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Abstract
Range searching is a widely-used method in computational geometry for efficiently accessing local
regions of a large data set. Typically, range searching involves either counting or reporting the
points lying within a given query region, but it is often desirable to compute statistics that better
describe the structure of the point set lying within the region, not just the count.

In this paper we consider the geometric minimum spanning tree (MST) problem in the context
of range searching where approximation is allowed. We are given a set P of n points in Rd. The
objective is to preprocess P so that given an admissible query region Q, it is possible to efficiently
approximate the weight of the minimum spanning tree of P ∩Q. There are two natural sources
of approximation error, first by treating Q as a fuzzy object and second by approximating the
MST weight itself. To model this, we assume that we are given two positive real approximation
parameters εq and εw. Following the typical practice in approximate range searching, the range
is expressed as two shapes Q− and Q+, where Q− ⊆ Q ⊆ Q+, and their boundaries are separated
by a distance of at least εq · diam(Q). Points within Q− must be included and points external to
Q+ cannot be included. A weightW is a valid answer to the query if there exist point sets P ′ and
P ′′ such that P ∩Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩Q+ and wt(MST(P ′)) ≤W ≤ (1 + εw) · wt(MST(P ′′)).

In this paper, we present an efficient data structure for answering such queries. Our approach
uses simple data structures based on quadtrees, and it can be applied whenever Q− and Q+ are
compact sets of constant combinatorial complexity. It uses space O(n), and it answers queries in
time O

(
logn + 1/(εqεw)d+O(1)). The O(1) term is a small constant independent of dimension,

and the hidden constant factor in the overall running time depends on d, but not on εq or εw.
Preprocessing requires knowledge of εw, but not εq.
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1 Introduction

Range searching is a fundamental tool in computational geometry. Given a set P of n points
in Rd, the objective is to preprocess the points into a data structure so that, given any
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Figure 1 (a) Euclidean MST, (b) MST query, and (c) approximate MST query.

range Q from some class of admissible ranges (e.g., axis-aligned rectangles, balls, halfspaces,
simplices), it is possible to efficiently count or report the points of P that lie within Q. Range
searching is a powerful method for exploring local regions of a large geometric data set, and
it finds many applications in science and engineering.

In many of these applications it is desirable to obtain more detailed information than
simple counts. In this paper we explore the question of whether it possible to compute more
interesting properties of the subset of points lying within a range, properties that depend
on the geometric structure of the points. There are numerous statistics that describe the
structure of a point set. Often, such properties are based on graph structures that are
implicitly defined by the points set. Perhaps the most fundamental example of such a graph
is the Euclidean minimum spanning tree (see Fig. 1(a)). Given a point set P in a Euclidean
space, let MST(P ) denote P ’s minimum weight spanning tree, and let wt(MST(P )) denote
its total edge weight. Given a query range Q, an MST query returns wt(MST(P ∩Q)) (see
Fig. 1(b)). The MST weight (and more generally the distribution of its edge weights) can
provide useful information about the density properties of a point set.

Because of the high computational complexities of exact range searching and computing
exact geometric spanning trees in multi-dimensional spaces, it is natural to consider the
problem in an approximate context. We assume that we are given two positive real parameters
εq and εw, which represent the allowable errors in approximating the query shape and the
MST weight, respectively. A range is modeled as a “fuzzy” region of space, so that points
near the range’s boundary may be included or excluded at the algorithm’s discretion. To
make this more formal, an εq-approximate range Q is presented as a pair of compact bodies
Q− and Q+ (called the inner range and outer range, respectively), where Q− ⊆ Q ⊆ Q+

and the boundaries of Q− and Q+ are separated by a distance of at least εq · diam(Q). In
standard approximate range searching, the objective is to compute the size (or generally
weight) of any set P ′, such that P ∩Q− ⊆ P ′ ⊆ P ∩Q+. Thus, a natural formulation1 would
be to return any weight W such that

wt(MST(P ′)) ≤ W ≤ (1 + εw) · wt(MST(P ′)), where P ∩Q− ⊆ P ′ ⊆ P ∩Q+.

Because we amortize the cost of our result against the weight of the MST in a slightly larger

1 Note that the “obvious” formulation of returning a weight W such that wt(MST(P ∩ Q−)) ≤ W ≤
(1+εw) ·wt(MST(P ∩Q+)) is not well defined because (in dimensions three and higher) there exist point
sets such that, even for spherical ranges, wt(MST(P ∩Q−)) > wt(MST(P ∩Q+)). The phenomenon is
related to the effect of decreasing the MST weight through the addition of Steiner points.
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region, we introduce two sets in our formulation. In particular, we return a weight W such
that

wt(MST(P ′)) ≤ W ≤ (1 + εw) · wt(MST(P ′′)), where P ∩Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩Q+.

We refer to this as an (εq, εw)-approximate MST query.
Our main result is given in the following theorem. For our purposes, a range Q ⊆ Rd is

admissible if it is compact and has the property that in O(1) time it is possible to determine
for any hypercube b: (1) whether b is contained within Q+ and (2) whether b is disjoint
from Q−. Thus, the inner and out ranges need not be convex, but should be of constant
combinatorial complexity. To simplify the complexity bounds (which are stated in full detail
at the end of Section 3.3), we use the notation O∗ to ignore factors of the form 1/εO(1),
where the O(1) term does not depend on d (and is roughly 2 in our case).

I Theorem 1. Given a set P of n points in Rd and a weight-approximation parameter
εw > 0, P can be preprocessed into a data structure of space O(n) such that given any
admissible εq-approximate query Q, it is possible to answer (εq, εw)-approximate MST queries
in time O∗(logn+ 1/(εqεw)d).

Preprocessing time will be discussed in the full version of the paper, where we show
that (ignoring logarithmic factors) the data structure can be built in time Õ(n/εd/2). While
preprocessing assumes knowledge of εw, it is interesting to note that the space bounds do not
depend on εw. In [5] it is shown that answering εq-approximate range counting queries even
for hypercube ranges by searching a partition tree requires Ω(logn+ 1/εd−1

q ) time. Thus,
ignoring the εw term, the query time is not far from optimal assuming an approach based on
partition trees (as is the approach presented here).

The notion of extracting more complex information than simple counts (or more generally
evaluating sums over a commutative semigroup) in range searching has been studied before.
One broad class of results involve extensions of aggregate range searching [19, 1]. Papadias
et al. [16] and Shan et al. [18] both present data structures that answer various types of
nearest neighbor queries over ranges. Nekrich and Smid [15] present a generic data structure
that returns an ε-coreset for orthogonal query ranges in Rd. Brass et al. [9] present data
structures for answering orthogonal range queries in R2 involving extent measures of the
points lying within a query range, including width, area and perimeter of the convex hull,
and the smallest enclosing disk. MST queries are particularly challenging because, due to
the requirement that the MST must be connected, it is not possible to merely aggregate
information in order to answer the query.

Extracting structural information has also been explored in a temporal setting in the
work of Bannister et al. [8, 7]. In [8] a collection of pairwise relational events are given with
time stamps, and it is shown how to extract graph properties efficiently for the events lying
within a given query time interval. In [7], this is extended to geometric structures for points
with time stamps. Because we are interested in constructing information about the MST
in sublinear time, our methods bear similarity to sublinear time algorithms for computing
geometric spanning trees, as exemplified in the work of Czumaj, Sohler, and others [12, 13]
and Frahling et al. [14]. We note, however, that in contrast to these algorithms that are
randomized and return only an approximation to the weight (not the edges), our query
algorithm is deterministic and implicitly provides a certificate in the form of a connected
graph (possibly containing cycles) that spans the point set P ′ and satisfies the stated weight
requirements. Given this certificate, it is possible to enumerate or randomly sample from the
edges of this graph.

SoCG’15
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Our approach borrows some standard techniques for computing approximate geometric
spanning trees, such as quadtrees, well-separated pair decompositions (WSPDs), bottom-up
construction, and randomized shifting (see, e.g., [11, 4, 2]). Due to the special nature of our
problem, we have developed a number of new twists on these ideas. For example, in order to
avoid problems with bad quadtree alignments, we develop a local variant of the well-known
technique of randomly shifting the coordinate system [3]. We also develop a more efficient
method for computing the closest pair of points in the pairs of a WSPD, which exploits the
fact that (in our context) the approximation error can be amortized against the weight of
the MST within the dumbbell heads of the WSPD.

2 Preliminaries

In this section we provide basic definitions of a number of concepts that will be used
throughout the paper.

2.1 Minimum Spanning Trees

Consider a finite point set P ∈ Rd. Given two points p, q ∈ Rd, we denote their Euclidean
distance by ‖pq‖. Formally, the minimum spanning tree of P , denoted MST(P ), is any
minimum spanning tree of the complete graph on P whose edge weights are the interpoint
distances. (Our results can be extended easily to any Minkowski distance, with a slight
adjustment in the constant factors.) The edges of MST(P ) are line segments, and we will
often treat the relevant portions of the MST as a finite set of line segments. Define the
weight of any such set S of segments, denoted wt(S), to be the sum of the segment lengths.

Throughout, we will need to refer to various restrictions of the edges/weight of the MST
to a region of space. We use the term global MST to refer to MST(P ). Given subsets
P ′, P ′′ ⊆ P , define the induced MST on (P ′, P ′′), denoted MST(P )� (P ′, P ′′), to be the
subset of global MST edges that have one endpoint in P ′ and one in P ′′. Let MST(P )�P ′
denote MST(P )�(P ′, P ′).

Given a closed region of space b (which for us will be a hypercube or the difference of two
nested hypercubes), there are two natural ways of restricting MST(P ) to b, depending on
whether we include edges entirely or partially. Define MST(P )�(P ∩ b) to be the subset of the
edges of MST(P ) both of whose endpoints lie within b (see Fig. 2(b)), and define MST(P )�b
to be intersection of MST(P ) (as a set of segments) with b (see Fig. 2(c)). Observe that
MST(P )�(P ∩ b) is a subgraph of MST(P ∩ b). When P is understood from context, define
the local connectors of b, denoted ∆(b), to be the segments of MST(P ∩ b) that are not in
MST(P )�(P ∩ b) (highlighted in Fig. 2(d)).

Our algorithm will classify edges of the MST as being “short” or “long,” and process
each group differently. Given any γ > 0, define the γ-restricted MST, denoted MSTγ(P ), to
be the subgraph of MST(P ) consisting of edges of weight at most γ, and define MST>γ(P )
similarly but for edges of weight greater than γ.

We will organize the edges of the MST using a quadtree decomposition. In general, a
uniform grid of hypercubes overlaid on P naturally induces a graph whose vertices are the
grid cells and two cells (b, b′) are connected by an edge if MST(P )�(P ∩ b, P ∩ b′) is nonempty.
(Note that this graph may contain cycles and self-loop edges.) It is well known that the MST
of any finite point set P in Rd has constant degree (depending on the dimension), and it is
easy to show that this is true for this induced graph as well. We omit the proof.
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Figure 2 Geometric minimum spanning tree definitions.

I Lemma 2. Given a finite point set P in Rd and a uniform grid of hypercubes, there exists
a constant c (depending only on the dimension d) such that the MST induced on the grid is
of degree at most c.

2.2 BBD-trees and Blocks
Our solution will be based on a balanced variant of a quadtree, called a BBD-tree. We
refer the reader to [6] for details, but informally, a BBD-tree is based on a quadtree-like
subdivision of space, which introduces a decomposition operator, called shrinking, that allows
the data structure to zoom into regions of dense concentration. The relevant properties of
the BBD-tree are given in the following lemma, which was proved by Arya et al. [6].

I Lemma 3 (BBD-tree Construction and Packing Lemma). Given an n-element point set
P in Rd, in O(n logn) time it is possible to construct a BBD-tree of size O(n) and height
O(logn). Furthermore, the number of cells of this tree with pairwise disjoint interiors, each
of side length at least s, that intersect a ball of radius r is at most O((1 + r/s)d).

For the purposes of processing queries, it will be convenient to conceptualize the subset
of points contributing to the query as union of the points lying within a subset of sufficiently
small disjoint quadtree boxes all of equal side length. To make this more formal, we introduce
the notions of mini-blocks and micro-blocks.

For a sufficiently small constant c (specified later), define ε = c · εq · diam(Q). We will
assume that c is chosen so that ε is power of two and c ≤ 1/2d. Define a mini-block to be
a nonempty quadtree box of side length ε. Let Bε(Q) denote the set of mini-blocks that
overlap Q− (the shaded squares of Fig. 3(a)). (This set depends on P and εq as well, but
since P and εq will be fixed throughout, we omit reference to them.) Also, define B+

ε (Q)
to be the set of quadtree boxes of side length ε such that at least one of its 3d neighboring
blocks is in Bε(Q) (all the squares of Fig. 3(a)). A box of side length ε has diameter at most
dε ≤ (εq/2) · diam(Q), and therefore, all the boxes of Bε(Q) and B+

ε (Q) lie within Q+.
An important part of our construction will involve expanding and shifting mini-blocks.

Each mini-block b of Bε(Q) will be associated with a hypercube that contains b and whose
side length is twice as large as b’s (see Fig. 3(b)). We call this the shifted block and denote it
by ⇀

b . Observe that each shifted block lies within the union of the 3d neighboring blocks of b,
and therefore each shifted block lies within B+

ε (Q). For a sufficiently small positive constant
c′ (specified later), define δ = c′εwε. Again, we will assume that c′ is chosen so that δ is a
power of two. Define a micro-block (associated with Q) to be a nonempty quadtree box of
side length δ. Our preprocessing algorithm will construct ⇀b so that it is aligned with the

SoCG’15
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Figure 3 (a) Mini-blocks (all blocks are in B+
ε (Q) and shaded blocks are in Bε(Q)), (b) a

mini-block b and its shifted block ⇀
b , and (c) the micro-blocks associated with b.

quadtree grid of side length δ. Define Bδ(b) to be the set of micro-blocks lying within ⇀
b (see

Fig. 3(c)), and define Bδ(Q) to be the union of these micro-blocks over all b ∈ Bε(Q).
Assuming the existence of these quantities for now, define P (Q) to be the subset of P

that is covered by all the shifted miniblocks, and similarly define P+(Q) to be the subset of
P lying within the blocks of B+

ε (Q). The following results are straightforward consequences
of our definitions. (Due to space limitations, proofs have been omitted from this version.)

I Lemma 4. There exist constants c and c′ (for the above definitions) such that, given a
point set P in Rd and an εq-approximate range Q:
(i) Bε(Q) and B+

ε (Q) are both of size O(1/εdq).
(ii) Bδ(Q) is of size O(1/(εqεw)d).
(iii) P ∩Q− ⊆ P (Q) ⊆ P+(Q) ⊆ P ∩Q+.

This lemma suggests a means by which to construct a solution to an (εq, εw)-approximate
MST query. Namely, find the weight of the edges of MST(P ) � P (Q), and then include
additional edges of low weight to join the connected components of this forest. Our approach
will be of this general form, and the additional edges will be classified as being of one of two
types, short edges and long edges. At a first reading it is reasonable to think of the sets
P (Q) and P+(Q) as playing the roles of P ′ and P ′′ in the definition of an approximate MST
query. (But a twist will enter at the end.)

Our next lemma shows that these block sets can be computed efficiently. It is a straight-
forward adaptation of standard algorithms on BBD-trees.

I Lemma 5. Given a BBD-tree storing P and an εq-approximate range Q, it is possible to
compute Bε(Q) and B+

ε (Q) in O(logn+ 1/εdq) time and Bδ(Q) in O(logn+ 1/(εqεw)d) time.

We would like to identify the mini- and micro-blocks with subsets of nodes of the BBD-tree.
This is complicated by the fact that a given block need not exist as the cell of any node within
the tree because the decomposition ended at a leaf node before reaching this level. In order
to focus on the key issues, it will greatly simplify matters to ignore the BBD-tree structure
for now and assume that we have instantaneous access to the data stored in any quadtree
box. In the full version we will discuss the technical details underlying this assumption.

3 Computing the MST Weight

In this section, we will present our data structure and discuss query processing. Let us
begin with a high-level overview of our approach. First, recall that Bε(Q) denotes the set of
mini-blocks of side length roughly εq · diam(Q) that overlap the inner query range. These
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mini-blocks all lie within the outer query range, and so if we could compute (approximately)
the MST of the point set lying within them we would be done. We know that the global
MST induced on this set of points is a subset of the final MST. Thus, a natural strategy
would be to store the weights of edges of the global MST locally in the nodes of the quadtree,
and then at query time combine the MST edge weights for the nodes representing Bε(Q) and
explicitly compute the additional connecting edges needed to join the connected components
of this forest into a single tree.

The difficulty in carrying out this strategy is that there may be many (Ω(n)) connected
components of the global MST, and like the tangled branches of a vine, these components
can be quite long and intricate and may be separated by arbitrarily small distances. To
overcome this problem, within each mini-block we would like to compute (as a part of the
preprocessing) a set of edges that will connect the components within this block. Because
this will be done independently for each block, without consideration of global connectivity,
the problem is determining how to do this without significantly increasing the total edge
weight within the query region.

To overcome this problem, we will modify a common strategy used in the computation
of geometric MSTs. First, let us focus on “short edges.” Recall that δ is roughly εw ε, and
the δ-restricted MST is the subgraph of the MST(P ) consisting of edges of length at most
δ. Rather than connecting all the components, we will focus instead on connecting just the
components of the δ-restricted MST lying within each mini-block b in order to form the
δ-restricted MST of P ∩ b. (For technical reasons, we will do this for a slightly larger value,
δ̂ = 2dδ, but we will ignore this small variation for now.) Unfortunately, such a local strategy
may introduce unnecessarily long edges if the quadtree structure is badly aligned with respect
to the point set. In traditional MST approximation algorithms this difficulty is handled by
introducing a modified distance function that penalizes very short edges (of length at most δ)
that cross the mini-block boundary. This relies on the fact that if a random shift is applied
to the coordinate system, then in expectation this added penalty increases the global MST
weight by only a small amount. This approach cannot be applied in our setting however,
because we need to show that the weight increase is bounded within every possible query
region.

Rather than shifting the coordinate system, we instead expand each mini-block b by a
factor of two and take an appropriately translated copy of this shifted block, denoted ⇀

b ,
that contains b. (For technical reasons, this will be applied to a slight enlargement of the
shifted box, called ⇀

b+.) Because this is computed at preprocessing time, query processing is
deterministic. The key property possessed by ⇀

b is that the total weight needed to connect
the δ-restricted global MST within ⇀

b is within a factor of roughly εw of the total weight of
the global MST induced in the neighborhood of b, more formally, within the region covered
by the 3d blocks that surround b. We call these additional edges local connectors. Recall
that P (Q) denotes the union of the points of P lying within these shifted blocks.

Given the weight of the δ-restricted global MST induced on the shifted blocks and the
weight of the local connectors, we can now resume our original strategy. We decompose the
shifted blocks into micro-blocks of side length δ, accumulate the weights of the δ-restricted
global MST and local connectors on these blocks. The number of such blocks is O(1/(εqεw)d),
and this accumulation can be performed within this time bound by a traversal of the BBD-
tree. These edges induce a graph on the δ-blocks, called the global connection graph. We
compute the connected components of this graph. This provides us with an approximation
to the δ-restricted MST of P (Q), with the caveat that the approximation error is expressed
with respect to the larger point set that lies in B+

ε (Q), the neighboring blocks of Bε(Q). We
refer to all of this as the short-edge processing.

SoCG’15
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To finish the job, we need to add the “long edges” (of length greater than δ) in order
to connect the components of the global connection graph. To do this, we employ a
strategy based on the well-separated pair decomposition of the micro-blocks. Callahan and
Kosaraju [11] observed that, even with a constant factor separation, the MST could be well
approximated by computing an approximation to the closest pair within each well-separated
pair, and then computing the MST of these pairs. We will apply the same idea with two
modifications. Because we are only interested in well-separated pairs at distance greater
than Θ(δ), the number of pairs is proportional to the number of micro-blocks. Second, we
ignore any pairs that join two points whose micro-blocks are within the same component of
the global-connection graph.

The problem with applying the Callahan and Kosaraju approach directly is that in
order to compute an εw-approximation to the closest pair, we would need to decompose
each micro-block further into O

(
1/εΩ(d)

w

)
subblocks, which would increase the running time

considerably. In order to avoid this additional blow-up, we employ a novel idea. The pairs
that are difficult to process are those having many subblocks within the dumbbell head of
the well-separated pairs. In such cases, however, the weight of the MST within the dumbbell
head is relatively large. Rather than charging the approximation error to the length of the
pair returned, we instead charge the error to the weight of the MST within the dumbbell
heads. We show that by doing this, the running time is O((1/ε2

w) log2(1/εqεw)), which avoids
ε dependencies that grow exponentially in the dimension.

The final answer to the query is the sum of the weights from the short-edge and long-edge
processing. As mentioned above, our algorithm is deterministic and implicitly provides a
certificate to the answer in the form of a connected graph on P (Q).

3.1 Short-Edge Processing
Let us discuss now the short-edge processing in greater detail. Recall ε, δ, δ̂, Bε(Q), Bδ(Q),
P (Q), and P+(Q) introduced earlier. Also recall that each mini-block b is associated with a
shifted block ⇀

b (to be specified below), which contains b and is contained within b’s neighbors.
The objective of this phase is to compute a locally connected augmentation of the δ̂-restricted
global MST within each of the shifted mini-blocks. This will involve three things: (1) the
weight of the edges of the δ̂-restricted global MST induced on each shifted block, (2) the
weight of a set of local connectors that join components of this graph to form the δ̂-restricted
MST within each shifted block, and (3) a global-connection graph on the micro-blocks of
Bδ(Q) that connects these components throughout the query range. In this section, we will
show that these structures satisfy two properties:

Low weight: The total weight of the local connectors over all the mini-blocks of Bε(Q) is at
most (εw/2) · wt(MST

δ̂
(P+(Q)). (This will be established in Lemma 8 below.)

Local connectivity: Given two points p, p′ ∈ P (Q) such that ‖pp′‖ ≤ δ̂, the micro-blocks
of Bδ(Q) that contain these points are in the same connected component of the global-
connection graph.

The challenge in achieving these two properties arises from the possible poor placement of
partitioning cuts in the quadtree. For example, suppose we have a pair b and b′ of neighboring
mini-blocks, and we have a large number of point pairs where one element of each pair lies
in b and the other in b′, and further the segment joining each pair is extremely short (see
Fig. 4(a)). If we build the MSTs independently within each mini-block, the local weight will
be nearly twice the optimum (see Figs. 4(b) and (c)). Since this instance is the result of an
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b b′

Optimal Independent

b b′ b b′
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Figure 4 (a) Two points sets lying close to a quadtree splitting edge, (b) the optimal MST, and
(c) two MSTs computed independently within each box.

unlucky choice of quadtree cuts, this is usually remedied by applying a random translation
to the coordinate system before building the quadtree. While it can be shown that this fixes
the problem (in expectation) for the global MST, it does not necessarily fix the problems at
the local level, which is what we need for range searching.

As mentioned above, our solution will involve expanding each mini-block by a factor of
two, and applying a shift to this expanded block. Before presenting our shifting algorithm, we
present a useful lemma. To motivate this lemma, for any γ > 0 consider the γ-restricted MST
of a point set P and a sufficiently large hypercube b. As observed earlier, the γ-restricted
global MST induced on P ∩ b (formally, MSTγ(P )�(P ∩ b)) is a subgraph of the γ-restricted
MST on P ∩ b (formally, MSTγ(P ∩ b)). Define ∆γ(b) to be the edges in the set-theoretic
difference of these two graphs. We will show that wt(∆γ(b)) is proportional to the weight of
the global spanning tree within distance γ of b’s boundary. Intuitively, this holds because
the components of MSTγ(P )�(P ∩ b) that are connected in MSTγ(P ∩ b) must be connected
by paths consisting of edges of the MST of length at most γ that lie outside of b.

Before stating the lemma we introduce some terminology. Given a hypercube b of side
length at least 2γ, define the γ-shell of b, denoted shellγ(b), to be the set-theoretic difference
of two hypercubes b+ and b−, where b− ⊂ b ⊂ b+, and the boundaries of these hypercubes
are separated from b’s boundary by a distance of γ.

I Lemma 6. Consider a point set P in Rd, γ > 0, and a hypercube b of side length at least
2γ. Then, wt(∆γ(b)) ≤ 3 · wt(MSTγ(P )�shellγ(b)).

b

3b

v
2b + v

2b+ + v δ̂

Figure 5 An expanded
and shifted block.

Resuming the discussion of the short-edge processing, consider
a mini-block b. Recall that its side length is ε. For the sake of
our construction, let us assume that the origin is centered at b’s
center. Let 2b and 3b denote centrally scaled copies of b by factors
of 2 and 3, respectively (see Fig. 5). Because we are interested
in edges of length up to δ̂ that might have one endpoint within
2b and one endpoint outside, let 2b+ denote the hypercube that
results by translating each of the bounding hyperplanes of 2b
outwards by distance δ̂. Given a vector v let 2b+ + v denote a
translation of 2b+ by v.

Recalling the definitions of Section 2.2, our objective is to compute the shifted block ⇀
b to

be associated with b. To do so, we will consider a set of O((ε/δ)d) possible shifts of 2b+, each
of which will contain b and lie within 3b. Our next lemma shows that for at least one of these
shifts (in fact, for a constant fraction of them) the local connection weight wt(∆

δ̂
(2b+ + v))

is O(εw) times the weight of the δ̂-restricted MST induced on P ∩ 3b.

I Lemma 7. Consider a point set P in Rd, an approximate query Q, and a mini-block
b ∈ Bε(Q). For any constant c′′ > 0, there exists a translate of 2b+, denoted b̂, that is nested
between b and 3b, is aligned with the quadtree grid of side length δ, and

wt
(
∆
δ̂

(
b̂
))
≤ c′′ · εw · wt(MST

δ̂
(P )�(P ∩ 3b)).
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(c)(b)(a)

⇀
b

⇀
b

+

δ̂

MST
δ̂
(P ) �

(
P ∩⇀

b
+)

⇀
b

⇀
b

+

∆
δ̂

(⇀
b

+)

⇀
b

⇀
b

+

MST
δ̂

(
P ∩⇀

b
+)

Figure 6 A shifted mini-block ⇀
b and its expansion ⇀

b +. The micro-blocks µ(⇀
b ) are shown as

shaded boxes and µ(⇀
b +) includes the white boxes as well. (a) The restricted MST of P ∩⇀

b +, (b)
the induced global spanning tree on P ∩⇀

b +, and (c) the local connectors.

Given a mini-block b, define ⇀b+ to be the translated box b̂ from the above lemma, and
define its shifted block, ⇀b , to be the corresponding translate of 2b. This information is
computed for each node of the quadtree as part of the preprocessing.

To complete the short-edge processing, we need to compute the local connectors (that is,
the edges of the δ̂-restricted MST on P ∩⇀b that are not in the δ̂-restricted MST induced on
these points). An obvious approach would be to compute MST

δ̂
(P ∩⇀b ), and then remove

from this the edges from the global MST. While this would work fine for an individual
shifted block, this is not sufficient to guarantee connectivity across the entire query region
(particularly for blocks near the query’s boundary). Since the edges involved are all of length
at most δ̂, for the purposes of computing connectivity, we will consider micro-blocks that
lie slightly (distance at most δ̂) outside the shifted blocks. Once the connected components
have been computed, we will discard these extra blocks.

To make this more precise, given a mini-block b, define µ(⇀b ) to be the micro-blocks that
lie within ⇀

b (the shaded small boxes in Fig. 6), and define µ(⇀b+) similarly for ⇀b+ (all the
small boxes in Fig. 6). To compute the local connectors, at preprocessing time for each such
mini-block b, we compute ⇀b+ (by the previous lemma) and MST

δ̂
(P ∩⇀b+) (see Fig. 6(a)).

We assume that the global MST has already been computed. The local connectors consist of
the edges that are not already in the global spanning tree induced on these points, that is,

∆
δ̂
(⇀b+) = MST

δ̂
(P ∩⇀b+) \ MST

δ̂
(P )�(P ∩⇀b+)

(see Figs. 6(b) and (c)).
We cannot deal with structures like ∆

δ̂
(⇀b+) at query time, since they involve individual

points. Instead, we will deal with graphs that they induce on the micro-blocks. At prepro-
cessing time, we compute an induced (weighted) graph on the micro-blocks of µ(⇀b+) from
the local connectors as follows. For each edge (p, p′) in ∆

δ̂
(⇀b+), create an edge between the

respective micro-blocks b and b′ that contain them. Set the weight of this edge to be the total
length of all such edges. Because each edge of ∆

δ̂
(⇀b+) is of length at most δ̂, the neighbors

of each micro-block (whose side length is δ) lie within distance at most δ̂. The number of
such neighbors is O((δ̂/δ)d) = O(dd) = O(1). Therefore, this graph has constant degree.
Also, as a part of preprocessing, we compute the weight of the edges of the δ̂-restricted global
MST induced on each pair of micro-blocks. (This is done implicitly. See the full version for
details.)
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When processing a query Q, we combine the aforementioned graphs at the mini-block level
to derive two additional global structures on the micro-block level. The first is a structure
that encapsulates all the local-connector weight at the micro-block level. Define ∆

δ̂
(Q) to

be the union of the graphs ∆
δ̂
(⇀b+) over all mini-blocks b ∈ Bε(Q). This is a structure on

points, but we can compute its micro-block induced structure by taking the union of the
corresponding micro-block structures mentioned above. If there is an edge (b, b′) between
the same pair of micro-blocks appearing in multiple shifted blocks (which can happen if their
shifted blocks overlap), then assign the edge weight to be the sum over all the contributing
edges. (We do this because each edge reflects potentially different pairs of locally connected
points, and we need to account for the entire weight of these connections. Note that because
these involve expanded shifted blocks (⇀b+), this will implicitly count the weight of edges
whose endpoints lie within P+(Q) but not P (Q).) The total edge weight of this induced
graph is the same as ∆

δ̂
(Q).

Our next lemma bounds the weight of this graph in terms of the weight of the δ̂-restricted
MST of a subset of points lying within the outer query range.

I Lemma 8. The weight of ∆
δ̂
(Q) is at most (εw/2) · wt(MST

δ̂
(P+(Q)).

The second structure built at query time is the global-connection graph. It consists of the
union of the edges of ∆

δ̂
(Q) together with the edges of the δ̂-restricted global MST induced

on the points lying within the union of the expansions of the shifted blocks (that is, the
union of MST

δ̂
(P )�(P ∩⇀b+) over all miniblocks b). As with these other graphs, it is defined

on points, but it will be represented as an induced graph on micro-blocks. Since this graph
is used only for computing connected components, we do not need to assign weights to its
edges.

Summarizing the short-edge processing, the data structure consists of the BBD-tree
storing the point set P . Each mini-block b is associated with its shifted block ⇀

b (and
implicitly its expansion ⇀

b+) and the graph of local connectors (from ∆
δ̂

(⇀
b+)) induced

on the micro-blocks of µ(⇀b+). We also store the edges of the global MST so that we can
efficiently extract the weight of the δ̂-restricted MST induced on the micro-blocks (details in
the full version). The total space is dominated by the size of the BBD-tree, the storage of
the edges of the MST, and the storage of the edges of the local connectors, which is O(n).

Details regarding how these structures are used in the query processing are deferred to
the full version. The following lemma summarizes the short-edge phase.

I Lemma 9 (Short-edge summary). Given an n-element point set P in Rd and an ap-
proximation parameter εw, there exists a data structure of space O(n) such that given any
εq-approximate query Q, in time O(logn+ 1/(εqεw)d) it is possible to compute (implicitly)
point sets P (Q) and P+(Q), a graph Gs = (P (Q), Es) (which may contain cycles), and a
labeling of the connected components of Gs, such that
(i) Q− ⊆ P (Q) ⊆ P+(Q) ⊆ Q+,
(ii) any two points of P (Q) that are within distance δ̂ of each other lie in the same connected

component of Gs, and
(iii) the weight of the edges in Es is at most wt(MST

δ̂
(P (Q))) + (εw/2) ·wt(MST

δ̂
(P+(Q))).

These point sets are represented implicitly by O(1/(εqεw)d) micro-blocks. The graph Gs is of
constant degree, and so is of the same asymptotic size.
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3.2 Long-Edge Processing
Given the information from the short-edge processing, as summarized in Lemma 9, let us
now consider the long-edge case. Let Ψ denote a well-separated pair decomposition (WSPD)
for the point set P (Q) for some suitable constant separation factor (for definitions see [10]).
In particular, we require that if (A,A′) is a pair of the WSPD, then for all p, q ∈ A and all
p′, q′ ∈ A′, ‖pp′‖ > max(‖qp‖, ‖q′p′‖). Drawing on a standard visual analogy, we think of the
WSPD as consisting of a collection of dumbbells, where each of the sets being separated lies
within one of the two heads of a dumbbell. Observe that each well-separated pair contributes
at most one edge to MST(P (Q)) (because all the points within a dumbbell head will be
connected by Kruskal’s algorithm before considering any edge between the heads).

Let Ψ′ ⊆ Ψ denote the set of dumbbells such that for any pair of points p, p′ ∈ P (Q),
where ‖pp′‖ > δ̂, there is a dumbbell in Ψ′ that separates p and p′. By standard techniques,
we can compute Ψ′ in time proportional to the number of δ-blocks that cover the points
of P (Q), which is O(1/δd) = O(1/(εqεw)d) (see, e.g., [17]). We assume that every internal
node of the BBD-tree contains an arbitrary representative point drawn from the points lying
within the node’s outer box.

Our objective is to compute a suitable approximation to the closest pair of points separated
by each dumbbell. Recall from the high-level overview of Section 3 that the classical approach
for doing this would involve decomposing each of the dumbbell heads into sufficiently small
blocks so that the error committed can be charged against the resulting edge of the MST.
Unfortunately, this will result in an unacceptably high running time. In contrast, our
approach is sensitive to the weight of the MST in the vicinity of the dumbbell heads. We
decompose the blocks in a breadth-first manner until the number of nonempty subblocks in
either of the dumbbell heads is roughly 1/εw. We will exploit the fact that the existence of
this many nonempty subblocks implies that the weight of the MST within this dumbbell
heads will be sufficient to pay for the approximation error.

More formally, we introduce a parameter α (whose exact value will be specified later
but can be thought of as being roughly εw). We will process each dumbbell ψ ∈ Ψ′ and
compute an edge eψ joining a representative point in each head of ψ. We do this as follows.
We decompose the two heads of ψ in parallel, always maintaining boxes of equal side length
until reaching a total of Θ(1/α) nonempty quadtree boxes or encountering all the points
within the head (whichever occurs first). We then examine the representative points from
each pair of boxes and keep the closest pair. This takes time O(1/α2) by brute-force. We
choose an arbitrary point from each box in this pair. The edge joining these two points is
selected as the representative edge eψ. Let Es denote the edges of the short-edge graph Gs,
and let E` denote the edges computed above. Let G denote the graph (P (Q), Es ∪ E`).

Just as we did for Gs, we can associate each edge of E` with the pair of micro-blocks
that contain the edge’s respective endpoints. This defines a graph on the micro-blocks. To
complete the long-edge phase, we first prune this graph. If any edge of this graph joins
two micro-blocks in the same short-edge connected component, we ignore this edge. We
then collapse all the micro-blocks belonging to the same short-edge component into a single
vertex, forming a component graph. For any two components, we keep only the shortest
edge between them. Since the number of well-separated pairs is O(1/(εqεw)d), the number
of vertices and edges in this graph is similarly bounded. We then compute the MST of this
component graph, using any standard MST algorithm in time O(1/(εqεw)d log 1/(εqεw)).
The output of the long-edge phase is the weight of the edges of E` that remain in the final
MST.
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Rather than analyzing G directly, it will be easier to analyze a related graph. Let G′
denote the subgraph of G with the same vertex set and the following edges. We keep all the
edges of Es, but only a subset E′` of the edges of E` selected as follows. For each edge e of
MST

>δ̂
(P (Q)), we select the representative edge eψ associated with the dumbbell ψ ∈ Ψ′

that separates the endpoints of e.
In the rest of this section, we will show that G′ is connected and satisfies the desired

weight bound. Due to space limitations, we will only present the main lemmas upon which
the result is based. Details can be found in the full version. Our analysis will employ the
following lemma, which bounds the weight of the MST in terms of the number of quadtree
boxes (see, e.g., [12]).

I Lemma 10. Given a finite point set P ∈ Rd and a hypercube grid of side length s, let
m(P ) denote the number of cells of the grid that contain a point of P . Then wt(MST(P )) ≥
(s/2) · ((m(P )/2d)− 1).

For any dumbbell ψ ∈ Ψ′, define zψ to be the distance between the closest pair of points
that are separated by ψ. The following lemma bounds the total error incurred in selecting
the long edges.

I Lemma 11. There exists a constant c (depending on dimension) such that∑
ψ∈Ψ′

(wt(eψ)− zψ) ≤ c · α · log(1/(εqεw)) · wt(MST(P (Q))).

Setting α = εw/(4c · lg(1/(εqεw))), by the above lemma, the long edges satisfy the
following property:∑

ψ∈Ψ′

(wt(eψ)− zψ) ≤ εw
4 · wt(MST(P (Q)))). (1)

The connectedness of G′ follows from the WSPD separation properties.
By combining Eq. (1) above with our earlier observation that each dumbbell contributes

at most one edge to MST(P (Q)), it follows that the weight of the long edges of G′, namely
wt(E′`), is at most wt(MST

>δ̂
(P (Q))) + (εw/4) · wt(MST(P (Q))). Because G′ connects the

components of Es, its weight cannot be smaller than the MST weight of the component
graph, which is the output of this phase. Therefore, we have the following.

I Lemma 12 (Long-edge summary). Given the output from the short-edge processing, in time
O((1/(εdqεd+2

w )) log2(1/εqεw)), we can output a set of edges that connects all the short-edge
components and whose total weight is at most wt(MST

>δ̂
(P (Q))) + (εw/4) ·wt(MST(P (Q))).

3.3 Combining the Short and Long Edges
Let us now combine the results of the short-edge and long-edge phases. By Lemma 9(iii),
the total weight of the short edges Es is at most

wt(MST
δ̂
(P (Q))) + εw

2 · wt(MST(P+(Q)))).

By Lemma 12, the total weight of the long-edge phase is at most

wt(MST
>δ̂

(P (Q))) + εw
4 · wt(MST(P (Q))).
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Combining the weights of both phases, we find that the total weight W (Q) output is at most

W (Q) = wt(MST(P (Q))) + εw
2 · wt(MST(P+(Q))) + εw

4 · wt(MST(P (Q))).

Since P (Q) ⊆ P+(Q), we have wt(MST(P (Q))) ≤ 2 · wt(MST(P+(Q))). (This follows from
the facts that Steiner tree weight increases monotonically as points are added and that the
weight of the MST is at most twice the weight of the Steiner tree.) Therefore, we have

W (Q) ≤ wt(MST(P (Q))) + εw · wt(MST(P+(Q))).

If wt(MST(P (Q))) ≤ wt(MST(P+(Q)), then W (Q) can be bounded by (1 + εw) ·
wt(MST(P+(Q)))). On the other hand, if wt(MST(P (Q))) > wt(MST(P+(Q)), this can be
bounded by (1 + εw) · wt(MST(P (Q)))). By defining P ′ = P (Q) and P ′′ to be whichever set
yields the larger MST weight, we obtain the following bound

wt(MST(P ′)) ≤ W (Q) ≤ (1 + εw) · wt(MST(P ′′)),

where P ∩ Q− ⊆ P ′ ⊆ P ′′ ⊆ P ∩ Q+. Therefore, this is a valid answer to the (εq, εw)-
approximate MST query.

By Lemma 9, the running time of the short-edge phase is O(logn+ 1/(εqεw)d), and by
Lemma 12, the running time of the long-edge phase is O((1/(εdqεd+2

w )) log2(1/εqεw)). Thus,
the overall query time is O(logn + (1/(εdqεd+2

w )) log2(1/εqεw)). In summary, we have the
following result, which is stated more concisely in Theorem 1.

I Theorem 13. Given a set P of n points in Rd and a weight-approximation parameter
εw > 0, it is possible to preprocess P into a data structure of space O(n) such that given any
εq-approximate query Q, it is possible to answer (εq, εw)-approximate MST queries in time
O(logn+ (1/(εdqεd+2

w )) log2(1/εqεw)).

4 Conclusions

We have demonstrated an efficient data structure for answering approximate MST range
queries. Although our query processing focused only on returning the approximate weight,
our data structure implicitly provides much more information. In particular, the weight
returned is a accumulation of three disjoint edge sets, the global MST edges induced on
the approximate query range, a set of local connecting edges, and the long edges. All of
these edges (not just their weights) are stored within the data structure. Thus, unlike
sublinear time algorithms for the MST, which provide just an approximation to the weight,
our data structure implicitly provides a certificate for its answer. This certificate could be
output, which would result in a data structure for approximate MST range reporting queries.
Alternatively, the edges of the certificate could be randomly sampled, which would allow a
user to compute statistics about this graph, such as the distribution of its edge weights.

There are two obvious shortcomings with our approach. First, our answer is the weight of
a graph on a set of points within the approximate query region, which spans these points but
may contain cycles. An obvious open problem is whether it is possible to efficiently compute
the exact weight of a graph that is a spanning tree on some subset of points that constitutes
a valid answer to the approximate range query. Second, our approximation bounds involve
two sets P ′ and P ′′, one for the lower bound and one for the upper bound. It would be nice
to relate the result to the weight of the MST on a single point set.
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