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Abstract
Metric graphs are ubiquitous in science and engineering. For example, many data are drawn
from hidden spaces that are graph-like, such as the cosmic web. A metric graph offers one of the
simplest yet still meaningful ways to represent the non-linear structure hidden behind the data.
In this paper, we propose a new distance between two finite metric graphs, called the persistence-
distortion distance, which draws upon a topological idea. This topological perspective along with
the metric space viewpoint provide a new angle to the graph matching problem. Our persistence-
distortion distance has two properties not shared by previous methods: First, it is stable against
the perturbations of the input graph metrics. Second, it is a continuous distance measure, in
the sense that it is defined on an alignment of the underlying spaces of input graphs, instead of
merely their nodes. This makes our persistence-distortion distance robust against, for example,
different discretizations of the same underlying graph.

Despite considering the input graphs as continuous spaces, that is, taking all points into
account, we show that we can compute the persistence-distortion distance in polynomial time.
The time complexity for the discrete case where only graph nodes are considered is much faster.
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1 Introduction

Many data in science and engineering are drawn from a hidden space which are graph-like,
such as the cosmic web [28] and road networks [1, 5]. Furthermore, as modern data becomes
increasingly complex, understanding them with a simple yet still meaningful structure
becomes important. Metric graphs equipped with a metric derived from the data can provide
such a simple structure [18, 27]. They are graphs where each edge is associated with a
length inducing the metric of shortest path distance. The comparison of the representative
metric graphs can benefit classification of data, a fundamental task in processing them. This
motivates the study of metric graphs in the context of matching or comparison.

To compare two objects, one needs a notion of distance in the space where the objects
are coming from. Various distance measures for graphs and their metric versions have
been proposed in the literature with associated matching algorithms. We approach this
problem with two new perspectives: (i) We aim to develop a distance measure which is
both meaningful and stable against metric perturbations, and at the same time amenable
to polynomial time computations. (ii) Unlike most previous distance measures which are
discrete in the sense that only graph nodes alignments are considered, we aim for a distance
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measure that is continuous, that is, alignment for all points in the underlying space of the
metric graphs are considered.

Related work. To date, the large number of proposed graph matching algorithms fall into
two broad categories: exact graph matching methods and inexact graph matching (distances
between graphs) methods.

The exact graph matching, also called the graph isomorphism problem, checks whether
there is a bijection between the node sets of two input graphs that also induces a bijection
in their edge sets. While polynomial time algorithms exist for many special cases, e.g.,
[2, 21, 25], for general graphs, it is not known whether the graph isomorphism problem is NP
complete or not [17]. Nevertheless, given the importance of this problem, there are various
exact graph matching algorithms developed in practice. Usually, these methods employ some
pruning techniques aiming to reduce the search space for identifying graph isomorphisms.
See [15] for comparisons of various graph isomorphism testing methods.

In real world applications, input graphs often suffer from noise and deformation, and
it is highly desirable to obtain a distance between two input graphs beyond the binary
decision of whether they are the same (isomorphic) or not. This is referred to as inexact
graph matching in the field of pattern recognition, and various distance measures have been
proposed. One line of work is based on graph edit distance which is NP-hard to compute [32].
Many heuristic methods, using for example A∗ algorithms, have been proposed to address
the issue of high computational complexity, see the survey [16] and references within. One of
the main challenges in comparing two graphs is to determine how “good” a given alignment
of graph nodes is in terms of the quality of the pairwise relations between those nodes. Hence
matching two graphs naturally leads to an integer quadratic programming problem (IQP),
which is a NP-hard problem. Several heuristic methods have been proposed to approach this
optimization problem, such as the annealing approach of [19], iterative methods of [24, 30]
and probabilistic approach in [31]. Finally, there have been several methods that formulate
the optimization problem based on spectral properties of graphs. For example, in [29], the
author uses the eigendecomposition of adjacency matrices of the input graphs to derive
an expression of an orthogonal matrix which optimizes the objective function. In [9, 23],
the principal eigenvector of a “compatibility” matrix of the input graphs is used to obtain
correspondences between input graph nodes. Recently in [22], Hu et. al proposed the general
and descriptive Laplacian family signatures to build the compatibility matrix and model the
graph matching problem as an integer quadratic program.

New work. Different from previous approaches, we view input graphs as continuous metric
spaces. Intuitively, we assume that our input is a finite graph G = (V,E) where each edge
is assigned a positive length value. We now consider G as a metric space (|G|, dG) on the
underlying space |G| of G, with metric dG being the shortest path metric in |G|. Given two
metric graphs G1 and G2, a natural way to measure their distance is to use the so-called
Gromov-Hausdorff distance [20, 26] to measure the metric distortion between these two
metric spaces. Unfortunately, it is NP-hard to even approximate the Gromov-Hausdorff
distance for graphs within a constant factor1. Instead, we propose a new metric, called
the persistence-distortion distance dPD(G1, G2), which draws upon a topological idea and is

1 This result is very recently obtained by two groups of researchers independently: Agarwal, Fox and
Nath from Duke U., and Sidiropoulos and Wang from Ohio State U.
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computable in polynomial time with techniques from computational geometry. This provides
a new angle to the graph comparison problem, and our distance has several nice properties:

1. The persistence-distortion distance takes all points in the input graphs
into account, while previous graph matching algorithms align only graph
nodes. Thus our persistence-distortion distance is insensitive to different
discretization of the same graph: For example, the two geometric graphs on
the right are equivalent as metric graphs, and thus the persistence-distortion
between them is zero.

2.

G1 G2

In Section 3, we show that our persistence-distortion
distance dPD(G1, G2) is stable w.r.t. changes to
input metric graphs as measured by the Gromov-
Hausdorff distance. For example, the two geometric
graphs on the right have small persistence-distortion
distance. (Imagine that they are the reconstructed
road networks from noisy data sampled from the same road systems.)

3. Despite that our persistence-distortion distance is a continuous measure which considers
all points in the input graphs, we show in Section 5 that it can be computed in polynomial
time (O(m12 logm) where m is the total complexity of input graphs). We note that
the discrete version of our persistence-distortion distance, where only graph nodes are
considered (much like in previous graph matching algorithms), can be computed much
more efficiently in O(n2m1.5 logm) time, where n is the number of graph nodes in input
graphs.

All technical details omitted from this extended abstract due to lack of space can be found
in the full version of the paper at [11]. Some preliminary experimental results to demonstrate
the use of the persistence-distortion distance are also included in the full version.

2 Notations and Proposed Distance Measure for Graphs

Metric graphs. A metric graph is a metric space (M,d) where M is the underlying space
of a finite 1-dimensional simplicial complex. Given a graph G = (V,E) and a weight function
Len : E → R+ on its edge set E (assigning length to edges in E), we can associate a metric
graph (|G|, dG) to it as follows. The space |G| is a geometric realization of G. Let |e| denote
the image of an edge e ∈ E in |G|. To define the metric dG, we consider the arclength
parameterization e : [0,Len(e)]→ |e| for every edge e ∈ E and define the distance between
any two points x, y ∈ |e| as dG(x, y) = |e−1(y)− e−1(x)|. This in turn provides the length of
a path π(z, w) between two points z, w ∈ |G| that are not necessarily on the same edge in
|G|, by simply summing up the lengths of the restrictions of this path to edges in G. Finally,
given any two points z, w ∈ |G|, the distance dG(z, w) is given by the minimum length of
any path connecting z to w in |G|.

In what follows, we do not distinguish between | · | and its argument and write (G, dG) to
denote the metric graph (|G|, dG) for simplicity. Furthermore, for simplicity in presentation,
we abuse the notations slightly and refer to the metric graph as G = (V,E), with the
understanding that (V,E) refers to the topological graph behind the metric space (G, dG).
Finally, we refer to any point x ∈ G as a point, while a point x ∈ V as a graph node.

Background on persistent homology. The definition of our proposed distance measure for
two metric graphs relies on the so-called persistence diagram induced by a scalar function. We

SoCG’15
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Figure 1 (a) A graph with basepoint s: edge length is marked for each edge. (b) The function
f = dG(s, ·). We also indicate critical-pairs. (c) Persistence diagram Dg0f : E.g, the persistence-point
(6, 5) is generated by critical-pair (u, v3). (d) shows a partial matching between the red points and
blue points (representing two persistence diagrams). Some points are matched to the diagonal L.

refer the readers to resources such as [12, 13] for formal discussions on persistent homology
and related developments. Below we only provide an intuitive and informal description of
the persistent homology induced by a function under our simple setting.

Let f : X → R be a continuous real-valued function defined on a topological space X.
We want to understand the structure of X from the perspective of the scalar function f :
Specifically, let Xα := {x ∈ X | f(x) ≥ α} denote the super-level set2 of X w.r.t. α ∈ R.
Now as we sweep X top-down by decreasing the α value, the sequence of super-level sets
connected by natural inclusion maps gives rise to a filtration of X induced by f :

Xα1 ⊆ Xα2 ⊆ · · · ⊆ Xαm = X, for α1 > α2 > · · · > αm. (1)

We track how the topological features captured by the so-called homology classes of the
super-level sets change. In particular, as α decreases, sometimes new topological features
are “born” at time α, that is, new families of homology classes are created in Hk(Xα),
the k-th homology group of Xα. Sometimes, existing topological features disappear, i.e,
some homology classes become trivial in Hk(Xβ) for some β < α. The persistent homology
captures such birth and death events, and summarizes them in the so-called persistence
diagram Dgk(f). Specifically, Dgk(f) consists of a set of points {(α, β) ∈ R2} in the plane,
where each (α, β) indicates a homological feature created at time α and killed at time β.

In our setting, the domain X will be the underlying space of a metric graph G. The
specific function that we use later is the geodesic distance to a fixed basepoint s ∈ G, that is,
we consider f : G→ R where f(x) = dG(s, x) for any x ∈ G. We are only interested in the
0th-dimensional persistent homology (k = 0 in the above description), which simply tracks
the connected components in the super-level set as we vary α.

Figure 1 gives an example of the 0-th persistence diagram Dg0(f) with the basepoint
s in edge (v0, v1). As we sweep the graph top-down in terms of the geodesic function f , a
new connected component is created as we pass through a local maximum ub of the function
f = dG(s, ·). A local maximum of f , such as u in Figure 1 (b), is not necessarily a graph
node from V . Two connected components in the super-level set can only merge at an up-fork
saddle ud of the function f : The up-fork saddle ud is a point such that within a sufficiently
small neighborhood of ud, there are at least two branches incident on ud with function values
larger than ud. Each point (b, d) in the persistence diagram is called a persistence point,
corresponding to the creation and death of some connected component: At time b, a new

2 In the standard formulation of persistent homology of a scalar field, the sub-level set Xα = {x ∈ X |
f(x) ≤ α} is often used. We use super-level sets which suit the specific functions that we use.
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component is created in Xb at a local maximum ub ∈ G with f(ub) = b. At time d and at
an up-fork saddle ud ∈ G with f(ud) = d, this component merges with another component
created earlier. We refer to the pair of points (ub, ud) from the graph G as the critical-pair
corresponding to persistent point (b, d). We call b and d the birth-time and death-time,
respectively. The plane containing the persistence diagram is called the birth-death plane.

Finally, given two finite persistence diagrams Dg = {p1, . . . , p` ∈ R2} and Dg′ =
{q1, . . . , qk ∈ R2}, a common distance measure for them, the bottleneck distance dB(Dg,Dg′)
[6], is defined as follows: Consider Dg and Dg′ as two finite sets of points in the plane (where
points may overlap). Call L = {(x, x) ∈ R2} the diagonal of the birth-death plane.

I Definition 1. A partial matching C of Dg and Dg′ is a relation C : (Dg ∪ L)× (Dg′ ∪ L)
such that each point in Dg is either matched to a unique point in Dg′, or mapped to its closest
point (under L∞-norm) in the diagonal L; and the same holds for points in Dg′. See Figure
1 (d). The bottleneck distance is defined as dB(Dg,Dg′) = minC max(p,q)∈C ‖p− q‖∞, where
C ranges over all possible partial matchings of Dg and Dg′. We call the partial matching
that achieves the bottleneck distance dB(Dg,Dg′) as the bottleneck matching.

Proposed persistence-distortion distance for metric graphs. Suppose we are given two
metric graphs (G1, dG1) and (G2, dG2).

Choose any point s ∈ G1 as the base point, and consider the shortest path distance
function dG1,s : G1 → R defined as dG1,s(x) = dG1(s, x) for any point x ∈ G1. Let Ps denote
the 0-th dimensional persistence diagram Dg0(dG1,s) induced by the function dG1,s. Define
dG2,t and Qt similarly for any base point t ∈ G2 for the graph G2. We map the graph G1
to the set of (infinite number of) points in the space of persistence diagrams D, denoted by
C := {Ps | s ∈ G1}. Similarly, map the graph G2 to F := {Qt | t ∈ G2}.

IDefinition 2. The persistence-distortion distance between G1 and G2, denoted by dPD(G1,G2),
is the Hausdorff distance dH(C,F) between the two sets C and F where the distance between
two persistence diagrams is measured by the bottleneck distance. In other words,

dPD(G1,G2) = dH(C,F) = max{ max
P∈C

min
Q∈F

dB(P,Q), max
Q∈F

min
P∈C

dB(P,Q) }.

I Remark. (1) We note that if two graphs are isomorphic, then dPD(G1,G2) = 0. The
inverse unfortunately is not true (an example is shown in the full version [11]). Hence dPD is
a pseudo-metric (it inherits the triangle-inequality property from the Hausdorff distance).
(2) While the above definition uses only the 0-th persistence diagram for the geodesic distance
functions, all our results hold with the same time complexity when we also include the
1st-extended persistence diagram [7] or equivalently 1st-interval persistence diagram [10] for
each geodesic distance function dG1,s (resp. dG2,t).

3 Stability of persistence-distortion distance

Gromov-Hausdorff distance. There is a natural way to measure metric distortion between
metric spaces (thus for metric graphs), called the Gromov-Hausdorff distance [20, 4]. Given
two metric spaces X = (X, dX) and Y = (Y, dY ), a correspondence between X and Y is a
relation M : X × Y such that (i) for any x ∈ X, there exists (x, y) ∈ M and (ii) for any
y′ ∈ Y , there exists (x′, y′) ∈M. The Gromov-Hausdorff distance between X and Y is

dGH(X ,Y) = 1
2 inf
M

max
(x1,y1),(x2,y2)∈M

|dX(x1, x2)− dY (y1, y2)|, (2)

SoCG’15
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whereM ranges over all correspondences of X × Y . The Gromov-Hausdorff distance is a
natural measurement for distance between two metric spaces; see [26] for more discussions.
Unfortunately, so far, there is no efficient (polynomial-time) algorithm to compute nor
approximate this distance, even for special metric spaces – In fact, it has been recently shown
that even the discrete Gromov-Hausdorff distance for metric trees (where only tree nodes are
considered) is NP-hard to compute, as well as to approximate within a constant factor (see
footnote 1). In contrast, as we show in Section 4 and 5, the persistence-distortion distance
can be computed in polynomial time.

On the other hand, we have the following stability result, which intuitively suggests that
the persistence-distortion distance is a weaker relaxation of the Gromov-Hausdorff distance.
The proof of this theorem leverages a recent result on measuring distances between the Reeb
graphs [3] and can be found in the full version.

I Theorem 3 (Stability). dPD(G1,G2) ≤ 6dGH(G1,G2).
By triangle inequality, this also implies that given two metric graphs G1 and G2 and their

perturbations G′1 and G′2, respectively, we have that:

dPD(G′1,G′2) ≤ dPD(G1,G2) + 6dGH(G1,G′1) + 6dGH(G2,G′2).

4 Discrete PD-Distance

Suppose we are given two metric graphs (G1 = (V1, E1), dG1) and (G2 = (V2, E2), dG2),
where the shortest distance metrics dG1 and dG2 are induced by lengths associated with the
edges in E1 ∪ E2. As a simple warm-up, we first compute the following discrete version of
persistence-distortion distance where only graph nodes in V1 and V2 are considered:

I Definition 4. Let Ĉ := {Pv | v ∈ V (G1)} and F̂ := {Qu | u ∈ V (G2)} be two discrete sets
of persistence diagrams. The discrete persistence-distortion distance between G1 and G2,
denoted by d̂PD(G1,G2), is given by the Hausdorff distance dH(Ĉ, F̂).

We note that while we only consider graph nodes as base points, the local maxima of the
resulting geodesic function may still occur in the middle of an edge. Nevertheless, for a
fixed base point, each edge could have at most one local maximum, and its location can be
decided in O(1) time once the shortest-path distance from the base point to the endpoints of
this edge are known. The observation below follows from the fact that geodesic distance is
1-Lipschitz (as the basepoint moves) and the stability of persistence diagrams.

I Observation 5. dPD(G1,G2) ≤ d̂PD(G1,G2) ≤ dPD(G1,G2) + `
2 , where ` is the largest

length of any edge in E1 ∪ E2.

I Lemma 6. Given metric graphs G1 = (V1, E1) and G2 = (V2, E2), d̂PD(G1,G2) can be
computed in O(n2m1.5 logm) time, where n = max{|V1|, |V2|} and m = max{|E1|, |E2|}.

Proof. For a given base point s ∈ V1 (or t ∈ V2), computing the shortest path distance from
s to all other graph nodes, as well as the persistence diagram Ps (or Qt) takes O(m logn)
time. Hence it takes O(mn logn) total time to compute the two collections of persistence
diagrams Ĉ = {Ps | s ∈ V (G1)} and F̂ = {Qt | t ∈ V (G2)}.

Each persistence diagram Ps has O(m) number of points in the plane – it is easy to show
that there are O(m) number of local maxima of the geodesic function dG1,s (some of which
may occur in the interior of graph edges). Since the birth time b of every persistence point
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(b, d) corresponds to a unique local maximum ub with f(ub) = b, there can be only O(m)
points (some of which may overlap each other) in the persistence diagram Ps.

Next, given two persistence diagrams Ps and Qt, we need to compute the bottleneck
distance between them. In [14], Efrat et al. gives an O(k1.5 log k) time algorithm to compute
the optimal bijection between two input sets of k points P and Q in R2 such that the
maximum distance between any mapped pair of points (p, q) ∈ P ×Q is minimized. This
distance is also called the bottleneck distance, and let us denote it by d̂B. The bottleneck
distance between two persistence diagrams Ps and Qt is similar to the bottleneck distance
d̂B, with the extra addition of diagonals. However, let P ′ and Q′ denote the vertical
projection of points in Ps and Qt, respectively, onto the diagonal L. It is easy to show that
dB(P,Q) = d̂B(Ps ∪Q′,Qt ∪ P ′). Hence dB(Ps,Qt) can be computed by the algorithm of
[14] in O(m1.5 logm) time. Finally, to compute the Hausdorff distance between the two sets
of persistence diagrams Ĉ and F̂ , one can check for all pairs of persistence diagrams from
these two sets, which takes O(n2m1.5 logm) time since the |Ĉ| ≤ n and |F̂ | ≤ n. The lemma
then follows. J

By Observation 5, d̂PD(G1,G2) only provides an approximation of dPD(G1,G2) with an
additive error as decided by the longest edge in the input graphs. For unweighted graphs
(where all edges have length 1), this gives an additive error of 1. This in turns provides a
factor-2 approximation of the continuous persistence-distortion distance, since dPD(G1,G2)
is necessarily an integer in this setting.

I Corollary 7. The discrete persistence-distortion distance provides a factor-2 approximation
of the continuous persistence-distortion distance for two graphs G1 and G2 with unit edge
length; that is, dPD(G1,G2) ≤ d̂PD(G1,G2) ≤ 2dPD(G1,G2).

One may add additional (steiner) nodes to edges of input graphs to reduce the longest
edge length, so that the discrete persistence-distortion distance approximates the continuous
one within a smaller additive error. But it is not clear how to bound the number of steiner
nodes necessary for approximating the continuous distance within a multiplicative error, even
for the case when all edges weights are approximately 1. Below we show how to directly
compute the continuous persistence-distortion distance exactly in polynomial time.

5 Computation of Continuous Persistence-distortion Distance

We now present a polynomial-time algorithm to compute the (continuous) persistence-
distortion distance between two metric graphs (G1 = (V1, E1), dG1) and (G2 = (V2, E2), dG2).
As before, set n = max{|V1|, |V2|} and m = max{|E1|, |E2|}. Below we first analyze how
points in the persistence diagram change as we move the basepoint in G1 and G2 continuously.

5.1 Changes of persistence diagrams
We first consider the scenario where the basepoint s moves within a fixed edge σ ∈ E1 of
G1, and analyze how the corresponding persistence diagram Ps changes. Using notations
from Section 2, let (ub, ud) be the critical-pair in G1 that gives rise to the persistence point
(b, d) ∈ Ps. Then ub is a maximum for the distance function dG1,s, while ud is an up-fork
saddle for dG1,s. We call ub and ud from G1 the birth point and death point w.r.t. the
persistence-point (b, d) in the persistence diagram.

As the basepoint s moves to s′ ∈ σ within ε distance along the edge σ for any ε ≥ 0,
the distance function is perturbed by at most ε; that is, ‖dG1,s − dG1,s′‖∞ ≤ ε. By the

SoCG’15
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Figure 2 For better illustration of ideas, we use height function defined on a line to show: (a) a
max-max critical event at s0; and (b) a saddle-saddle critical event at s0.

Stability Theorem of the persistence diagrams [6], we have that dB(Ps,Ps′) ≤ ε. Hence
as the basepoint s moves continuously along σ, points in the persistence diagram Ps move
continuously3. We now analyze how a specific point (b, d) may change its trajectory as s
moves from one endpoint v1 of σ = (v1, v2) ∈ E1 to the other endpoint v2.

Specifically, we use the arc-length parameterization of σ for s, that is, s : [0,Len(σ)]→ σ.
For any object X ∈ {b, d, ub, ud}, we use X(s) to denote the object X w.r.t. basepoint s(s).
For example, (b(s), d(s)) is the persistence-point w.r.t. basepoint s(s), while ub(s) and ud(s)
are the corresponding pair of local maximum and up-fork saddle that give rise to (b(s), d(s)).
We specifically refer to b : [0,Len(σ)]→ R and d : [0,Len(σ)]→ R as the birth-time function
and the death-time function, respectively. By the discussion from the previous paragraph,
these two functions are continuous.

Critical events. To describe the birth-time and death-time functions, we need to understand
how the corresponding birth-point and death-point ub(s) and ud(s) in G1 change as the
basepoint s varies. Recall that as s moves, the birth-time and death-time change continuously.
However, the critical points ub(s) and ud(s) in G1 may (i) stay the same or move continuously,
or (ii) have discontinuous jumps. Informally, if it is case (i), then we show below that we
can describe b(s) and d(s) using a piecewise linear function with O(1) complexity. Case (ii)
happens when there is a critical event where two critical-pairs (ub, ud) and (u′b, u′d) swap their
pairing partners to (ub, u′d) and (u′b, ud). Specifically, at a critical event, since the birth-time
and death-time functions are still continuous, it is necessary that either dG1,s(ub) = dG1,s(u′b)
or dG1,s(ud) = dG1,s(u′d); we call the former a max-max critical event and the latter a
saddle-saddle critical event. See Figure 2 for an illustration. It turns out that the birth-time
function b : [0,Len(σ)] → R (resp. death-time function d) is a piecewise linear function
whose complexity depends on the number of critical events, which we analyze below.

5.1.1 The death-time function d : [0,Len(σ)]→ R
The analysis of death-time function is simpler than that of the birth-time function; so we
describe it first. Given that dG1,s is the geodesic distance to the base point s, a merging of
two components at an up-fork saddle cannot happen in the interior of an edge, unless at the
basepoint s itself.

I Observation 8. An up-fork saddle u ∈ G1 is necessarily a graph node from V1 with degree
at least 3 unless u = s.

3 There could be new persistence points appearing or current points disappearing in the persistence
diagram as s moves. Both creation and deletion necessarily happen on the diagonal of the diagram as
dB(Ps,Ps′ ) necessarily tends to 0 as s′ approaches s. Nevertheless, for simplicity of presentation, below
we track the movement of persistence points ignoring their creation and deletion for the time being.
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Figure 3 (c) Graph of function gx : [0,Len(σ)]→ R.

To simplify the exposition, we omit the case of u = s (which is an easier case) in our
discussions below. Since the up-fork saddles now can only be graph nodes, as the basepoint
s(s) moves, the death-point ud(s) either (case-1) stays at the same graph node, or (case-2)
switches to a different up-fork saddle u′d (i.e, a saddle-saddle critical event); see Figure 3.

Now for any point x ∈ G1, we introduce the function gx : [0,Len(σ)] → R which
is the distance function from x to the moving basepoint s(s) for s ∈ [0, Lσ]; that is,
gx(s) := dG1,s(s)(x). Intuitively, as the basepoint s(s) moves along σ, the distance from s(s)
to a fixed point x either increases or decreases at unit speed, until it reaches a point where
the shortest path from s(s) to x changes discontinuously. We have the following observation.

I Claim 9. For any point x ∈ G1, as the basepoint s moves in an edge σ ∈ E, the distance
function gx : [0,Len(σ)] → R defined as gx(s) := dG1,s(s)(x) is a piecewise linear function
with at most 2 pieces, where each piece has slope either ‘1’ or ‘-1’. See Figure 3 (c).

As s(s) moves, if the death-point ud(s) stays at the same up-fork saddle u, then by the
above claim, the death-time function d (which locally equals gu) is a piecewise linear function
with at most 2 pieces.

Now we consider (case-2) when a saddle-saddle critical event happens: Assume that as s
passes value s0, ud(s) switches from a graph node u to another one u′. At the time s0 when
this swapping happens, we have that dG1,s(s0)(u) = dG1,s(s0)(u′). In other words, the graph
for function gu and the graph for function gu′ intersect at s0. Before s0, d follows the graph
for the distance function gu, while after time s0, ud changes its identity to u′ and thus the
movement of d will then follow the distance function gu′ for s > s0. Since the function gx is
PL with at most 2 pieces as shown in Figure 3 (c) for any point x ∈ G1, the switching for a
fixed pair of nodes u and u′ can happen at most once (as the graph of gu and that of gu′

intersect at most once). Overall, since there are |V1| ≤ n graph nodes, we conclude that:

I Lemma 10. As s moves along σ, there are O(n2) number of saddle-saddle critical events
in the persistence diagram Ps.

For our later arguments, we need a stronger version of the above result. Specifically,
imagine that we track the trajectory of the death-time d for a persistence pair (b, d).

I Proposition 11. For a fixed persistent point (b(0), d(0)) ∈ Ps(0), the corresponding death-
time function d : [0,Len(σ)] → R is piecewise linear with at most O(n) pieces, and each
linear piece has slope either ‘1’ or ‘-1’. This also implies that the function d is 1-Lipschitz.

Proof. By Observation 8, ud(s) is always a graph node from V1. For any node u, recall
gu(s) = dG1,s(s)(u). As described above, d(s) will follow certain gu with u = ud(s) till the
identify of ud(s) changes at a saddle-saddle critical event between u with another up-fork
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saddle u′. Afterwards, d(s) will follow gu′ till the next critical event. Since each piece of gv
has slope either ‘1’ or ‘-1’, the graph of d consists of linear pieces of slope ‘1’ or ‘-1’. Note
that this implies that the function d is a 1-Lipschitz function.

On the other hand, for a specific graph node u ∈ V , each linear piece in gu has slope ‘1’
or ‘-1’. This means that one linear piece in gu can intersect the graph of d at most once for
s ∈ [0,Len(σ)] as d is 1-Lipschitz. Hence the graph of gu can intersect the graph of d at most
twice; implying that the node u can appear as ud(s) for at most two intervals of s values.
Thus the total descriptive complexity of d is O(|V1|) = O(n), which completes the proof. J

5.1.2 The birth-time function b : [0,Len(σ)]→ R.
To track the trajectory of the birth-time b of a persistence pair (b(0), d(0)) ∈ Ps(0), we
need to study the movements of its corresponding birth-point (which is a maximum) ub :
[0,Len(σ)] → G1 in the graph. However, unlike up-fork saddles (which must be graph
nodes), maxima of the distance function dG1,s can also appear in the interior of a graph edge.
Roughly speaking, in addition to degree-1 graph nodes, which must be local maxima of the
distance function dG1,s, imagine the shortest path tree with s being the root (source), then
any non-tree edge will generate a local maximum of the distance function dG1,s. (Recall the
maximum u in Figure 1 (b), which lies in the interior of edge (v3, v4).) Nevertheless, the
following result states there can be at most one local maximum associated with each edge.

I Lemma 12. Given an arbitrary basepoint s, a maximum for the distance function dG1,s :
G1 → R is either a degree-1 graph node, or a point v with at least two shortest paths to the
basepoint s which are disjoint in a small neighborhood around v.

Furthermore, there can be at most one maximum of dG1,s in each edge in E1.

This lemma suggests that we can now associate each local maximum with an edge in E1,
and analyze the changes of such an edge eb containing the birth-point ub (instead of the
birth-point itself). Specifically, using approaches similar to the tracking of death-point as in
Section 5.1.1, we study, for a fixed edge e ∈ E1 the function ge : [0,Len(σ)]→ R where, for
any s ∈ [0,Len(σ)], ge(s) is the distance from the basepoint s(s) to the unique maximum (if
it exists) in e; ge(s) = +∞ if the distance function dG1,s(s) does not have a local maximum
in e. We refer to the portion of ge with finite value as well-defined. Intuitively, the function
ge serves as the same role as the distance function gx in Section 5.1.1, and similar to Claim
9, we have the following characterization for this distance function.

I Proposition 13. For any edge e ∈ E1, the well-defined portion of the function ge is a
piecewise-linear function with O(1) pieces, where each piece is of slope ‘1’, ‘-1’ or ‘0’.

Using argument similar to, but more involved than that of Section 5.1.1, we obtain the
following result about the birth-time function, analogous to Proposition 11.

I Proposition 14. For a fixed (b(0), d(0)) ∈ Ps(0), the birth-time function b : [0,Len(σ)]→ R
is piecewise linear with at most O(m) pieces, and each linear piece has slope either ‘1’, ‘-1’,
or ‘0’. Note that this also implies that the function b is 1-Lipschitz.

5.1.3 Tracking the persistence pair (b, d) : [0,Len(σ)]→ R2.
Now consider the space Πσ := [0,Len(σ)] × R2, where R2 denotes the birth-death plane:
We can think of Πσ as the stacking of all the planes containing persistence diagrams Ps(s)
for all s ∈ [0,Len(σ)]. Hence we refer to Πσ as the stacked persistence-space. For a fixed
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persistence pair (b, d) ∈ Ps(s), as we vary s ∈ [0,Len(σ)], it traces
out a trajectory π = {(s, b(s), d(s)) | s ∈ [0, [Len(σ)]} ∈ Πσ, which is
the same as the “vines” introduced by Cohen-Steiner et al. [8]. By
Propositions 11 and 14, the trajectory π is a polygonal curve with
O(n+m) = O(m) linear pieces. See the right figure for an illustration,
where there are three trajectories in the stacked persistence diagrams.

In general, a trajectory (a vine) could appear or terminate within
the range (0,Len(σ)). Specifically, as we track a specific point in
the persistence diagram, it is possible that the pair of critical points giving rise to this
persistent-point may coincide and cease to exist afterwards. In this case, the corresponding
trajectory (vine) hits the diagonal of the persistence diagram (since as the two critical points
coincide with ub = ud, we have that b = d) and terminates. The inverse of this procedure
indicates the creation of a new trajectory. Nevertheless, we can show that there can be
O(n+m) = O(m) total number of trajectories in the stacked persistence diagrams (whether
they span the entire range of s ∈ [0,Len(σ)] or not). We conclude with the following result.

I Theorem 15. Let σ ∈ E1 be an arbitrary edge from the metric graph (G1, dG1). As the
basepoint s moves from one endpoint to another endpoint of σ by s : [0,Len(σ)] → σ, the
persistence-points in the persistence diagram Ps(s) of the distance function dG1,s(s) form O(m)
number of trajectories in the stacked persistence-space Πσ. Each trajectory is a polygonal
curve of O(m) number of linear segments.

A symmetric statement holds for metric graph (G2, dG2).

5.2 Computing dPD(G1,G2)
Given a pair of edges σs ∈ G1 and σt ∈ G2, as before, we parameterize the basepoints s and t
by the arc-length parameterization of σs and σt; that is: s : [0, Ls]→ σs and t : [0, Lt]→ σt
where Ls = Len(σs) and Lt = Len(σt). We now introduce the following function to help
compute dPD(G1,G2):

I Definition 16. The bottleneck distance function Fσs,σt : Ω→ R is defined as Fσs,σt(s, t) 7→
dB(Ps(s),Qs(t)). For simplicity, we sometimes omit σs, σt from the subscript when their
choices are clear from the context.

Recall that C = {Ps | s ∈ G1}, F = {Qt | t ∈ G2}, and by Definition 2:

dPD(G1,G2) = max{max
P∈C

min
Q∈F

dB(P,Q), max
P∈F

min
P∈C

dB(P,Q) }.

Below we focus on computing ~dH(C,F) := maxP∈C minQ∈F dB(P,Q), and the treatment of
~dH(F , C) := maxP∈F minP∈C dB(P,Q) is symmetric. It is easy to see:

~dH(C,F) = max
P∈C

min
Q∈F

dB(P,Q) = max
σs∈G1

max
s∈[1,Ls]

min
σt∈G2

min
t∈[1,Lt]

Fσs,σt(s, t). (3)

In what follows, we present the descriptive complexity of Fσs,σt for a fixed pair of edges
σs ∈ G1 and σt ∈ G2 in Section 5.2.1, and show how to use it to compute the persistence-
distortion distance between G1 and G2 in Section 5.2.2.

5.2.1 One pair of edges σs ∈ G1 and σt ∈ G2.
Recall that we call the plane containing the persistence diagrams as the birth-death plane,
and for persistence-points in this plane, we follow the literature and measure their distance
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under the L∞-norm (recall Definition 1). From now on, we refer to persistence-points in
Ps(s) as red points, while persistence-points in Qt(t) as blue points. As s and t vary, the red
and blue points move in the birth-death plane. By Theorem 15, the movement of each red
(or blue) point traces out a polygonal curve with O(m) segments (which are the projections
of the trajectories from the stacked persistence diagrams onto the birth-death plane).

Set Ω := [0, Ls]× [0, Lt] and we refer to it as the s-t domain. For a point (s, t) ∈ Ω, the
function value F (s, t)(= Fσs,σt(s, t)) = dB(Ps(s),Qt(t)) is the bottleneck distance between
the set of red and the set of blue points (with the addition of diagonals) in the birth-death
plane. To simplify the exposition, in what follows we ignore the diagonals from the two
persistence diagrams and only consider the bottleneck matching between red and blue points.

Let r∗(s) ∈ Ps(s) and b∗(t) ∈ Qt(t) be the pair of red-blue points from the bottleneck
matching between Ps(s) and Qt(t) such that d∞(r∗(s), b∗(t)) = dB(Ps(s),Qt(t)). We call
(r∗(s), b∗(t)) the bottleneck pair (of red-blue points) w.r.t. (s, t). As s and t vary continuously,
red and blue points move continuously in the birth-death plane. The distance between any
pair of red-blue points change continuously. The bottleneck pair between Ps(s) and Qt(t)
typically remains the same till certain critical values of the parameters (s, t).

Characterizing critical (s, t) values. Given (s, t), consider the optimal bottleneck matching
C∗(s, t) : Ps × Qt. For any corresponding pair (r(s), b(t)) ∈ C∗(s, t), d∞(r(s), b(t)) ≤
d∞(r∗(s), b∗(t)). Suppose r∗(s) = r1(s) and b∗(t) = b1(t). As (s, t) varies in Ω, the
bottleneck pair (r∗(s), b∗(t)) may change only when:

(case-1): (r1(s), b1(t)) ceases to be a matched pair in the optimal matching C∗(s, t); or
(case-2): (r1(s), b1(t)) is still in C∗, but another matched pair (r2(s), b2(t)) becomes the
bottleneck pair.

b1(s0)

b1(s)

r1(s0)

r1(s) b2(s)

b2(s0)

b1(s)

b1(s0)

b2(s)

b2(s0)

r1(s)

r1(s0)

r2(s0)

r2(s)

(case-1) (case-2)

At the time (s0, t0) that either cases above
happens, it is necessary that there are two red-
blue pairs, one of which being (r1, b1), and
denoting the other one by (r2, b2), such that
d∞(r1(s0), b1(t0)) = d∞(r2(s0), b2(t0)). (For
case-1, we have that either r2 = r1 or b2 = b1.)
Hence all critical (s, t) values are included in
those (s, t) values for which two red-blue pairs of
persistence-points acquire equal distance in the
birth-death plane. Let

X(r1,b1),(r2,b2) := {(s, t) | d∞(r1(s), b1(t)) = d∞(r2(s), b2(t))}

denote the set of potential critical (s,t)-values generated by (r1, b1) and (r2, b2). To describe
X(r1,b1),(r2,b2), we first consider, for a fixed pair of red-blue points (r, b), the distance function
Dr,b : [0, Ls]× [0, Lt]→ R defined as the distance between this pair of red and blue points in
the birth-death plane, that is, Dr,b(s, t) := d∞(r(s), b(t)) for any (s, t) ∈ Ω.

In particular, recall that by Theorem 15, r : [0, Ls] → R2 (resp. b : [0, Lt] → R2) is
continuous and piecewise-linear with O(m) segments. In other words, the range [0, Ls] (resp.
[0, Lt]) can be decomposed to O(m) intervals such that within each interval, r moves (resp. b
moves) along a line in the birth-death plane with fixed speed. Hence combining Propositions
11 and 14, we have the following:

I Proposition 17. The s-t domain Ω can be decomposed into an O(m) × O(m) grid such
that, within each of the O(m2) grid cell, Dr,b is piecewise-linear with O(1) linear pieces, and
the partial derivative of each piece w.r.t. s or w.r.t. t is either ‘1’, ‘-1’, or ‘0’.
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Given two pairs of red-blue pairs (r1, b1) and (r2, b2), the set X(r1,b1),(r2,b2) of potential
critical (s,t) values generated by them corresponds to the intersection of the graph of Dr1,b1

and that of Dr2,b2 . By overlaying the two O(m)×O(m) grids corresponding to Dr1,b1 and
Dr2,b2 as specified by Proposition 17, we obtain another grid of size O(m)×O(m) and within
each cell, the intersection of the graphs of Dr1,b1 and Dr2,b2 has O(1) complexity. Hence,

I Corollary 18. The set X(r1,b1),(r2,b2) ⊆ Ω consists of a set of polygonal curves in the s-t
domain Ω with O(m2) total complexity.

Consider the arrangement Arr(Ω) of the set of curves in X = {X(r1,b1),(r2,b2) | r1, r2 ∈
Ps, b1, b2 ∈ Qt}. Since there are altogether O(m4) × O(m2) = O(m6) segments in X , we
have that the arrangement Arr(Ω) has O(m12) complexity; that is, there are O(m12) number
of vertices, edges and polygonal cells. However, this arrangement Arr(Ω) is more refined
than necessary. Specifically, within a single cell c ∈ Arr(Ω), the entire bottleneck matching
C∗ does not change. By a much more sophisticated argument, we can prove the following
(see the full version [11] for details):

I Proposition 19. There is a planar decomposition Λ(Ω) of the s-t domain Ω with O(m8)
number of vertices, edges and polygonal cells such that as (s,t) varies within in each cell
c ∈ Λ(Ω), the pair of red-blue persistence points that generates the bottleneck pair (r∗, b∗)
remains the same.

Furthermore, the decomposition Λ(Ω), as well as the bottleneck pair (r∗, b∗) associated to
each cell, can be computed in O(m9.5 logm) time.

Our goal is to compute the bottleneck distance function F : Ω → R introduced at
the beginning of this subsection where F (s, t) 7→ dB(Ps(s),Qt(t)) = d∞(r∗(s), b∗(t)), so as
to further compute persistence-distortion distance using Eqn (3). To do this, we need to
further refine the decomposition Λ(Ω) from Proposition 19 to another decomposition Λ̂(Ω)
as described below so that within each cell, the bottleneck distance function Fσs,σt can be
described by a single linear function. The proof can be found in the full version [11].

I Theorem 20. For a fixed pair of edges σs ∈ G1 and σt ∈ G2, there is a planar polygonal
decomposition Λ̂(Ω) of the s-t domain Ω of O(m10) complexity such that within each cell, the
bottleneck distance function Fσs,σt is linear. Furthermore, one can compute this decomposition
Λ̂(Ω) as well as the function Fσs,σt in O(m10 logm) time.

5.2.2 Final algorithm and analysis.
We now aim to compute ~dH(C,F) using Eqn (3). First, for a fixed edge σs ∈ G1, consider
the following lower-envelop function

L : [0, Ls]→ R where L(s) 7→ min
σt∈G2

min
t∈[1,Lt]

F (s, t), (4)

where recall Ls and Lt denote the length of edge σs and σt respectively. The reason behind
the name “lower-envelop function" will become clear shortly.

Now for each σt ∈ G2, consider the polygonal decomposition Λ̂(Ω) as described in
Theorem 20. Since within each cell the bottleneck distance function F is a linear piece, we
know that for any s, the extreme of F (s, t) for all possible t ∈ [0, Lt] must come from some
edge in Λ̂(Ω). In other words, to compute the function mint∈[0,Lt] F (s, t) at any s ∈ [1, Ls],
we only need to inspect the function F restricted to edges in the refined decomposition
Λ̂(Ωσs,σt) for the s-t domain Ωσs,σt = [0, Ls]× [0, Lt]. Take any edge e of Λ̂(Ωσs,σt), define
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πe : [0, Ls] → [0, Lt] such that (s, πe(s)) ∈ e. Now denote by the function Fe : [0, Ls] → R
as the projection of F onto the first parameter [0, Ls]; that is, Fe(s) := F (s, πe(s)). Let
Eσs := {e ∈ Λ̂(Ωσs,σt) | σt ∈ G2} be the union of edges from the refined decompositions of
the s-t domain formed by σs and any edge σt from G2. It is easy to see that (see Figure 4):

L(s) = min
e∈Eσs

Fe(s); that is, L is the lower-envelop of linear functions Fe for all e ∈ Eσs .

There are O(m) edges in G2, thus by Theorem 20 we have |Eσs | = O(m11). The lower envelop
L of |Eσe | number of linear functions (linear segments), is a piecewise-linear function with
O(|Eσs | = O(m11) complexity and can be computed in O(|Eσs | log |Eσs |) = O(m11 logm)
time. Finally, from Eqn (3), ~dH(C,F) = maxσs∈G1 maxs∈[1,Ls] L(s). Since there are O(m)
choices for σs, we conclude with the following main result.

I Theorem 21. Given two metric graphs (G1, dG1) and (G2, dG2) with n total vertices and
m total edges, we can compute the persistence-distortion distance dPD(G1,G2) between them
in O(m12 logn) time.

We remark that if both input graphs are metric trees, then we can compute their
persistence-distortion distance more efficiently in O(n8 logn) time.

6 Future directions

The time complexity for computing the (continuous) persistence-distortion distance is high.
A worthwhile endeavor will be to bring it down with more accurate analysis. In particular,
the geodesic distance function (to a basepoint) in the graph has many special properties,
some of which we already leverage. It will be interesting to see whether we can further
leverage these properties to reduce the bound on the decomposition Λ̂(Ω) as used in Theorem
20. Developing efficient approximation algorithms for computing the persistence-distortion
distance is also an interesting question. Also, the special case of metric trees is worthwhile
to investigate. Notice that even discrete tree matching is still a hard problem for unlabeled
trees, i.e, when no correspondences between tree nodes are given.

Acknowledgment. We thank anonymous reviewers for very helpful comments, including
the suggestion that dB(Ps,Qt) can be computed directly using the algorithm of [14], which
simplifies our original approach based on modifying the algorithm of [14].
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