), Σ is
a ranked alphabet, called terminals, disjoint from N , and Pr consists of pairs (a, T ) (called
production rules and written a→ T ) where a ∈ N and T ∈ Terms(Σ∪N) that has the same
type as a. Given a CFG G we assume G = 〈NG ,ΣG , σG ,PrG〉. If the set NG of non-terminals
contains only symbols of order 0, G is a regular tree grammar.

Let d be a sequence 〈ρi, pi〉i<k of pairs of production rules of a CFG G and positions,
and S and T terms. We call d a derivation from S to T , written d : S → T , if there exist
terms (Ni)i≤k such that N0 = S, Nk = T , and for each 0 ≤ i < k,
1. ρi is a production rule of G and pi ∈ Pos(Ni),
2. For ρi = (a→ S), we have Ni|pi = a and Ni+1 = Ni[pi/S], namely the result of replacing

the sub-term of Ni at position pi by S (renaming bound variables if necessary).



B. Afshari, S. Hetzl, and G. E. Leigh 7

The sequence of terms (Ni)i≤k is uniquely determined by d and S, whence we may write
d(i) for Ni. The length of d, lh(d), is k. We say T is derivable from S if there exists a
derivation d : S → T . G is acyclic if for every non-terminal a ∈ NG and every derivation
d : a→ T with lh(d) > 0, a does not appear in T .

The language of a CFG G is defined as L(G) = {T ∈ Terms(ΣG) | ∃d : σG → T}. When
comparing languages of CFGs it is convenient to work modulo β-convertibility. Thus for
grammars G, H, we write L(G) ⊆ L(H) to express that for every S ∈ L(G) there exists a
β-equivalent T ∈ L(H).

3.1 Rigidity
Let G be a CFG, suppose C is a transitive binary relation on NG , and R is a designated
set of non-terminals. A derivation d = 〈(ai → Si), pi〉i<lh(d) : S → T induces a natural
equivalence relation on the positions in T corresponding to connectedness in parse trees: for
j0, j1 < lh(d), let j0 ∼d j1 iff there exist i0 < j0, j1 such that
1. pi0 ≤ pj0 , pj1 ,
2. aj0 = aj1 ∈ R,
3. for every k ∈ {0, 1} and i0 < i < jk < lh(d), if pi ≤ pjk then ajk 6C ai.
In other words, two occurrences of a non-terminal a ∈ R in (the natural tree representation
of) the derivation d are considered connected if there is no non-terminal of higher priority
between them and their closest common ancestor.

Of particular interest to us is the class of derivations that respect their own ∼ relation.

I Definition 4. Let G be a CFG and suppose C is a transitive ordering on NG and R ⊆ NG .
A derivation d = 〈ρi, pi〉i<k : S → T in G is rigid with respect to (C, R) if for every i, j < k,
i ∼d j implies T |pi = T |pj .

A rigid context-free tree grammar is a structure G = 〈NG , RG ,CG ,ΣG , σG ,PrG〉 such that
〈NG ,ΣG , σG ,PrG〉 is a CFG, RG ⊆ NG and CG is a transitive order on NG . RG is the set of
rigid non-terminals of G and CG is the priority ordering of G. If RG = NG then G is called
totally rigid.

Given a rigid CFG G and a derivation d in its underlying CFG, we call d rigid if it is
rigid with respect to (CG , RG). The language of a rigid CFG G, L(G), is the collection of
terms derivable from rigid derivations starting from σG :

L(G) = {T ∈ Terms(ΣG) | ∃d : σG → T and d is (CG , RG)-rigid}.

Note the language of a rigid CFG is a set of closed (well-typed) base-type λ-terms.

I Example 5. Let G be the rigid CFG with start symbol σ, non-terminals σ, α and γ,
rigid non-terminals R, ordering C, terminal symbols of appropriate arity, and production
rules σ → f(α, γ, γ), γ → g(γ) | a, and α → γ. If γ 6∈ R we have, unsurprisingly, L(G) =
{f(gm(a), gn(a), go(a)) | m,n, o ≥ 0}. Otherwise,
1. if γ C γ C α, L(G) = {f(gm(a), gn(a), gn(a)) | m,n ≥ 0};
2. if γ C γ 6C α, L(G) = {f(gm(a), gm(a), gm(a)) | m ≥ 0};
3. if γ 6C γ 6C α, L(G) = {f(a, a, a)}.

In contrast to the grammar presented in Example 5, acyclic tree grammars must have a
finite language. If the grammar is also totally rigid its language has size essentially double
exponential in the size of the grammar.

I Lemma 6. If G is an acyclic totally rigid CFG then |L(G)| ≤ |PrG |2
|NG|−1 .

TLCA’15
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Proof. Suppose G satisfies the above requirements; let m = |PrG | and n = |NG |−1. Since G
is acyclic we may further assume that CG is irreflexive. We argue, by induction on n, that
the set {T ∈ Terms(ΣG) | ∃d : σG → T and d is rigid} has size bounded by m2n .

The base case is n = 0. By the main assumption of the lemma every derivation d : σG →
T ∈ Terms(ΣG) has length 1, of which there are no more than m. For the induction step,
suppose n = n0 + 1. Let N = NG \ {a} where a 6= σG is chosen such that a 6CG b for all
b ∈ NG \{σG}. Suppose d : σG → T ∈ Terms(ΣG) is a rigid derivation in G. Since G is acyclic
d can be re-ordered to have the form d0d1 where d0 : σG → S and d1 : S → T = S[a/S′] for
appropriate terms S and S′, such that the non-terminal a is not rewritten in d0 and not
introduced by a production rule in d1. The induction hypothesis implies there is no more
than m2n0 possibilities for each of S and S′, whence there are ≤ m2n possibilities for T . J

4 Proof grammars

In this section we present rigid context-free grammars that arise from simple Π2-proofs. We
first define elementary proof grammars which are a natural extension of the rigid regular
grammars arising from Π1-proofs introduced in [14]. As we shall see, elementary proof
grammars can have an infinite language and are not immediately suitable for producing
Herbrand disjunctions. A proper form of proof grammars is then defined in Section 4.2 by
adding further structure.

4.1 Elementary proof grammars
Let π ` Γ be a simple Π2-proof and Γ a set of closed Σ1 and Π1 formulæ. The elementary
grammar for π is a rigid CFG, denoted Eπ, of the form 〈Nπ, Rπ,Cπ,Σπ, σ,Prπ〉 where

Nπ consists of the eigenvariables appearing in π (of base-type) as well as a starting symbol
σ and a symbol κp (of function type ι→ ι) for each position p in π at which the rule cut
is applied;
Rπ = EV(π);
Σπ is the term language of first-order logic expanded by

a symbol τi,F of base-type for each formula ∀x0 · · ·xkF ∈ Γ ∩Π1 and each i ≤ k,
a symbol F of function type with k arguments for each ∃x0 · · · ∃xkF ∈ Γ ∩ Σ1;

Cπ is the transitive ordering on non-terminals and Prπ the set of production rules spe-
cified below.

Each cut occurring in π, as well as each quantified formula in the conclusion Γ, yields
production rules in Eπ. In addition, the relative order of the quantifier introduction rules
and each cut on a genuine Π2 formula influence the rigidity ordering Cπ. We begin by
specifying the rules induced by Γ.

For each formula ∃x0 · · · ∃xkF ∈ Γ with F quantifier-free, and each sequence of terms
〈si〉i≤k that appear in π (together) as the witnesses of the sequence of existential quantifiers
〈∃xi〉i≤k, Eπ features a production rule σ → Fs0 · · · sk. For each formula ∀x0 · · · ∀xkF ∈ Γ
with F quantifier-free and each i ≤ k, Eπ contains the production rule αi → τi,F where αi
is the (unique) eigenvariable for the quantifier ∀xi appearing in π. See Figure 6.

The remaining non-terminals attain their production rules based on the structure of
the cut in which they are used. Let p be a position in π, A a quantifier-free formula, α, δ
eigenvariables and s, t terms. Suppose π|p has the form of either cuts given in Figure 7. In
the proof on the left the two distinguished appearances of the formula ∃yA[x/α] as well as
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π ` Γ

Π′, F [x0/s0, . . . , xk/sk]
∃

Π′, ∃xkF [x0/s0, . . . , xk−1/sk−1]
...

Γ = Π,∃x0 · · · ∃xkF

Π′,∀xi+1 · · · ∀xkF [x0/α0, . . . , xi/αi]
∀

Π′,∀xi · · · ∀xkF [x0/α0, . . . , xi−1/αi−1]
...

Γ = Π, ∀x0 · · · ∀xkF
Eπ σ → Fs0 · · · sk αi → τi,F

Gπ σ → Fsσ0 · · · sσk αi → τi,F

Figure 6 Start and terminal production rules in Eπ and Gπ.

Subproof π|p

Π′′, A[x/α, y/s]
∃

Π′′,∃yA[x/α]
...

Π′,∃yA[x/α]
∀

Π′,∀x∃yA

∆′, Ā[x/t, y/β]
∀

` ∆′, ∀yĀ[x/t] (†)
∃

∆′, ∃x∀yĀ
...

∆, ∃x∀yĀ
cutΠ,∆

Π′, A[x/α]
∀

Π′, ∀xA

∆′, Ā[x/t]
∃

∆′, ∃xĀ
...

∆, ∃xĀ
cutΠ,∆

Rules in Eπ α→ t β → κpt κp → λα s α→ t

Rules in Gπ

α→ λx1 · · ·λxkα t
α

β → λx1 · · ·λxkβ . κ
px1 · · ·xkαt

β

κp → λx1 · · ·λxkα+1 s
α

α→ λx1 · · ·λxkα tα

Figure 7 Internal production rules in Eπ and Gπ.

the two distinguished occurrences of ∃x∀yĀ are assumed to be on the same trace, as are, in
the right proof, the two occurrences of ∃xĀ. The grammar includes the production rules

α→ t β → κpt κp → λα s

and we set a Cπ α Cπ κp Cπ b for each a ∈ EV(π|qα) and b ∈ EV(π|qβ) where qα and qβ
are, respectively, the positions in π at which the variables α and β were eliminated (that
is p0 and the position marked by (†) in Figure 7). In the scenario pictured on the right in
which the cut is performed on a Π1 formula, only a single production rule for α is needed.

I Example 7 (Elementary proof grammar for π∞). Let Eπ∞ = 〈N∞, R∞,C∞,Σ∞, σ,Pr∞〉.
The non-terminals of Eπ∞ comprise: starting symbol σ; rigid non-terminals: α, α̂, β, β′, β̂
and β̂′; non-rigid non-terminals: κ0 for the topmost cut on I1 and κ (=κ〈〉) for the lower
cut on I0. In Σ∞ we have the term symbols and also terminal symbols for each formula in
the conclusion (note there are no universals in the conclusion of π∞). The induced priority
ordering is α̂ C∞ κ0 C∞ {β̂′, β̂} C∞ α C∞ κ〈〉 C∞ {β′, β}.

In this example we will focus only on the highlighted formula T and the corresponding
symbol T of type ι → ι → ι in Σ∞. Pr∞ has the following rules. The production rules on
the left (right) hand side are read from the cut on I0 (I1).

σ → Tββ′ σ → Tβ̂β̂′

α→ 0 | sβ β → κ0 α̂→ 0 | sβ̂ β̂ → κ00

κ→ λα. Mαα̂ β′ → κ(sβ) κ0 → λα̂. Mαα̂ β̂′ → κ0(sβ̂)

In general, the production rules of the elementary proof grammar Eπ may be cyclic and
therefore permit infinite derivations. In the case of Eπ∞ , for example, this is demonstrated
by the sequence of non-terminals β, κ, α̂, β̂, κ0, α, β.

TLCA’15
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To avoid enumerating unnecessary terms into the language of the grammar certain de-
rivations should be disallowed. While it is possible to provide a characterisation of the
derivations that yield Herbrand sets, the work is beyond the scope of this paper and will
not be presented here. Instead, in the following section, we define acyclic proof grammars
for which standard (rigid) derivations suffice. This is achieved by raising the types of non-
terminals to make the necessary dependencies between non-terminals explicit.

4.2 Typed proof grammars
As before, let π ` Γ be a simple Π2-proof and Γ a set of closed prenex Σ1 and Π1 formulæ.
The (proof) grammar for π is a rigid CFG denoted by Gπ. Gπ = 〈Nπ, Rπ,Cπ,Σπ, σ,Prπ〉
has the same definition as the elementary grammar but with two essential differences:
1. Eigenvariables are no longer necessarily base-type symbols and their type depends on

their relationship to other eigenvariables;
2. Production rules are modified accordingly by type-raising operations.

Types of non-terminals in Gπ
The type of a given non-terminal will be determined by the relation of its position in π to
other eigenvariables in π. This relation will be defined as a well-founded ordering ≺π on the
elements of Nπ and formalises the (potential) dependency of one non-terminal on another.
As well as fixing the type of a non-terminal, the ordering can be seen as the basis of the
priority ordering Cπ used in recognising rigid derivations.

For each position p in π, if π|p has the form

Π′, A[x/α]
∀Π′,∀xA ∆,∃xĀ

cut
π|p ` Π,∆

we set α ≺π κp and α ≺π a for every a ∈ EV(π|p0) ∪ {κq | p0 ≤ q}. Notice that for
a, b ∈ EV(π), a ≺π b implies b Cπ a, and if we write ≺a for the set {b ∈ Nπ | b ≺π a},
≺a is a set of eigenvariables linearly ordered by ≺π. Moreover, for α appearing as above
≺κp= ≺α ∪ {α}.

The type of a non-terminal is chosen to be its order-type in ≺π. Let ka = |≺a|. The type
of a ∈ Nπ is that of a function over the base-type taking ka arguments. So in particular σ
is of base-type, as is any eigenvariable relating to a universal quantifier in the conclusion.

I Example 8 (Types of non-terminals in π∞). In Gπ∞ we have the same set of non-terminals
symbols as in Eπ∞ but they are now assigned the following types. The ordering ≺∞ on
N∞ gives ≺∞ = {(α, α̂), (α̂, κ0), (α, κ0), (α, β̂), (α, β̂′), (α, κ〈〉)} so α, β, β′ and σ all have
base-type, α̂, β̂, β̂′ and κ〈〉 have type ι → ι and κ0 has type ι → ι → ι. Note, the ordering
C∞ specifying rigidity is unchanged from Eπ∞ .

Production rules in Gπ
As mentioned earlier, the production rules of Gπ have the form as in Eπ. We now explain
how the change in the type of non-terminals is to be taken into account. This is achieved
by means of a type-lifting operation that either lifts an occurrence of a non-terminal to its
appropriate type or replaces it with a variable symbol in case it should be abstracted.

For each γ ∈ EV(π), let γ1 ≺π · · · ≺π γkγ+1 = γ be the sequence of eigenvariables
enumerating the elements of {ξ | ξ �π γ}. Also let {xi} be a fresh set of variable symbols.
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Given α ∈ EV(π) ∪ {σ}, we define an operation S 7→ Sα on terms in Σπ ∪Nπ that lifts the
occurrence of non-terminals to their required type: we set (ST )α = SαTα, (λy.S)α = λy.Sα,
cα = c for c ∈ Σπ, and for γ ∈ EV(π) ∪ {κq | q a position in π},

γα =
{
xi, if γ = αi �π α,
γγα1 γ

α
2 · · · γαkγ , otherwise.

The operation S 7→ Sα replaces each non-terminal αi �π α by the variable xi and to γ 6�π α
makes explicit the dependence of γ on ≺γ . For example, we have

γγkγ = γx1x2 · · ·xkγ
γσ = γγ1

(
γ2γ1

)(
γ3γ1(γ2γ1)

)
· · ·
(
γkγγ1(γ2γ1) · · · (γkγ−1γ1 · · · (γkγ−2γ1 · · · ))

)
Let p be a position in π, suppose π|p has the form of either cuts in Figure 7. Then the
grammar Gπ includes the production rules

α→ λx1 · · ·λxkα tα β → λx1 · · ·λxkβ . κpx1 · · ·xkαtβ κp → λx1 · · ·λxkα+1 s
α

Observe that kα ≤ kβ , so αi = βi for each 0 < i ≤ kα and the term in the central production
rule is indeed closed. Also for α and κp above notice kκp = kα + 1, hence the production
rule for κp is well-typed. In the scenario pictured on the right side of Figure 7 in which the
cut is performed on a Π1 formula, naturally only the production rule for α is required.

Concerning the start symbol and formulæ in the conclusion Γ we add, in analogy to Eπ,
production rules σ → Fsσ0 · · · sσk and αi → τi,F for appropriate formulæ F , terms 〈si〉i≤k and
eigenvariable αi. This completes the definition of Gπ.

I Example 9 (Proof grammar for π∞). It is now possible to complete the definition of Gπ∞ .
As in Example 7 we will focus on parts of the grammar that are relevant to the formula T and
the computation of its language, which we denote L(G∞, T ). The non-terminals and their
types were described in the previous example. Notice for instance ξσ = ξ for ξ ∈ {α, β, β′},
ξσ = ξα and ξα = ξx1 for ξ ∈ {κ, α̂, β̂, β̂′}, and (Mαα̂)α̂ = Mx1x2. The production rules of
the grammar (relating to the formula T ) are therefore

σ → Tββ′ σ → T(β̂α)(β̂′α)

α→ 0 | sβ β → κ0 α̂→ λx. 0 | λx. s(β̂x) β̂ → λx. κ0x0

κ→ λx. Mx(α̂x) β′ → κ(sβ) κ0 → λxλy. Mxy β̂′ → λx. κ0x(s(β̂x))

The computation of the language of L(G∞, T ) is not complicated. Nevertheless, for space
considerations it is necessary to make a few simplifications. In particular, in accordance with
the informal proof presented in Section 2, various terms will be evaluated according to the
intended semantics, so sS will be written as S+ 1 and MST will be replaced by max{S, T}.
Also, TST will be presented as T(S, T ). In addition, implicit β-conversion of terms will be
performed as this has no effect on rigidity of the considered derivations.

We begin by calculating the terms derivable from β̂ and β̂′ (with implicit β-conversion):

β̂x→ κ0x0→ Mx0 = x β̂′x→∗ Mx(s(β̂x))→∗ Mx(s(Mx0)) = x+ 1

Regarding α̂, modulo β-conversion it is easy to see we have α̂x →∗ 0 | x + 1. Thus we can
also compute the derivations starting from β, β′ and α:

β →∗ M0(α̂0)→∗ 0 | 1 α→∗ 0 | 1 | 2
β′ →∗ M(sβ)(α̂(sβ))→ β + 1 | β + 2

TLCA’15



12 Herbrand Disjunctions, Cut Elimination and Context-Free Tree Grammars

Thus T(β, β+1) and T(β, β+2) are the two terms derivable from T(β, β′) without rewriting
β. Combining these with the terms obtained from β above yields a total of eight derivations
in the underlying non-rigid grammar. However, as κ, β′, α̂ are the sole non-terminals used
in deriving β and β 6C κ, β′, α̂, only four of the derivations are rigid, leaving

σ → T(β, β′)→∗ T(0, 1) | T(1, 2) | T(0, 2) | T(1, 3)

Concerning the terms derivable from σ via T(β̂α, β̂′α), rigid derivations yield

σ → T(β̂α, β̂′α)→∗ T(0, 1) | T(1, 2) | T(2, 3)

Thus we conclude L(G∞, T ) = {T(0, 1),T(1, 2),T(2, 3),T(0, 2),T(1, 3)}. The reader may
check that Γ ∪∆ ∪ {Tm,n | T(m,n) ∈ L(G∞, T )} is derivable.

I Theorem 10 (Language bound). Let π be a simple Π2-proof. The number of production
rules in Gπ is bounded by the number of quantifier inferences in π and |L(Gπ)| < 22|π| .

Proof. Let G′=〈Nπ, Nπ,Cπ,Σπ, σ,Prπ〉 be the modification of Gπ in which all non-terminals
are marked as rigid. We observe L(G′) = L(Gπ). Moreover, a study of paths in π reveals that
G′ is acyclic, whereby |L(Gπ)| ≤ |Prπ|2

|Nπ| by Lemma 6. Let k = b |Prπ|
2 c. Then Nπ +k < |π|

and so |L(Gπ)| ≤ 22|Nπ|+k < 22|π| as required. J

5 Language containment

I Lemma 11 (Local reduction). If π  π′ is a local one-step cut reduction between regular
simple Π2-proofs then L(Gπ′) ⊆ L(Gπ).

Proof. We present the argument for two of the interesting cases, the case of Contraction
Reduction and Quantifier Reduction; the remaining cases follow by a simple argument mir-
roring that of the former case.

Suppose, to begin, that the reduction π  π′ is an instance of Contraction Reduction
and that the cut formula is principal in the contraction. Thus π and π′ can be assumed to
take the form given below, where A = ∀xB is Π2 and π∗0 is a renaming of π0 so that π′ is
regular.

π0

Γ, A

π1

∆′,∆, Ā,∆∗, Ā∗
−−−−−−−−−−−−−−−−−−− c

∆′,∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−− cut

π ` Γ,∆′,∆

π∗0

Γ∗, A∗

π0

Γ, A

π1

∆′,∆, Ā,∆∗, Ā∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆′,∆,∆∗, Ā∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,Γ∗,∆′,∆,∆∗
−−−−−−−−−−−−−−−−−− c
π′ ` Γ,∆′,∆

Note that we may assume the contraction occurs in the ‘right’ sub-proof as π is simple and
A is a universal formula.

We argue that every rigid derivation in Gπ′ starting from σ can be transformed into a
rigid derivation in Gπ beginning at σ. Consider the function f : Nπ′ → Nπ defined by

f(σ) = σ f(κ0) = f(κ01) = κ〈〉

f(γ) = f(γ∗) = γ for γ ∈ EV(π0) f(κ00p) = f(κ010p) = κ0p

f(δ) = δ for δ ∈ EV(π1) f(κ011p) = κ10p
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We observe that for all a, b ∈ Nπ′ we have a ≺π′ b iff f(a) ≺π f(b), thus f is type-preserving
and uniquely extends to a function mapping terms in the language of Σπ′ ∪ Nπ′ to (well-
typed) terms in Σπ ∪Nπ. Moreover, if a→ S is a production rule in Gπ′ , f(a)→ f(S) is a
production rule in Gπ. So f transforms derivations in the former grammar to derivations in
the latter grammar; all that remains is to check the operation preserves rigidity.

Rigidity is not immediate as f is not injective. Indeed, let d = 〈(ai → Si), pi〉i<lh(d) : σ →
S be a rigid derivation in Gπ′ , let df : σ → f(S) be the derivation in Gπ induced by f and
suppose j0, j1 < lh(d) are such that j0 6∼d j1 but j0 ∼df j1, so f(aj0) = f(aj1) ∈ RGπ .
Since f preserves the priority ordering, it follows that aj0 6= aj1 and so we may assume
aj0 ∈ EV(π0) and aj1 ∈ EV(π∗0). But then d must utilise a production rule for a rigid
non-terminal δ ∈ EV(π1) at a position q such that i) q < pj0 iff q 6< pj1 and ii) either aj0 C δ
or aj1 C δ, contradicting j0 ∼df j1.

Before proceeding with the second case, we remark that in all the other local reduction
steps, the natural choice of the ‘renaming’ function f is injective and preservation of rigidity
is immediate.

Suppose now π  π′ is an instance of Quantifier Reduction. We may assume π and π′
have the form below.

π0

Γ, A[x/α]
−−−−−−−−−−− ∀
Γ,∀xA

π1

∆, Ā[x/s]
−−−−−−−−−−− ∃
∆,∃x Ā

−−−−−−−−−−−−−−−−−−−−−−−−− cut
π ` Γ,∆

π0[α/s]

Γ, A[x/s]

π1

∆, Ā[x/s]
−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

π′ ` Γ,∆

As in the previous case we define a function mapping rigid derivations in Gπ′ to rigid
derivations in Gπ. Although every rigid non-terminal of Gπ is a non-terminal in Gπ′ , the
non-terminals arising from EV(π0) have a higher type than their counterpart in π′ as we
have α ≺π ξ for every ξ ∈ EV(π0). Notice, however, kα = 0 and kκ〈〉 = 1 in Gπ.

Let d : σ → S ∈ L(Gπ′) be a rigid derivation in Gπ′ . As the formula A[x/s] is Σ1 it
follows that d has one of following two forms.

In the first case, d is (up to simple renaming of non-terminals) a derivation in π0[α/s]
and S ∈ L(Gπ0[α/s]). d induces a rigid derivation in Gπ0 which when augmented by the
production rule α→ s (present in Gπ) provides a derivation of S in Gπ.

In the second case, (a permutation of) d has the form d0d1d2 where d0 : σ → S′ is a
derivation in Gπ1 ; d1 : S′ → S′[β/tβ ] is a derivation using the single production rule β → tβ

(note kβ = 0 in both Gπ′ and Gπ) where β ∈ EV(π1) is the unique eigenvariable for the
universal quantifier in Ā[x/s] (if there is one) in Gπ′ ; and d2 : S′[β/tβ ] → S is a derivation
in Gπ0[α/s]. We observe that the production rule β → tβ becomes, in Gπ, the derivation
β → κ〈〉s→ (λx1u

α)s where u[α/s] = t. Using these derivations in place of d1 and making
the appropriate modifications to the derivation d2 yields a derivation e : σ → S′′ in Gπ such
that S′′ β-reduces to S. In both cases rigidity is also easily checked. J

Using the previous lemma it is not difficult to establish that the language of proof grammars
respect also non-local cut reductions, provided simplicity is maintained.

I Theorem 12 (Global Reduction). Suppose π and π′ are regular simple Π2-proofs such that
π differs from π′ only in its subproof at position p. If π′|p π|p then L(Gπ) ⊆ L(Gπ′).

We now re-state and prove our main results from the introduction. The first of these is a
restatement of Theorem 2 and follows from Theorem 12; the second is a generalisation of
Theorem 1.

TLCA’15
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I Theorem 13. Let 〈π〉i≤k be a sequence of simple Π2-proofs such that for each i < k, πi+1
is obtained by application of one of the reduction rules of Figure 4 to a sub-proof of πi. Then
for every term T ∈ L(Gπk) there exists a term S ∈ L(Gπ0) that β-reduces to T .

I Theorem 14. Let π ` Γ,∆ be a Π2-proof where Γ ⊆ Π1 and ∆ ⊆ Σ1 are sets of prenex
formulæ and suppose |π| denotes the number of inference rules occurring in π. There exists
a totally rigid acyclic context-free tree grammar G such that i) |PrG | ≤ |π|, ii) |L(G)| ≤ 22|π|

and iii) there is a quantifier-free form of Γ, Γ′, such that the formula∨
Γ′ ∨

∨
{F [x1/s1, . . . , xk/sk] | (∃x1 · · · ∃xkF ) ∈ ∆ ∧ Fs1 · · · sk ∈ L(G)} (1)

is a tautology.

Proof. By applying quantifiers inversion if necessary, π can be turned into a simple Π2-
proof π′ without an increase in size. Let G = 〈Nπ′ , Nπ′ ,Cπ′ ,Σπ′ , σ,Prπ′〉 be the totally
rigid grammar derived from Gπ′ . Items (i) and (ii) follow from Theorem 10. Regarding
(iii), let 〈πi〉i≤k be a reduction sequence of simple Π2-proofs (for example any obtained from
the standard cut elimination algorithms of [31, 32]) starting from π0 = π′ and leading to a
cut-free proof πk of Γ,∆. By the previous theorem, L(Gπk) ⊆ L(Gπ).

Suppose Γ and ∆ have the forms ∀x1 · · · ∀xk0G0, . . . ,∀x1 · · · ∀xkmGm and ∃x1 · · · ∃xl0F0,
. . . , ∃x1 · · · ∃xlnFn respectively where G0, . . . , Gm, F0 . . . , Fn are quantifier-free. The Her-
brand disjunction read from πk is the formula

X =
∨
j≤m

Gj(α1
j , . . . , α

kj
j ) ∨

∨
j≤n

∨
(s1,...,slj )∈H(πk,Fj)

Fj(s1, . . . , slj )

for appropriate choice of variables αij . Since the formula in (1) is the result of replacing
every αij by τi,Gj in X we are done. J

6 Conclusion

This work provides an abstraction of proofs which focuses only on the aspects relevant to
the extraction of Herbrand disjunctions. Compared to other approaches in the literature,
including Herbrand nets [24], proof forests [10], expansion trees with cut [19] and functional
interpretation [9], proof grammars offer a representation of Herbrand’s theorem suitable for
the following exploitation.

As carried out in [18], the result for Π1-proofs can be strengthened to the following: let π′
be any cut-free proof obtained from a Π1-proof π via standard cut elimination, then H(π′) ⊆
L(Gπ). Moreover, if π′ is obtained from π by non-erasing reduction (which corresponds
to the λI-calculus, see [4, Section 9]) then we even have H(π′) = L(Gπ). Therefore all
(possibly infinitely many) normal forms of the non-erasing reduction have the same Herbrand
disjunction. This property of classical logic has been called Herbrand-confluence in [18] and
provides a general way of defining the computational content of a classical proof in the sense
that no witness is ruled out by a choice of reduction strategy. A deeper analysis of Π2-proofs
carried out in [1] has also yielded a Herbrand-confluence result analogous to [18].

A notable application of proof grammars is in cut introduction, which is motivated by the
aim to structure and compress automatically generated analytic proofs. As shown in [17, 16],
the arrows of Figure 2 can be inverted in the sense that a grammar can be computed from
a Herbrand disjunction and that from such a grammar one can compute cut formulæ which
realise the compression of the grammar. This method has been implemented and empirically
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evaluated with good results in [15]. An extension of these techniques to the case of proofs
with Π1-induction has led to a new technique for inductive theorem proving [8]. A natural
continuation of the present work is to find an analogous characterisation for proofs with
Π2-induction as well as the development of techniques for the systematic introduction of Π2
cuts.

An application of proof grammars to proof complexity consists in proving a lower bound
on the length of proofs with cuts (which is notoriously difficult to control) by transferring
a lower bound on the size of the corresponding grammar. This has been carried out for Π1
cuts in [7] based on [14], and can potentially be extended to Π2 cuts based on the results of
this paper.
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