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Abstract
The approximate nearest neighbor problem (ε-ANN) in Euclidean settings is a fundamental
question, which has been addressed by two main approaches: Data-dependent space partitioning
techniques perform well when the dimension is relatively low, but are affected by the curse of
dimensionality. On the other hand, locality sensitive hashing has polynomial dependence in
the dimension, sublinear query time with an exponent inversely proportional to (1 + ε)2, and
subquadratic space requirement.

We generalize the Johnson-Lindenstrauss Lemma to define “low-quality” mappings to a Eu-
clidean space of significantly lower dimension, such that they satisfy a requirement weaker than
approximately preserving all distances or even preserving the nearest neighbor. This mapping
guarantees, with high probability, that an approximate nearest neighbor lies among the k approx-
imate nearest neighbors in the projected space. These can be efficiently retrieved while using only
linear storage by a data structure, such as BBD-trees. Our overall algorithm, given n points in
dimension d, achieves space usage in O(dn), preprocessing time in O(dn logn), and query time in
O(dnρ logn), where ρ is proportional to 1− 1/log logn, for fixed ε ∈ (0, 1). The dimension reduc-
tion is larger if one assumes that pointsets possess some structure, namely bounded expansion
rate. We implement our method and present experimental results in up to 500 dimensions and
106 points, which show that the practical performance is better than predicted by the theoretical
analysis. In addition, we compare our approach with E2LSH.
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1 Introduction

Nearest neighbor searching is a fundamental computational problem. Let X be a set of n
points in Rd and let d(p, p′) be the (Euclidean) distance between any two points p and p′. The
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problem consists in reporting, given a query point q, a point p ∈ X such that d(p, q) ≤ d(p′, q),
for all p′ ∈ X and p is said to be a “nearest neighbor” of q. For this purpose, we preprocess
X into a structure called NN-structure. However, an exact solution to high-dimensional
nearest neighbor search, in sublinear time, requires prohibitively heavy resources. Thus,
many techniques focus on the less demanding task of computing the approximate nearest
neighbor (ε-ANN). Given a parameter ε ∈ (0, 1), a (1 + ε)-approximate nearest neighbor
to a query q is a point p in X such that d(q, p) ≤ (1 + ε) · d(q, p′), ∀p′ ∈ X. Hence, under
approximation, the answer can be any point whose distance from q is at most (1 + ε) times
larger than the distance between q and its nearest neighbor.

Our contribution

Tree-based space partitioning techniques perform well when the dimension is relatively low,
but are affected by the curse of dimensionality. To address this issue, randomized methods
such as Locality Sensitive Hashing are more efficient when the dimension is high. One
may also apply the Johnson-Lindenstrauss Lemma followed by standard space partitioning
techniques, but the properties guaranteed are stronger than what is required for efficient
approximate nearest neighbor search (cf. 2).

We introduce a "low-quality" mapping to a Euclidean space of dimension O(log n
k /ε

2),
such that an approximate nearest neighbor lies among the k approximate nearest neighbors
in the projected space. This leads to our main Theorem 10, which offers a new randomized
algorithm for approximate nearest neighbor search with the following complexity: Given
n points in Rd, the data structure, which is based on Balanced Box-Decomposition (BBD)
trees, requires O(dn) space, and reports an (1 + ε)2-approximate nearest neighbor in time
O(dnρ logn), where function ρ < 1 is proportional to 1 − 1/ ln lnn for fixed ε ∈ (0, 1) and
shall be specified in Section 4. The total preprocessing time is O(dn logn). For each query
q ∈ Rd, the preprocessing phase succeeds with probability > 1− δ for any constant δ ∈ (0, 1).
The low-quality embedding is extended to pointsets with bounded expansion rate c (see
Section 5 for definitions). The pointset is now mapped to a Euclidean space of dimension
roughly O(log c/ε2), for large enough k.

We also present experiments, based on synthetic datasets that validate our approach and
our analysis. One set of inputs, along with the queries, follow the “planted nearest neighbor
model” which will be specified in Section 6. In another scenario, we assume that the near
neighbors of each query point follow the Gaussian distribution. Apart from showing that the
embedding has the desired properties in practice, we also implement our overall approach
for computing ε-ANN using the ANN library and we compare with a LSH implementation,
namely E2LSH.

The notation of key quantities is the same throughout the paper.
The paper extends and improves ideas from [25].

Paper organization

The next section offers a survey of existing techniques. Section 3 introduces our embeddings
to dimension lower than predicted by the Johnson-Linderstrauss Lemma. Section 4 states
our main results about ε-ANN search. Section 5 generalizes our discussion so as to exploit
bounded expansion rate, and Section 6 presents experiments to validate our approach. We
conclude with open questions.
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438 Low-Quality Dimension Reduction and High-Dimensional ANN

2 Existing work

As it was mentioned above, an exact solution to high-dimensional nearest neighbor search,
in sublinear time, requires heavy resources. One notable solution to the problem [21] shows
that nearest neighbor queries can be answered in O(d5 logn) time, using O(nd+δ) space, for
arbitrary δ > 0.

One class of methods for ε-ANN may be called data-dependent, since the decisions taken
for partitioning the space are affected by the given data points. In [8], they introduced the
Balanced Box-Decomposition (BBD) trees. The BBD-trees data structure achieves query
time O(c logn) with c ≤ d/2d1 + 6d/εed, using space in O(dn), and preprocessing time in
O(dn logn). BBD-trees can be used to retrieve the k ≥ 1 approximate nearest-neighbors at
an extra cost of O(d logn) per neighbor. BBD-trees have proved to be very practical, as well,
and have been implemented in software library ANN.

Another data structure is the Approximate Voronoi Diagrams (AVD). They are shown to
establish a tradeoff between the space complexity of the data structure and the query time it
supports [7]. With a tradeoff parameter 2 ≤ γ ≤ 1

ε , the query time is O(log(nγ) + 1/(εγ) d−1
2 )

and the space is O(nγd−1 log 1
ε ). They are implemented on a hierarchical quadtree-based

subdivision of space into cells, each storing a number of representative points, such that for
any query point lying in the cell, at least one of the representatives is an approximate nearest
neighbor. Further improvements to the space-time trade offs for ANN, are obtained in [6].

One might directly apply the celebrated Johnson-Lindenstrauss Lemma and map the
points to O( logn

ε2 ) dimensions with distortion equal to 1 + ε in order to improve space
requirements. In particular, AVD combined with the Johnson-Lindenstrauss Lemma require
nO(log 1

ε /ε
2) space which is prohibitive if ε� 1 and query time polynomial in logn, d and 1/ε.

Notice that we relate the approximation error with the distortion for simplicity. Our approach
(Theorem 10) requires O(dn) space and has query time sublinear in n and polynomial in d.

In high dimensional spaces, data dependent data structures are affected by the curse of
dimensionality. This means that, when the dimension increases, either the query time or the
required space increases exponentially. An important method conceived for high dimensional
data is locality sensitive hashing (LSH). LSH induces a data independent space partition and
is dynamic, since it supports insertions and deletions. It relies on the existence of locality
sensitive hash functions, which are more likely to map similar objects to the same bucket.
The existence of such functions depends on the metric space. In general, LSH requires
roughly O(dn1+ρ) space and O(dnρ) query time for some parameter ρ ∈ (0, 1). In [4] they
show that in the Euclidean case, one can have ρ = 1

(1+ε)2 which matches the lower bound
of hashing algorithms proved in [23]. Lately, it was shown that it is possible to overcome
this limitation with an appropriate change in the scheme which achieves ρ = 1

2(1+ε)2−1 + o(1)
[5]. For comparison, in Theorem 10 we show that it is possible to use O(dn) space, with
query time roughly O(dnρ) where ρ < 1 is now higher than the one appearing in LSH. One
different approach [24] achieves near linear space but query time proportional to O(dn

2
1+ε ).

Exploiting the structure of the input is an important way to improve the complexity of
nearest neighbor search. In particular, significant amount of work has been done for pointsets
with low doubling dimension. In [14], they provide an algorithm for ANN with expected
preprocessing time O(2dim(X)n logn), space O(2dim(X)n) and query time O(2dim(X) logn+
ε−O(dim(X))) for any finite metric space X of doubling dimension dim(X). In [16] they
provide randomized embeddings that preserve nearest neighbor with constant probability,
for points lying on low doubling dimension manifolds in Euclidean settings. Naturally, such
an approach can be easily combined with any known data structure for ε-ANN.



E. Anagnostopoulos, I. Z. Emiris, and I. Psarros 439

In [10] they present random projection trees which adapt to pointsets of low doubling
dimension. Like kd-trees, every split partitions the pointset into subsets of roughly equal
cardinality; in fact, instead of splitting at the median, they add a small amount of “jitter”.
Unlike kd-trees, the space is split with respect to a random direction, not necessarily parallel
to the coordinate axes. Classic kd-trees also adapt to the doubling dimension of randomly
rotated data [26]. However, for both techniques, no related theoretical arguments about the
efficiency of ε-ANN search were given.

In [19], they introduce a different notion of intrinsic dimension for an arbitrary metric
space, namely its expansion rate c; it is formally defined in Section 5. The doubling dimension
is a more general notion of intrinsic dimension in the sense that, when a finite metric space
has bounded expansion rate, then it also has bounded doubling dimension, but the converse
does not hold [13]. Several efficient solutions are known for metrics with bounded expansion
rate, including for the problem of exact nearest neighbor. In [20], they present a data
structure which requires cO(1)n space and answers queries in cO(1) lnn. Cover Trees [9]
require O(n) space and each query costs O(c12 logn) time for exact nearest neighbors. In
Theorem 13, we provide a data structure for the ε-ANN problem with linear space and
O((C1/ε3 + logn)dlogn/ε2) query time, where C depends on c. The result concerns pointsets
in the d-dimensional Euclidean space.

3 Low Quality Randomized Embeddings

This section examines standard dimensionality reduction techniques and extends them to
approximate embeddings optimized to our setting. In the following, we denote by ‖ · ‖ the
Euclidean norm and by | · | the cardinality of a set.

Let us start with the classic Johnson-Lindenstrauss Lemma:

I Proposition 1. [18] For any set X ⊂ Rd, ε ∈ (0, 1) there exists a distribution over linear
mappings f : Rd −→ Rd′ , where d′ = O(log |X|/ε2), such that for any p, q ∈ X,

(1− ε)‖p− q‖2 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ε)‖p− q‖2.

In the initial proof [18], they show that this can be achieved by orthogonally projecting
the pointset on a random linear subspace of dimension d′. In [11], they provide a proof
based on elementary probabilistic techniques. In [15], they prove that it suffices to apply a
gaussian matrix G on the pointset. G is a d× d′ matrix with each of its entries independent
random variables given by the standard normal distribution N(0, 1). Instead of a gaussian
matrix, we can apply a matrix whose entries are independent random variables with uniformly
distributed values in {−1, 1} [2].

However, it has been realized that this notion of randomized embedding is somewhat
stronger than what is required for approximate nearest neighbor searching. The following
definition has been introduced in [16] and focuses only on the distortion of the nearest
neighbor.

I Definition 2. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over
mappings f : Y → Z is a nearest-neighbor preserving embedding with distortion D ≥ 1 and
probability of correctness P ∈ [0, 1] if, ∀ε ≥ 0 and ∀q ∈ Y , with probability at least P , when
x ∈ X is such that f(x) is a ε-ANN of f(q) in f(X), then x is a (D · (1 + ε))-approximate
nearest neighbor of q in X.

While in the ANN problem we search one point which is approximately nearest, in the
k approximate nearest neighbors problem (ε-kANNs) we seek an approximation of the k

SoCG’15



440 Low-Quality Dimension Reduction and High-Dimensional ANN

nearest points, in the following sense. Let X be a set of n points in Rd, let q ∈ Rd and
1 ≤ k ≤ n. The problem consists in reporting a sequence S = {p1, . . . , pk} of k distinct
points such that the i-th point is an (1 + ε)-approximation to the i-th nearest neighbor of q.
Furthermore, the following assumption is satisfied by the search routine of tree-based data
structures such as BBD-trees.

I Assumption 3. Let S′ ⊆ X be the set of points visited by the ε-kANNs search such
that S = {p1, . . . , pk} ⊆ S′ is the (ordered w.r.t. distance from q) set of points which are
the k nearest to the query point q among the points in S′. We assume that ∀x ∈ X \ S′,
d(x, q) > d(pk, q)/(1 + ε).

Assuming the existence of a data structure which solves ε-kANNs, we can weaken Definition 2
as follows.

I Definition 4. Let (Y, dY ), (Z, dZ) be metric spaces and X ⊆ Y . A distribution over
mappings f : Y → Z is a locality preserving embedding with distortion D ≥ 1, probability of
correctness P ∈ [0, 1] and locality parameter k, if ∀ε ≥ 0 and ∀q ∈ Y , with probability at
least P , when S = {f(p1), . . . , f(pk)} is a solution to ε-kANNs for q, under Assumption 3
then there exists f(x) ∈ S such that x is a (D · (1 + ε))-approximate nearest neighbor of q in
X.

According to this definition we can reduce the problem of ε-ANN in dimension d to the
problem of computing k approximate nearest neighbors in dimension d′ < d.

We use the Johnson-Lindenstrauss dimensionality reduction technique and more specific-
ally the proof obtained in [11]. As it was previously discussed, there also exist alternative
proofs which correspond to alternative randomized mappings.

I Lemma 5. [11] There exists a distribution over linear maps A : Rd → Rd′ s.t., for any
p ∈ Rd with ‖p‖ = 1:

if β2 < 1 then Pr[‖Ap‖2 ≤ β2 · d
′

d ] ≤ exp(d
′

2 (1− β2 + 2 ln β),
if β2 > 1 then Pr[‖Ap‖2 ≥ β2 · d

′

d ] ≤ exp(d
′

2 (1− β2 + 2 ln β).

We prove the following lemma which will be useful.

I Lemma 6. For all i ∈ N, ε ∈ (0, 1), the following holds:

(1 + ε/2)2

(2i(1 + ε))2 − 2 ln (1 + ε/2)
2i(1 + ε) − 1 > 0.05(i+ 1)ε2.

Proof. For i = 0, it can be checked that if ε ∈ (0, 1) then, (1+ε/2)2

(1+ε)2 − 2 ln 1+ε/2
1+ε − 1 > 0.05ε2.

This is our induction basis. Let j ≥ 0 be such that the induction hypothesis holds. Then, to
prove the induction step

1
4

(1 + ε/2)2

(2j(1 + ε))2 − 2 ln (1 + ε/2)
2j(1 + ε) + 2 ln 2− 1 > 0.05(j + 1)ε2 − 3

4
(1 + ε/2)2

(2j(1 + ε))2 + 2 ln 2 >

> 0.05(j + 1)ε2 − 3
4 + 2 ln 2 > 0.05(j + 2)ε2,

since ε ∈ (0, 1). J

A simple calculation shows the following.
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I Lemma 7. For all x > 0, it holds:

(1 + x)2

(1 + 2x)2 − 2 ln( 1 + x

1 + 2x )− 1 < (1 + x)2 − 2 ln(1 + x)− 1. (1)

I Theorem 8. Under the notation of Definition 4, there exists a randomized mapping
f : Rd → Rd′ which satisfies Definition 4 for d′ = O(log n

δk/ε
2), ε > 0, distortion D = 1 + ε

and probability of success 1− δ, for any constant δ ∈ (0, 1).

Proof. Let X be a set of n points in Rd and consider map

f : Rd → Rd
′

: v 7→
√
d/d′ ·A v,

where A is a matrix chosen from a distribution as in Lemma 5. Wlog the query point q lies
at the origin and its nearest neighbor u lies at distance 1 from q. We denote by c ≥ 1 the
approximation ratio guaranteed by the assumed data structure. That is, the assumed data
structure solves the (c− 1)-kANNs problem. For each point x, Lx = ‖Ax‖2/‖x‖2. Let N be
the random variable whose value indicates the number of “bad” candidates, that is

N = | {x ∈ X : ‖x− q‖ > γ ∧ Lx ≤
β2

γ2 ·
d′

d
} |,

where we define β = c(1 + ε/2), γ = c(1 + ε). Hence, by Lemma 5,

E[N ] ≤ n · exp(d
′

2 (1− β2

γ2 + 2 ln β
γ

)).

By Markov’s inequality,

Pr[N ≥ k] ≤ E[N ]
k

=⇒ Pr[N ≥ k] ≤ n · exp(d
′

2 (1− β2

γ2 + 2 ln β
γ

))/k.

The event of failure is defined as the disjunction of two events:

[N ≥ k ] ∨ [Lu ≥ (β/c)2 d
′

d
], (2)

and its probability is at most equal to

Pr[N ≥ k] + exp(d
′

2 (1− (β/c)2 + 2 ln(β/c))),

by applying again Lemma 5. Now, we bound these two terms. For the first one, we choose d′
such that

d′ ≥ 2
ln 2n

δk
β2

γ2 − 1− 2 ln β
γ

. (3)

Therefore,

exp(d
′

2 (1− β2

γ2 + 2 ln β
γ ))

k
≤ δ

2n =⇒ Pr[N ≥ k] ≤ δ

2 . (4)

Notice that k ≤ n and due to expression (1), we obtain (β/γ)2 − 2 ln(β/γ) − 1 <

(β/c)2 − 2 ln(β/c)− 1. Hence, inequality (3) implies the following inequality:

d′ ≥ 2
ln 2

δ

(β/c)2 − 1− 2 ln(β/c) .

SoCG’15
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Therefore, the second term in expression (2) is bounded as follows:

exp(d
′

2 (1− (β
c

)2 + 2 ln β
c

)) ≤ δ

2 . (5)

Inequalities (4), (5) imply that the total probability of failure in expression (2) is at most δ.
Using Lemma 6 for i = 0, we obtain, that there exists d′ such that

d′ = O(log n

δk
/ε2)

and with probability at least 1− δ, these two events occur:
‖f(q)− f(u)‖ ≤ (1 + ε

2 )‖u− q‖.
|{p ∈ X|‖p− q‖ > c(1 + ε)‖u− q‖ =⇒ ‖f(q)− f(p)‖ ≤ c(1 + ε/2)‖u− q‖}| < k.

Now consider the case when the random experiment succeeds and let S = {f(p1), ..., f(pk)}
a solution of the (c−1)-kANNs problem in the projected space, given by a data-structure which
satisfies Assumption 3. We have that ∀f(x) ∈ f(X) \ S′, ‖f(x)− f(q)‖ > ‖f(pk)− f(q)‖/c
where S′ is the set of all points visited by the search routine.

Now, if f(u) ∈ S then S contains the projection of the nearest neighbor. If f(u) /∈ S then
if f(u) /∈ S′ we have the following:

‖f(u)− f(q)‖ > ‖f(pk)− f(q)‖/c =⇒ ‖f(pk)− f(q)‖ < c(1 + ε/2)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u− q‖.
Finally, if f(u) /∈ S but f(u) ∈ S′ then

‖f(pk)− f(q)‖ ≤ ‖f(u)− f(q)‖ =⇒ ‖f(pk)− f(q)‖ ≤ (1 + ε/2)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ε)‖u− q‖.
Hence, f satisfies Definition 4 for D = 1 + ε. J

4 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve ε-kANNs with the results above,
in order to obtain an efficient randomized data structure which solves ε-ANN.

BBD-trees [8] require O(dn) space, and allow computing k points, which are (1 + ε)-
approximate nearest neighbors, within time O((d1 + 6dε e

d + k)d logn). The preprocessing
time is O(dn logn). Notice, that BBD-trees satisfy the Assumption 3. The algorithm for
the ε-kANNs search, visits cells in increasing order with respect to their distance from the
query point q. If the current cell lies at distance more than rk/c where rk is the current
distance to the kth nearest neighbor, the search terminates. We apply the random projection
for distortion D = 1 + ε, thus relating approximation error to the allowed distortion; this is
not required but simplifies the analysis.

Moreover, k = nρ; the formula for ρ < 1 is determined below. Our analysis then focuses
on the asymptotic behaviour of the term O(d1 + 6d

′

ε e
d′ + k).

I Lemma 9. With the above notation, there exists k > 0 s.t., for fixed ε ∈ (0, 1), it holds
that d1 + 6d

′

ε e
d′ + k = O(nρ), where ρ ≤ 1 − ε2/ĉ(ε2 + log(max{ 1

ε , logn})) < 1 for some
appropriate constant ĉ > 1.

Proof. Recall that d′ ≤ c̃
ε2 ln n

k for some appropriate constant c̃ > 0. The constant δ is
hidden in c̃. Since (d

′

ε )d′ is a decreasing function of k, we need to choose k s.t. (d
′

ε )d′ = Θ(k).
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Let k = nρ. Obviously d1 + 6d
′

ε e
d′ ≤ (c′ d

′

ε )d′ , for some appropriate constant c′ ∈ (1, 7). Then,
by substituting d′, k we have:

(c′ d
′

ε
)d
′

= n
c̃(1−ρ)
ε2 ln( c̃c

′(1−ρ) lnn
ε3 ). (6)

We assume ε ∈ (0, 1) is a fixed constant. Hence, it is reasonable to assume that 1
ε < n.

We consider two cases when comparing lnn to ε:
1
ε ≤ lnn. Substituting ρ = 1 − ε2

2c̃(ε2+ln(c′ lnn)) into equation (6), the exponent of n is
bounded as follows:

c̃(1− ρ)
ε2

ln( c̃c
′(1− ρ) lnn

ε3
) =

= c̃

2c̃(ε2 + ln(c′ lnn)) · [ln(c′ lnn) + ln 1
ε
− ln (2ε2 + 2 ln(c′ lnn))] < ρ.

1
ε > lnn. Substituting ρ = 1− ε2

2c̃(ε2+ln c′
ε )

into equation (6), the exponent of n is bounded
as follows:

c̃(1− ρ)
ε2

ln( c̃c
′(1− ρ) lnn

ε3
) =

= c̃

2c̃(ε2 + ln c′

ε )
· [ln lnn+ ln c

′

ε
− ln (2ε2 + 2 ln c

′

ε
)] < ρ.

J

Notice that for both cases d′ = O( logn
ε2+log logn ).

Combining Theorem 8 with Lemma 9 yields the following main theorem.

I Theorem 10 (Main). Given n points in Rd, there exists a randomized data structure which
requires O(dn) space and reports an (1 + ε)2-approximate nearest neighbor in time

O(dnρ logn), where ρ ≤ 1− ε2/ĉ(ε2 + log(max{1
ε
, logn}))

for some appropriate constant ĉ > 1. The preprocessing time is O(dn logn). For each query
q ∈ Rd, the preprocessing phase succeeds with any constant probability.

Proof. The space required to store the dataset is O(dn). The space used by BBD-trees is
O(d′n) where d′ is defined in Lemma 9. We also need O(dd′) space for the matrix A as
specified in Theorem 8. Hence, since d′ < d and d′ < n, the total space usage is bounded
above by O(dn).

The preprocessing consists of building the BBD-tree which costs O(d′n logn) time and
sampling A. Notice that we can sample a d′-dimensional random subspace in time O(dd′2) as
follows. First, we sample in time O(dd′), a d× d′ matrix where its elements are independent
random variables with the standard normal distribution N(0, 1). Then, we orthonormalize
using Gram-Schmidt in time O(dd′2). Since d′ = O(logn), the total preprocessing time is
bounded by O(dn logn).

For each query we use A to project the point in time O(dd′). Next, we compute its nρ
approximate nearest neighbors in time O(d′nρ logn) and we check its neighbors with their
real coordinates in time O(dnρ). Hence, each query costs O(d logn + d′nρ logn + dnρ) =
O(dnρ logn) because d′ = O(logn), d′ = O(d). Thus, the query time is dominated by
the time required for ε-kANNs search and the time to check the returned sequence of k
approximate nearest neighbors. J

To be more precise, the probability of success, which is the probability that the random
projection succeeds according to Theorem. 8, is greater than 1−δ, for any constant δ ∈ (0, 1).
Notice that the preprocessing time for BBD-trees has no dependence on ε.

SoCG’15



444 Low-Quality Dimension Reduction and High-Dimensional ANN

5 Bounded Expansion Rate

This section models the structure that the data points may have so as to obtain more precise
bounds.

The bound on the dimension obtained in Theorem 8 is quite pessimistic. We expect that,
in practice, the space dimension needed in order to have a sufficiently good projection is less
than what Theorem 8 guarantees. Intuitively, we do not expect to have instances where all
points in X, which are not approximate nearest neighbors of q, lie at distance almost equal
to (1 + ε)d(q,X). To this end, we consider the case of pointsets with bounded expansion rate.

I Definition 11. Let M a metric space and X ⊆ M a finite pointset and let Bp(r) ⊆ X

denote the points of X lying in the closed ball centered at p with radius r. We say that X
has (ρ, c)-expansion rate if and only if, ∀p ∈M and r > 0,

|Bp(r)| ≥ ρ =⇒ |Bp(2r)| ≤ c · |Bp(r)|.

I Theorem 12. Under the notation introduced in the previous definitions, there exists
a randomized mapping f : Rd → Rd′ which satisfies Definition 4 for dimension d′ =
O( log(c+ ρ

δk )
ε2 ), distortion D = 1 + ε and probability of success 1− δ, for any constant δ ∈ (0, 1),

for pointsets with (ρ, c)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 8, and using the notation
from that proof. Let r0 be the distance to the ρ−th nearest neighbor, excluding neighbors at
distance ≤ 1 + ε. For i > 0, let ri = 2 · ri−1 and set r−1 = 1 + ε. Clearly,

E[N ] ≤
∞∑
i=0
|Bp(ri)| · exp(

d′

2 (1− (1 + ε/2)2

r2
i−1

+ 2 ln 1 + ε/2
ri−1

))

≤
∞∑
i=0

ciρ · exp(d
′

2 (1− (1 + ε/2)2

22i(1 + ε)2 + 2 ln 1 + ε/2
2i(1 + ε) )).

Now, using Lemma 6,

E[N ] ≤
∞∑
i=0

ciρ · exp(−d
′

2 0.05(i+ 1)ε2),

and for d′ ≥ 40 · ln(c+ 2ρ
kδ )/ε2,

E[N ] ≤ ρ ·
∞∑
i=0

ci · ( 1
c+ 2ρ

kδ

)i+1 = ρ ·
∞∑
i=0

ci · (1
c

)i+1 · ( 1
1 + 2ρ

kcδ

)i+1 = ρ

c
·
∞∑
i=0

( 1
1 + 2ρ

kcδ

)i+1 = kδ

2 .

Finally,

Pr[N ≥ k] ≤ E[N ]
k
≤ δ

2 .

J

Employing Theorem 12 we obtain a result analogous to Theorem 10 which is weaker than
those in [20, 9] but underlines the fact that our scheme shall be sensitive to structure in the
input data, for real world assumptions.
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Figure 1 Plot of k as n increases for the “planted nearest neighbor model” datasets. The highest
line corresponds to

√
n

2 and the dotted line to a function of the form nρ, where ρ = 0.41, 0.39, 0.35
that best fits the data.

I Theorem 13. Given n points in Rd with (logn, c)-expansion rate, there exists a randomized
data structure which requires O(dn) space and reports an (1+ε)2-approximate nearest neighbor
in time O((C1/ε3 + logn)dlogn/ε2), for some constant C depending on c. The preprocessing
time is O(dn logn). For each query q ∈ Rd, the preprocessing phase succeeds with any
constant probability.

Proof. Set k = logn. Then d′ = O( log c
ε2 ) and (d

′

ε )d′ = O(c
1
ε2 log[ log c

ε3 ]). Now the query time is

O((c
1
ε2 log[ log c

ε3 ] + logn)d log c
ε2

logn) = O((C1/ε3
+ logn)d logn

ε2
),

for some constant C such that clog(log c/ε3)/ε2 = O(C1/ε3). J

6 Experiments

In the following two sections we present and discuss the two experiments we performed. In
the first one we computed the average value of k in a worst-case dataset and we validated
that it is indeed sublinear. In the second one we made an ANN query time and memory
usage comparison against a LSH implementation using both artificial and real life datasets.

6.1 Validation of k
In this section we present an experimental verification of our approach. We show that the
number k of the nearest neighbors in the random projection space that we need to examine
in order to find an approximate nearest neighbor in the original space depends sublinearly
on n. Recall that we denote by ‖ · ‖ the Euclidean norm.

Dataset

We generated our own synthetic datasets and query points to verify our results. We decided
to follow two different procedures for data generation in order to be as complete as possible.
First of all, as in [12], we followed the “planted nearest neighbor model” for our datasets.
This model guarantees for each query point q the existence of a few approximate nearest

SoCG’15
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Figure 2 Plot of k as n increases for the gaussian datasets. We see how increasing the number of
approximate nearest neighbors in this case decreases the value of k.

neighbors while keeping all others points sufficiently far from q. The benefit of this approach
is that it represents a typical ANN search scenario, where for each point there exist only a
handful approximate nearest neighbors. In contrast, in a uniformly generated dataset, all the
points will tend to be equidistant to each other in high dimensions, which is quite unrealistic.

In order to generate such a dataset, first we create a set Q of query points chosen uniformly
at random in Rd. Then, for each point q ∈ Q, we generate a single point p at distance R
from q, which will be its single (approximate) nearest neighbor. Then, we create more points
at distance ≥ (1 + ε)R from q, while making sure that they shall not be closer than (1 + ε)R
to any other query point q′. This dataset now has the property that every query point has
exactly one approximate nearest neighbor, while all other points are at distance ≥ (1 + ε)R.

We fix R = 2, let ε ∈ {0.1, 0.2, 0.5}, d = {200, 500} and the total number of points
n ∈ {104, 2× 104, . . . , 5× 104, 5.5× 104, 6× 104, 6.5× 104, . . . , 105}. For each combination
of the above we created a dataset X from a set Q of 100 query points where each query
coordinate was chosen uniformly at random in the range [−20, 20].

The second type of datasets consisted again of sets of 100 query points in Rd where each
coordinate was chosen uniformly at random in the range [−20, 20]. Each query point was
paired with a random variable σ2

q uniformly distributed in [15, 25] and together they specified
a gaussian distribution in Rd of mean value µ = q and variance σ2

q per coordinate. For each
distribution we drew n points in the same set as was previously specified.

Scenario

We performed the following experiment for the “planted nearest neighbor model”. In each
dataset X, we consider, for every query point q, its unique (approximate) nearest neighbor
p ∈ X. Then we use a random mapping f from Rd to a Euclidean space of lower dimension
d′ = logn

log logn using a gaussian matrix G, where each entry Gij ∼ N(0, 1). This matrix
guarantees a low distortion embedding [15]. Then, we perform a range query centered at f(q)
with radius ‖f(q)−f(p)‖ in f(X): we denote by rankq(p) the number of points found. Then,
exactly rankq(p) points are needed to be selected in the worst case as k-nearest neighbors of
f(q) in order for the approximate nearest neighbor f(p) to be among them, so k = rankq(p).

For the datasets with the gaussian distributions we compute again the maximum number
of points k needed to visit in the lower-dimensional space in order to find an ε-approximate
nearest neighbor of each query point q in the original space. In this case the experiment
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works as follows: we find all the ε-approximate nearest neighbors of a query point q. Let Sq
be the set containing for each query q its ε-kANNs. Next, let pq = arg minp∈S ‖f(p)− f(q)‖.
Now as before we perform a range query centered at f(q) with radius ‖f(q)− f(pq)‖. We
consider as k the number of points returned by this query.

Results

The “planted nearest neighbor model” datasets constitute a worst-case input for our approach
since every query point has only one approximate nearest neighbor and has many points
lying near the boundary of (1 + ε). We expect that the number of k approximate nearest
neighbors needed to consider in this case will be higher than in the case of the gaussian
distributions, but still expect the number to be considerably sublinear.

In Figure 1 we present the average value of k as we increase the number of points n for
the planted nearest neighbor model. We can see that k is indeed significantly smaller than n.
The line corresponding to the averages may not be smooth, which is unavoidable due to the
random nature of the embedding, but it does have an intrinsic concavity, which shows that
the dependency of k on n is sublinear. For comparison we also display the function

√
n/2,

as well as a function of the form nρ, ρ < 1 which was computed by SAGE that best fits the
data per plot. The fitting was performed on the points in the range [50000, 100000] as to
better capture the asymptotic behaviour. In Figure 2 we show again the average value of k
as we increase the number of points n for the gaussian distribution datasets. As expected we
see that the expected value of k is much smaller than n and also smaller than the expected
value of k in the worst-case scenario, which is the planted nearest neighbor model.

6.2 ANN experiments

In this section we present a naive comparison between our algorithm and the E2LSH [3]
implementation of the LSH framework for approximate nearest neighbor queries.

Experiment Description

We projected all the “planted nearest neighbor” datasets, down to logn
log logn dimensions. We

remind the reader that these datasets were created to have a single approximate nearest
neighbor for each query at distance R and all other points at distance > (1 + ε)R. We then
built a BBD-tree data structure on the projected space using the ANN library [22] with the
default settings. Next, we measured the average time needed for each query q to find its
ε-kANNs, for k =

√
n, using the BBD-Tree data structure and then to select the first point

at distance ≤ R out of the k in the original space. We compare these times to the average
times reported by E2LSH range queries for R = 2, when used from its default script for
probability of success 0.95. The script first performs an estimation of the best parameters
for the dataset and then builds its data structure using these parameters. We required from
the two approaches to have accuracy > 0.90, which in our case means that in at least 90 out
of the 100 queries they would manage to find the approximate nearest neighbor. We also
measured the maximum resident set size of each approach which translates to the maximum
portion of the main memory (RAM) occupied by a process during its lifetime. This roughly
corresponds to the size of the dataset plus the size of the data structure for the E2LSH
implementation and to hte size of the dataset plus the size of the embedded dataset plus the
size of the data structure for our approach.

SoCG’15
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Figure 3 Comparison of average query time of our embedding approach against the E2LSH
implementation.
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Figure 4 Comparison of memory usage of our embedding approach against the E2LSH imple-
mentation.

ANN Results

It is clear from Figure 3 that E2LSH is faster than our approach by a factor of 3. However
in Figure 4, where we present the memory usage comparison between the two approaches,
it is obvious that E2LSH also requires more space. Figure 4 also validates the linear space
dependency of our embedding method. A few points can be raised here. First of all, we
supplied the appropriate range to the LSH implementation, which gave it an advantage,
because typically that would have to be computed empirically. To counter that, we allowed
our algorithm to stop its search in the original space when it encountered a point that was at
distance ≤ R from the query point. Our approach was simpler and the bottleneck was in the
computation of the closest point out of the k returned from the BBD-Tree. We conjecture that
we can choose better values for our parameters d′ and k. Lastly, the theoretical guarantees
for the query time of LSH are better than ours, but we did perform better in terms of space
usage as expected.
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Real life dataset

We also compared the two approaches using the ANN_SIFT1M [17] dataset which contains
a collection of 1000000 vectors in 128 dimensions. This dataset also provides a query file
containing 10000 vectors and a groundtruth file, which contains for each query the IDs of its
100 nearest neighbors. These files allowed us to estimate the accuracy for each approach, as
the fraction #hits

10000 where #hits denotes, for some query, the number of times one of its 100
nearest neighbors were returned. The parameters of the two implementations were chosen
empirically in order to achieve an accuracy of about 85%. For our approach we set the
projection dimension d′ = 25 and for the BBD-trees we specified 100 points per leaf and
ε = 0.5 for the ε-kANNs queries. We also used k =

√
n. For the E2LSH implementation we

specified the radius R = 240, k = 18 and L = 250. As before we measured the average query
time and the maximum resident set size. Our approach required an average of 0.171588s per
query, whilst E2LSH required 0.051957s. However our memory footprint was 1255948 kbytes
and E2LSH used 4781400 kbytes.

7 Open questions

In terms of practical efficiency it is obvious that checking the real distance to the neighbors
while performing an ε-kANNs search in the reduced space, is more efficient in practice than
naively scanning the returned sequence of k-approximate nearest neighbors and looking for
the best in the initial space. Moreover, we do not exploit the fact that BBD-trees return a
sequence and not simply a set of neighbors.

Our embedding possibly has further applications. One possible application is the problem
of computing the k-th approximate nearest neighbor. The problem may reduce to computing
all neighbors between the i-th and the j-th nearest neighbors in a space of significantly
smaller dimension for some appropriate i < k < j. Other possible applications include
computing the approximate minimum spanning tree or the closest pair of points.

Our embedding approach could be possibly applied in other metrics or exploit other
properties of the pointset. We also intend to seek connections between our work and the
notion of local embeddings introduced in [1].
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