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Abstract
Let P be a set of n points inside a polygonal domain D. A polygonal domain with h holes (or
obstacles) consists of h disjoint polygonal obstacles surrounded by a simple polygon which itself
acts as an obstacle. We first study t-spanners for the set P with respect to the geodesic distance
function π where for any two points p and q, π(p, q) is equal to the Euclidean length of the
shortest path from p to q that avoids the obstacles interiors. For a case where the polygonal
domain is a simple polygon (i.e., h = 0), we construct a (

√
10 + ε)-spanner that has O(n log2 n)

edges. For a case where there are h holes, our construction gives a (5 + ε)-spanner with the size
of O(n

√
h log2 n).

Moreover, we study t-spanners for the visibility graph of P (V G(P), for short) with respect
to a hole-free polygonal domain D. The graph V G(P) is not necessarily a complete graph or
even connected. In this case, we propose an algorithm that constructs a (3 + ε)-spanner of size
O(n4/3+δ). In addition, we show that there is a set P of n points such that any (3− ε)-spanner
of V G(P) must contain Ω(n2) edges.
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1 Introduction

Background. Let G = (V,E) be an undirected edge-weighted graph and let dG(p, q) be the
length of the weighted shortest path from p to q in G. Let t ≥ 1 be a real number. The
subgraph S = (V,ES) of G is called a t-spanner if for any two vertices p, q ∈ V , we have
dS(p, q) ≤ t · dG(p, q). Any path from p to q in S whose weight is at most t · dG(p, q) is called
a t-path. The dilation or stretch factor of S is the minimum t for which S is a t-spanner of
G. The size of S is defined as the number of edges in ES .

t-spanners have been mostly studied on complete graphs coming from finite metric spaces.
Let (P, d) be a finite metric space where P is a set of n points. Consider the complete graph
Gc over P where wt(p, q) = d(p, q) (wt denotes weight) for any two points p, q ∈ P. For any
t-spanner S of Gc, we have dS(p, q) ≤ t ·d(p, q). Indeed, the spanner S approximates distances
in the metric space up to a factor of t. The t-spanner S is usually called the t-spanner of the
metric space (P, d). In this paper, we are interested in spanners in a geometric context, i.e.,
the metric space comes from a geometric space like the Euclidean space. Here, the graph Gc
is the complete Euclidean graph on P (i.e., weights are the Euclidean distances). A geometric
t-spanner is an Euclidean graph S on P such that dS(p, q) ≤ t · |pq| for all points p, q ∈ P
where |pq| denotes the Euclidean distance between p and q.

In some applications like road networks, when constructing spanners, the main goal is to
obtain a small dilation while not using too many edges. However, one may want to obtain
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spanners with a number of additional properties such as small weight – weight proportional
to the weight of a Minimum Spanning Tree (MST) – and bounded degrees.

Previous work. Althöfer et al. [7] were first to study sparse spanners on edge-weighted
graphs that have the triangle-inequality property. They showed that for any integer number
t > 0, there is a (2t+ 1)-spanner with O(n1+1/t) edges where n is the number of vertices.
This can be applied to any metric space (P, d) as the complete graph over P in the metric
space has the triangle-inequality property. Geometric spanners have been attracted a lot
of attention over the past two decades. It has been shown that for any set of n points in
Rd and any ε > 0, there is a (1 + ε)-spanner with O(n/εd−1) edges – see the recent book
by Narasimhan and Smid [13] and references therein for this and many other results on
geometric spanners. When the doubling dimension of a metric space is bounded, similar
results to the Euclidean setting are possible [12, 14].

Let the points of P be in a surfaceM∈ R3 and let dM(p, q) be the weight of the shortest
(i.e., the minimum weight) path from p to q onM for any two points p, q ∈ P. Obviously,
(P, dM) is a metric space and its doubling dimension is not necessarily bounded. Therefore,
results to metric spaces with bounded doubling dimension cannot be applied to the metric
space (P, dM) and now the main question is: is it possible to obtain a spanner with a
constant stretch factor and a near-linear number of edges for the metric space (P, dM)?
Abam et al. [3] considered a special case where the surfaceM is a plane containing several
pillars with width and length of zero but with non-negative height. They assume the points of
P lie at the top of the pillars. This variant can be seen as a set of n weighted points in a plane
in which for any two points p and q, their distance is defined to be wt(p) + |pq|+wt(q) where
wt(x) is the weight of point x and |pq| is the Euclidean distance of p and q. They presented
a (5 + ε)-spanner with a linear number of edges for any given ε > 0. They also showed that
whenM is the boundary of a convex object, it is possible to obtain (1 + ε)-spanner with a
linear number of edges.

Problem statement. Suppose a set P of n points are given inside a polygonal domain D
which consists of a simple polygon containing h disjoint polygonal holes. The holes and the
simple-polygon boundary can be seen as obstacles. Consider the metric space (P, π) where
π(p, q) for any points p, q ∈ P is equal to the Euclidean length of the shortest path from p to
q that avoids the obstacles interiors; the so-called the geodesic distance of p and q. Moreover,
let V G(P) be the visibility graph of P with respect to the polygonal domain D, i.e., p, q ∈ P
are connected in V G(P) iff the segment pq avoids the obstacles interiors. Note that V G(P)
is not necessarily a complete graph or even a connected graph. In this paper, we investigate
the existence of t-spanners with few edges for both the metric space (P, π) and V G(P). Note
that the polygonal domain D can be seen as a surface. Indeed, obstacles can be seen as
walls, tall enough such that any shortest path between two points p and q avoids the walls.
Therefore, the metric space (P, π) is a special case of the metric space (P, dM) whereM is
a surface in R3.

Our results. The first part of our work as explained in Section 2 is devoted to the metric
space (P, π). For a case where the polygonal domain D is a simple polygon (i.e., h = 0), we
construct a (

√
10 + ε)-spanner that has O(n log2 n) edges. We extend this result to the case

where there are h holes. We show that our construction gives a (5 + ε)-spanner with the size
of O(n

√
h log2 n) for any given ε > 0. The diameter of both spanners is 2. As the second

part of our work, in Section 3 we study t-spanners for V G(P). We first show how to obtain

SoCG’15



188 Geometric Spanners for Points Inside a Polygonal Domain

a (3 + ε)-spanner for any given ε > 0 of size O(n4/3+δ) for some δ > 0 and then we show
that there is a set P of n points such that any (3− ε)-spanner of P must have Ω(n2) edges.

2 Spanners for the metric space (P, π)

Let P be a set of n points inside a polygonal domain D which is a simple polygon containing
h polygonal disjoint obstacles. Let π(p, q) for any two points p, q ∈ P be the geodesic distance
of p and q with respect to D. We first present our spanner construction when h = 0 in
Section 2.1 and then give our general spanner construction in Section 2.2.

2.1 Spanners for points inside a simple polygon
Our spanner construction is based on the SSPD [2, 4] as defined next. For a set Q of n
points in Rd (i.e., the d-dimensional Euclidean space), a pair decomposition of Q is a set
of pairs of subsets of Q, such that for every pair of points of p, q ∈ Q there exists a pair
(A,B) in the decomposition such that p ∈ A and q ∈ B or vice versa. For a point set A,
let radius(A) be the radius of the minimum enclosing disc of A. An s-Semi-Separated Pair
Decomposition (s-SSPD) of Q is a pair decomposition of Q such that for every pair (A,B),
the distance between A and B (i.e. the distance of their minimum enclosing discs) is larger
than s times the minimum of the radius(A) and radius(B). For a point set Q and a constant
s > 0, we know there exists an s-SSPD whose weight,

∑
|A|+ |B| over all pairs, is O(n logn).

The SSPD was introduced to overcome the obesity problem of the Well-Separated Pair
Decomposition (WSPD) [9, 15]: there is a set of n points, such that for any WSPD of it,∑
|A|+ |B| over all pairs in the WSPD is Ω(n2).

Spanner construction. For the given ε > 0, we first explain our spanner construction and
then prove that the resulting spanner S is a (

√
10 + ε)-spanner. Our construction is as

follows. We partition the simple polygon D into two simple sub-polygons using a vertical
segment ` (called the splitting segment) in such a way that each sub-polygon contains at
most two-thirds of the points of P – see [8] for details. For each point p ∈ P, we compute
the point p` ∈ ` which has the minimum geodesic distance to p among all points on `. We
call p` the projection of p into ` and for a subset A of P, we define C`(A) to be a point of
A whose geodesic distance to ` is the smallest. We then compute an s-SSPD for projected
points p` where s = 4/ε. Note that some points may have the same projection on `. In this
case we treat them as different points while constructing the SSPD. For each pair (A,B)
in the SSPD where radius(A) ≤ radius(B), we add edge (p, C`(P(A))) to the spanner S for
all points p whose p` ∈ A ∪ B where P(A) = {p ∈ P|p` ∈ A} – recall that an edge (p, q)
corresponds to the shortest geodesic path between p and q. We recursively process both
simple sub-polygons.
Spanner size. Let T (n) be the size of the resulting spanner S. Clearly, T (n) =

∑
(|A|+

|B|) + T (n1) + T (n2) where n1 + n2 = n and n1, n2 ≥ n/3. Since
∑

(|A|+ |B|) = O(n logn)
by the SSPD property, we can simply conclude that the spanner size is O(n log2 n).

It remains to show that the resulting spanner S is a (
√

10 + ε)-spanner. We first state
the following lemma which plays a key role in our proof showing S is a (

√
10 + ε)-spanner.

I Lemma 1. Suppose ABC is a right triangle with ∠CAB = 90. Let H be a y-monotone
path between B and D such that the region bounded by AB, AD, and H is convex where D
is some point on edge AC. We have 3|H|+ |DC| ≤

√
10|BC| where |.| denotes the Euclidean

length.
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Figure 1 A right triangle and a y-monotone convex chain inside it.

Proof. We claim |H|2 + |DC|2 ≤ |BC|2 and will prove it later. For any two real numbers x
and y, we know (x2 + y2)(32 + 12) ≥ (3x+ y)2. By setting x = |H| and y = |DC|, we get
3|H|+ |DC| ≤

√
10|BC| as desired.

To prove |H|2 + |DC|2 ≤ |BC|2, let D′ be the point on BC with the same y-coordinate
with D. Since H is a convex chain inside triangle DD′B with endpoints D and B, we know

|H| ≤ |BD′|+ |D′D|.

Using the above well-known geometric inequality, we have

|H|2 + |DC|2 ≤ (|BD′|+ |D′D|)2 + |DC|2

= |BD′|2 + 2|BD′|.|D′D|+ |D′D|2 + |DC|2

= |BD′|2 + 2|BD′|.|D′D|+ |D′C|2

≤ |BD′|2 + 2|BD′|.|D′C|+ |D′C|2

= (|BD′|+ |D′C|)2 = |BC|2

J

Now, we are ready to prove the main result of this section.

I Lemma 2. The resulting spanner S of the above construction is a (
√

10 + ε)-spanner with
diameter 2.

Proof. Any two points p, q ∈ S lie at different sides of the splitting segment ` at one
step of the recursive construction. At this step, there is a semi-separated pair (A,B) that
p` ∈ A and q` ∈ B or vise versa. WLOG assume p` ∈ A and q` ∈ B and moreover assume
radius(A) ≤ radius(B). Let c = C`(P(A)) which of course is a point of P – see Fig. 2. We
recall that among all points whose projections are in A, point c has the minimum geodesic
distance to `.

According to our construction at this step of the recursion, edges (p, c) and (q, c) are added
to S. Thus, the length of the shortest path between p and q in S is at most π(p, c) + π(c, q).
We next show that π(p, c) + π(c, q) ≤ (

√
10 + ε)π(p, q). This implicitly shows the diameter

of S is 2.
Let SP(x, y) be the shortest path from point x to y with respect to D for any two points

x and y. By the definition of π, the Euclidean length of SP(x, y) is π(x, y). SP(p, q) definitely
intersects ` at some point, say r. Let p′ (q′) be the point at which SP(p, q) and SP(p, p`)
(SP(q, q`)) get separated – see Fig. 2 to get insight to our notations. It is clear both SP(p′, p`)
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p
c c`

p`

q`

q

`

r

p′

q′

hp′

hq′

Figure 2 The splitting segment ` partitions the simple polygon into two simple sub-polygons such
that each part has at most two-thirds of the points. The projections of points into ` are depicted
with subscript `.

SP(q′, q`) are y-monotone convex chains. SP(p, q) consists of SP(p, p′), SP(p′, r), SP(r, q′)
and SP(q′, q). We know π(p′, r) ≥ |p′r| and π(q′, r) ≥ |q′r|. If we let hp′ and hq′ be the
perpendicular projections of p′ and q′ on `, in both triangles q′hq′r and p′hp′r, the conditions
of Lemma 1 hold. All these observations help us to prove the lemma as follows.

Since the distance function π has the triangle-inequality property, we have:

π(p, c) ≤ π(p, p`) + |p`c`|+ π(c`, c)
π(c, q) ≤ π(c, c`) + |c`q`|+ π(q`, q).

Considering |c`q`| ≤ |c`p`|+ |p`r|+ |rq`| and π(c, c`) ≤ π(p, p`), therefore:

π(p, c) + π(c, q) ≤ 3π(p, p`) + 2|p`c`|+ |p`r|+ |rq`|+ π(q`, q)
= 3π(p, p′) + 3π(p′, p`) + 2|p`c`|+ |p`r|+ |rq`|+ π(q`, q′) + π(q′, q).

We can apply Lemma 1 to both triangles q′hq′r and p′hp′r and get the following inequalities

3π(p′, p`) + |p`r| ≤
√

10π(p′, r)
|rq`|+ π(q`, q′) ≤

√
10π(r, q′).

These together yield:

3π(p′, p`) + |p`r|+ |rq`|+ π(q`, q′) ≤
√

10π(p′, q′).

Finally, since in the semi-separated pair (A,B) the distance between each two points in A is
at most 2

s times of the distance between each two points of A and B, we can get:

|p`c`| ≤
2
s
|p`q`| ≤

2
s
π(p, q).

If we set s = 4
ε , the following inequality holds:
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(a) (b) (c)
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Figure 3 (a) Tight example for the given algorithm in Section 2.1, (b) Any (2− ε)-spanner in a
simple polygonal domain must contain Ω(n2) edges, (c) The key property in Lemma 1 does not hold
anymore for a polygonal domain with holes.

π(p, c) + π(c, q) ≤ 3π(p, p′) +
√

10π(p′, q′) + 2|p`c`|+ π(q′, q)

≤ (
√

10 + 4
s

)π(p, q).

J

Tight example. As a tight example for our construction, consider the simple polygon in
Fig. 3(a) in which π(p, q) equals

√
10y while the shortest path in S is 10y.

Lower bound. Consider the simple polygon in Fig. 3(b). When d gets close to 0, π(p, q)
gets close to 2l for any two points p and q. If there is no edge between p and q, the shortest
path in S must go through at least one intermediate vertex, say t. Therefore, the length
of the shortest path from p to q, which is at least π(p, t) + π(t, q), becomes greater than
(2− ε)π(p, q) if d is chosen small enough. This implies that to get a (2− ε)-spanner, we need
all edges.

Putting all this together, we get the following theorem.

I Theorem 3. Let ε > 0 be a given real number. Suppose a set P of n points is given inside
a simple polygon D. There is a (

√
10 + ε)-spanner with diameter 2 of size O(n log2 n) for

the metric space (P, π). Moreover, there is a set P of n points such that any (2− ε)-spanner
of the metric space (P, π) must contain Ω(n2) edges.

2.2 Spanners for points inside a polygonal domain with h holes
Suppose the polygonal domain D contains h disjoint polygonal holes. Our spanner construc-
tion is based on the following decomposition.

I Lemma 4. The polygonal domain D with h holes can be decomposed into O(h) simple
polygons using O(h) vertical segments (called splitting segments) avoiding the holes interiors
such that each simple polygon has at most 3 splitting segments on its boundary.

Proof. As the first step, from the leftmost and rightmost points of each obstacle, we draw
two vertical extensions; one going downward until an obstacle is hit and one going upward
until an obstacle is hit – see Fig. 4(a). This clearly decomposes the polygonal domain into

SoCG’15



192 Geometric Spanners for Points Inside a Polygonal Domain

(a) (b)

Figure 4 (a) Planar decomposition of the polygonal domain D (first step), (b) Decomposing
regions with more than three vertical extensions (second step).

O(h) simple polygons. But one simple polygon may have m > 3 vertical extensions on its
boundary. In this case, as the second step, we draw O(m) vertical extensions inside the simple
polygon and decompose it into O(m) simple polygons such that each new simple polygon
has at most three vertical extensions on its boundary. To do that, we first draw a vertical
extension such that on each of its side there are roughly half of the vertical extensions. We
continue recursively on both sides – see Fig. 4(b). The number of the extra vertical extensions
satisfies this recursion: T (m) = 2T (m/2) + 1, T (3) = 0. Therefore, T (m) = O(m). As
each vertical extension of the first step of the construction is adjacent to at most two simple
polygons, the total number of the extra extensions is O(h). J

Suppose the decomposition described in Lemma 4 is available to us. We construct a
vertex-weighted graph GD as follows. We assign a vertex to each simple polygon and associate
it with the number of points in P that are contained in that simple polygon as its weight.
We connect two vertices if their corresponding simple polygons are adjacent. Obviously, GD
is a planar graph with O(h) vertices. Our divide-and-conquer construction algorithm uses
the following well-known theorem for planar graphs.

I Theorem 5 ([6]). Suppose G = (V,E) is a planar vertex-weighted graph with |V | = m. Then,
there is a (

√
m)-separator for G, i.e., V can be partitioned into three sets A, B and C such that

(i) |C| = O(
√
m), (ii) there is no edge between A and B and (iii) wt(A), wt(B) ≤ 2/3wt(V ),

where wt(X) is the weight summation over all vertices in X.

Theorem 5 can be applied to the graph GD as it is a planar graph. In the following, we
explain in details how to construct a spanner S for the metric space (P, π).

1. We first construct GD and compute its O(
√
h)-separator. Let A, B and C be the three

sets defined in Theorem 5.
2. We collect O(

√
h) splitting segments into a set H. More precisely, for each vertex of C

(we know |C| = O(
√
h)), we add at most the three splitting segments that appear on the

boundary of the simple polygon corresponding to the vertex.
3. For each splitting segment ` in H, we apply one recursive step of the given algorithm in

Section 2.1.
4. We recursively process the induced subgraphs on A and B until one vertex is left.

Each vertex at the last level of the recursion corresponds to a simple polygon in the
decomposition of Lemma 4. For each such simple polygon, we apply the whole algorithm
given in Section 2.1.
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Spanner size. Like the argument given in Section 2.1, at each step of the recursion, for each
splitting segment, we add O(n logn) edges, and in total for O(

√
h) splitting segments we

add O(
√
hn logn) edges. The whole recursive algorithm except at the leaves of the recursion

tree, adds O(
√
hn log2 n) edges. At the leaf v, we add O(nv log2 nv) edges where nv is the

number of points inside the corresponding simple polygon. We know
∑
nv = n and therefore,

the total added edges at the leaves is O(n log2 n). All this together state that the spanner
size is O(

√
hn log2 n).

Stretch factor. It is tempting to believe that using the argument of Section 2.1, we can
show that the spanner S is a (

√
10 + ε)-spanner. But unfortunately, a key property that

Lemma 1 relies on, does not hold anymore for a polygon domain with holes. This key
property is: SP(p, r) (i.e., the shortest path from p to r) and SP(p, p`) topologically are the
same. When there are holes, this may not happen as depicted in Fig. 3(c). In the figure,
SP(p, r) goes above the specified hole and SP(p, p`) goes below that hole. Fortunately, we
still can show that the spanner S has a constant stretch factor.

I Lemma 6. The resulting spanner S of the above construction is a (5 + ε)-spanner of the
metric space (P, π) .

Proof. Consider the top level of our recursive construction. The polygonal domain D is
partitioned into three components, one of which is the separator – see Fig. 5. For any
two points p and q which are (i) not in the same component or (ii) in the same separator
component but in different simple polygons, the shortest paths from p to q intersects at
least one of O(

√
h) splitting segments collected from the separator. Let ` be such a splitting

segment. Consider the step of the algorithm working on `. There is a semi-separated pair
(A,B) such that p` ∈ A and q` ∈ B or vice versa. WLOG assume p` ∈ A and q` ∈ B and
assume radius(A) ≤ radius(B). If we let c = C`(P(A)), we know edges (p, c) and (q, c) exist
in spanner S. Hence, the shortest path between p and q in S is at most π(p, c) + π(c, q).
According to the triangle inequality of π, we have:

π(p, c) ≤ π(p, p`) + |p`c`|+ π(c`, c)
π(c, q) ≤ π(c, c`) + |c`q`|+ π(q`, q).

We know:
π(c, c`) :
π(c, c`) ≤ π(p, p`) ≤ π(p, q)

π(p, p`) + π(q`, q) :
π(p, p`) + π(q`, q) ≤ π(p, r) + π(r, q) = π(p, q)

|c`q`| :
since |p`r| ≤ π(p`, p) + π(p, r) and π(p, p`) ≤ π(p, r) (the same holds for q and q`), then :
|c`q`| ≤ |c`p`|+ |p`q`|

≤ 2
s
π|p`q`|+ |p`q`|

≤ (2
s

+ 1)(|p`r|+ |rq`|)

≤ (2
s

+ 1)(2π(p, q))
|p`c`| :
From c`, p` ∈ A, q` ∈ B and the SSPD property, we have:
|p`c`| ≤

2
s
|p`q`| ≤

4
s
π(p, q)

SoCG’15
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Component 1

Component 2

Separator

Figure 5 Any path from one component to another one must intersect the separator’s boundaries.

All this together give us:

π(p, q) ≤ π(p, c) + π(c, q) ≤ (5 + 8
s

)π(p, q)

We just need to set s = 8
ε . Considering the top level of the recursive construction in the proof

can be adjusted to the level at which properties (i) or (ii) are satisfied or both points p and
q lie in a simple polygon and their shortest path does not intersect any splitting segments of
the separators. In the latter, since we run the whole algorithm of Section 2.1, certainly there
is a (

√
10 + ε)-path between p and q. J

To summarize, we get the following theorem.

I Theorem 7. Let ε > 0 be a given real number. Suppose a set P of n points is given inside
a simple polygon D containing h holes. There is a (5 + ε)-spanner with diameter 2 of size
O(n
√
h log2 n) for the metric space (P, π).

3 Spanners for the visibility graph

Let P be a set of n points inside a simple polygon D (i.e., a polygonal domain without hole).
Let V G(P) be the visibility graph of P , which is not necessarily connected. Here, the goal is
to find a t-spanner S with few edges of V G(P), that is, for any two points p, q ∈ P, their
shortest distance in S is at most t times their shortest distance in V G(P).

Since V G(P) is a special case of weighted graphs holding triangle-inequality property, by
applying the algorithm given in [7] we can get the following spanner.

I Theorem 8. For any integer t > 0, there is a (2t+ 1)-spanner S such that the number of
edges in S is O(n1+1/t).

If we set t = 1, the above theorem gives us a 3-spanner of size O(n2). We next show that
it is possible to get (3 + ε)-spanner of size O(n4/3+δ) for any ε > 0.

Spanner construction. We first decompose D using a splitting segment ` into two simple
polygons DL and DR each containing at most 2/3n points of P . Let V G`(P) be the subgraph
of V G(P) containing every edge of V G(P) that intersects `. We next explain how to find a
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(a) (b)

`

Figure 6 (a) The visibility cone of a point. (b) Any (3− ε)-spanner of the visibility graph has
size of Ω(n2).

(3 + ε)-spanner of V G`(P) with O(n4/3+δ) edges. By recursing on DL and DR, we can get a
(3 + ε)-spanner of V G(P) with O(n4/3+δ) edges.

The main idea is to represent V G`(P) which is a bipartite graph, as the union of some
complete bipartite graphs and find a spanner for each complete bipartite graph. Let σ(p)
be the visibility cone of p, that is, all half-lines originating from p and intersecting ` – see
Fig. 6(a). (p, q) is an edge of V G`(P) if and only if q ∈ σ(p) and p ∈ σ(q). For ease of
presentation, we call points in DL and DR red points and blue points, respectively. We map
each σ(p) to a segment in the dual plane by the standard transformation [11] where a point
(a, b) is mapped to the line y = ax+ b and vice versa. It is easy to see that (p, q) is an edge
of V G`(P) if and only if the segments corresponding to σ(p) and σ(q) intersect each other.
Therefore, the edges in V G`(P) correspond to the intersection of two segments sets and vice
versa. Let us call them red segments (corresponding to the red points) and blue segments
(corresponding to the blue points). We then construct a segment-intersection-searching data
structure [5] for the red segments, which is a multilevel partition tree, each of whose nodes
is associated with a canonical subset of red segments. The total size of canonical subsets
is O(n4/3+δ). For every blue segment, all red segments intersecting it can be reported as a
union of O(n1/3+δ) pairwise disjoint canonical subsets which is useful to construct a clique
cover of V G` without computing all intersections. Therefore, we can represent V G`(P) as
the union of some complete bipartite graphs with the total size O(n4/3+δ). We then compute
a (3 + ε)-spanner of size O(m logm) for each complete bipartite graph with m vertices as
described in [1].

Lower bound. Consider a set of n/2 points on a segment whose endpoints are (0, 0) and
(0, α) and a set of n/2 points on a segment whose endpoints are (1, 0) and (1, α). We can
put all n points in a simple polygon as depicted in Fig. 6(b) such that every point on each
segment can see any point on the other segment and any two points on a segment cannot
see each other. Let p and q be two points on the different segments. For an spanner S of
the visibility graph, if the edge (p, q) does not exist in the spanner, any path between p

and q in S must have at least three edges and since the length of each edge is almost the
length of (p, q) – we can choose α small enough depending on ε – the spanner cannot be a
(3− ε)-spanner. Therefore, the spanner must have every edge of the visibility graph which
implies the spanner size is Ω(n2).

Putting all together, we get the following result.

SoCG’15
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Figure 7 Lower bound construction.

I Theorem 9. For any given ε > 0, there is a (3 + ε)-spanner of V G(P) that contains
O(n4/3+δ) edges for some δ > 0. Moreover, there is a set P such that any (3− ε)-spanner of
the visibility graph V G(P) has size of Ω(n2).

I Remark. If the polygonal domain D has h holes, we can apply the technique of Section 2.2
to get a (3 + ε)-spanner of size O(

√
hn4/3+δ). Moreover, it is possible to find a set P of n

points such that any (5− ε)-spanner must have Ω(n4/3) edges. An instance of the line-point
incidence problem [10] with Ω(n4/3) incidences can be used to construct the desired instance.
To sketch the overall plan, we introduce two sets A (red points) and B (blue points) inside a
polygon domain with holes such that (i) for any p, p′ ∈ A and q, q′ ∈ B, |pq| is almost |p′q′|
and (ii) two points from A cannot see each other and the same holds for B, and (iii) there
is no cycle of length 4 in the bipartite visibility graph and (iv) the number of edges in the
visibility graph is Ω(n 4

3 ). All this together mean the girth is at least 6 and all edges have
almost the same weight. Therefore, any (5− ε)-spanner must contain Ω(n 4

3 ) edges. To get
the desired point set, consider a

√
n×
√
n grid as depicted in Fig. 7. The number of grid

points (p, q) inside the black square where GCD(p, q) = 1 is Ω(n 1
3 ). Look at each of these

points as a vector. For each vector, we draw a line parallel to the vector from each grid
point. The number of different lines for each vector is O(n 2

3 ) and the number of incidences
is obviously n. In total we have O(n) lines and Ω(n 4

3 ) incidences. We can look at the lines
as blue segments. We also put n red parallel segments in the grid points with the negative
slope α and very small length. Now, we dualize the segments to cones with the standard
transformation. Let A and B be the dual of red and blue segments respectively – note that
points in A and B are apexes of the cones. We can put some obstacles such that for every
point in A or B, the dual of the visibility cone is exactly the corresponding segment in our
incidence construction. It is easy to see that A and B satisfy the required properties by
making α and the scale of the grid smaller.
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