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Abstract
The Simplex Tree (ST) is a recently introduced data structure that can represent abstract sim-
plicial complexes of any dimension and allows efficient implementation of a large range of basic
operations on simplicial complexes. In this paper, we show how to optimally compress the Sim-
plex Tree while retaining its functionalities. In addition, we propose two new data structures
called Maximal Simplex Tree (MxST) and Simplex Array List (SAL). We analyze the compressed
Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.
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1 Introduction

Simplicial complexes are widely used in combinatorial and computational topology, and have
found many applications in topological data analysis and geometric inference. The most
common representation uses the Hasse diagram of the complex that has one node per simplex
and an edge between any pair of incident simplices whose dimensions differ by one. A few
attempts to obtain more compact representations have been reported recently.

Attali et al. [4] proposed the skeleton-blockers data structure which represents a simplicial
complex by its 1-skeleton together with its set of blockers. Blockers are the simplices which
are not contained in the complex but whose proper subfaces are. Flag complexes have no
blockers and the skeleton-blocker representation is especially efficient for complexes that are
“close” to flag complexes. An interesting property of the skeleton-blocker representation is
that it enables efficient edge contraction.

Boissonnat and Maria [8] have proposed a tree representation called the Simplex Tree
that can represent general simplicial complexes and scales well with dimension. The nodes
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of the tree are in bijection with the simplices (of all dimensions) of the simplicial complex.
In this way, the Simplex Tree explicitly stores all the simplices of the complex but it doesn’t
represent explicitly all the incidences between simplices that are stored in the Hasse diagram.
Storing all the simplices is useful (for example, one can then attach information to each
simplex or store a filtration succinctly). Moreover, the tree structure of the Simplex Tree leads
to efficient implementation of basic operations on simplicial complexes (such as retrieving
incidence relations, and in particular retrieving the faces or the cofaces of a simplex).

In this paper, we propose a way to compress the Simplex Tree so as to store as few nodes
and edges as possible without compromising the functionality of the data structure. The
new compressed data structure is in fact a finite automaton (referred to in this paper as the
Minimal Simplex Automaton) and we describe an optimal algorithm for its construction.

Previous works have looked at trie compression and have tried to establish a good
trade-off between speed and size, but in most of the works, the emphasis is on one of the
two. Two examples of work where the speed is of main concern are [2] where the query
time is improved by reducing the number of levels in a binary trie (which corresponds to
truncating the Simplex Tree at a certain height) and [1] where trie data structures are
optimized for computer memory architectures. When the size of the structure is of primary
concern, the work is usually focused on automata compression. For instance, in the context
of natural language data processing, significant savings in memory space can be obtained
if the dictionary is stored in a directed acyclic word graph (DAWG), a form of a minimal
deterministic automaton, where common suffixes are shared [3]. However, theoretical analysis
of compression is seldom done (if at all), in any of these works.

In this paper, we analyze the size of the Minimal Simplex Automaton and also demonstrate
(through experiments) that compression works especially well for Simplex Tree due to the
structure of simplicial complexes: namely, that all subfaces of a simplex in the complex also
belong to the complex. Additionally, we consider the influence of the labeling of the vertices
on compression, which can be significant. Further, we show that it is hard to find an optimal
labeling for the compressed Simplex Tree and for the Minimal Simplex Automaton.

Further, we introduce two new data structures for simplicial complexes called the Maximal
Simplex Tree (MxST) and the Simplex Array List (SAL). MxST is a subtree of the Simplex
Tree whose leaves are in bijection with the maximal simplices (i.e. simplices with no cofaces)
of the complex. We show that MxST is compact and allows efficient operations. MxST is
then augmented to obtain SAL where every node uniquely represents an edge. A nice feature
of SAL is its invariance over labeling of vertices. We show that SAL supports efficient basic
operations and that it is compact when the dimension of the complex is fixed, a case of great
interest in Manifold Learning and Topological Data Analysis. Complete proofs and more
detailed discussions are presented in the full version of the paper [7].

2 Simplicial Complex: Definitions and a Lower Bound

In this paper, the class of d dimensional simplicial complexes on n vertices with m simplices,
of which k are maximal, is denoted by K(n, k, d,m), and K denotes a simplicial complex
in K(n, k, d,m) . At times, we say Kθ ∈ Kθ(n, k, d,m) (where θ : V → {1, 2, ..., |V |} is
a labeling of the vertex set V of K) when we want to emphasize that some of the data
structures seen in this paper are influenced by the labeling of the vertices.

A maximal simplex of a simplicial complex is a simplex which is not contained in a larger
simplex of the complex. A simplicial complex is pure, if all its maximal simplices are of the
same dimension. Also, a free pair is defined as a pair of simplices (τ, σ) in K where τ is the
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Figure 1 Simplicial complex with the tetrahedra 1–3–4–5 and 2–3–4–5, and the triangle 1–3–6.

only coface of σ. In Figure 1, we have a simplicial complex on vertex set {1, 2, 3, 4, 5, 6} which
has three maximal simplices: the two tetrahedra 1–3–4–5 and 2–3–4–5, and the triangle
1–3–6. We use this complex as an example through out the paper.

We would like to note here that the case when k = O(n), is of particular interest. It can
be observed in flag complexes, constructed from planar graphs and expanders [13], and in
general, from nowhere dense graphs [15], and also from chordal graphs[14]. Generalizing,
for all flag complexes constructed from graphs with degeneracy O(logn) (degeneracy is the
smallest integer r such that every subgraph has a vertex of degree at most r), we have that
k = nO(1) [13]. This encompasses a large class of complexes encountered in practice.

Now, we obtain a lower bound on the space needed to represent simplicial complexes by
presenting a counting argument on the number of distinct simplicial complexes.

I Theorem 1. Consider the set of all simplicial complexes K(n, k, d,m) where d ≥ 2 and
k ≥ n+ 1, and consider any data structure that can represent the simplicial complexes of this
class. Such a data structure requires log

((n/2
d+1)
k−n

)
bits to be stored. For any constant ε ∈ (0, 1)

and for 2
εn ≤ k ≤ n

(1−ε)d and d ≤ nε/3, the bound becomes Ω(kd logn).

Proof Sketch. Define h = k− n ≥ 1 and suppose there exists a data structure that is stored
only using s < logα def= log

((n/2d+1)
h

)
bits. We will construct α simplicial complexes, all with

the same set P of n vertices, the same dimension d, and with exactly k maximal simplices.
Then, we will have two different complexes, say K and K ′, encoded by the same word. But,
by the construction of these complexes, there is a simplex which is in K and not in K ′. J

Theorem 1 applies particularly to the case of pseudomanifolds of fixed dimension where
we have k ≤ n d2 (i.e. ε = 1

2 suffices) [6]. The case where d is small is important in Manifold
Learning where it is usually assumed that the data live close to a manifold of small intrinsic
dimension. The dimension of the simplicial complex should reflect this fact and ideally be
equal to the dimension of the manifold.

3 Compression of the Simplex Tree

Let K ∈ K(n, k, d,m) be a simplicial complex whose vertices are labeled from 1 to n and
ordered accordingly. We can thus associate to each simplex of K a word on the alphabet set
{1, . . . , n}. Specifically, a j-simplex of K is uniquely represented as the word of length j + 1
consisting of the ordered set of the labels of its j+ 1 vertices. Formally, let σ = {v`0 , . . . , v`j}
be a simplex, where v`i are vertices of K and `i ∈ {1, . . . , n} and `0 < · · · < `j . σ is
represented by the word [σ] = [`0, · · · , `j ]. The simplicial complex K can be defined as a
collection of words on an alphabet of size n. To compactly represent the set of simplices of
K, the corresponding words are stored in a tree and this data structure is called the Simplex
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Figure 2 Simplex Tree of the simplicial complex in Figure 1.
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Figure 3 Compressed Sim-
plex Tree of the Simplex Tree
given in Figure 2.

Tree of K and denoted by ST(K) or simply ST when there is no ambiguity. It may be seen
as a trie on the words representing the simplices of the complex. The depth of the root is 0
and the depth of a node is equal to the dimension of the simplex it represents plus one.

We give a constructive definition of ST. Starting from an empty tree, insert the words
representing the simplices of the complex in the following manner. When inserting the word
[σ] = [`0, · · ·, `j ] start from the root, and follow the path containing successively all labels
`0, · · ·, `i, where [`0, · · ·, `i] denotes the longest prefix of [σ] already stored in the ST. Next,
append to the node representing [`0, · · ·, `i] a path consisting of the nodes storing labels
`i+1, · · ·, `j . In Figure 2, we give ST for the simplicial complex shown in Figure 1.

If K consists of m simplices (including the empty face) then, the associated ST contains
exactly m nodes. Thus, we need Θ(m logn) space/bits to represent ST (since each node
stores a vertex which needs Θ(logn) bits to be represented). We can compare this to the
lower bound of Theorem 1. In particular, if k = O(1) then, ST requires at least Ω(2d logn)
bits where as Theorem 1 proves the necessity of only Ω(d logn) bits. Therefore, while ST
is an efficient data structure for some basic operations such as determining membership of
a simplex and computing the r-skeleton of the complex, it requires storing every simplex
explicitly through a node, leading to combinatorial redundancy. To overcome this, we
compress ST as described below.

3.1 Compressed Simplex Tree

Consider the ST in Figure 2 and note that the parts marked in red appear twice. The goal of
the compression is to identify these common parts and store them only once. More concretely,
if the same subtree is rooted at two different nodes in ST, then the subtree is stored only once
and the two root nodes now point to the unique copy of the subtree. As a consequence, the
nodes are no longer in bijection with the nodes of the complex (as it was in the case of ST),
but we still have the property that the paths from the root are in bijection with the simplices.
We see in Figure 3, the compressed ST of the simplicial complex described in Figure 1. In
the rest of the paper, we denote by C, this action of compression. Also, unless otherwise
stated, |ST| and |C(ST)| refer to the number of edges in ST and C(ST) respectively.

Answering simplex membership queries and other queries that only require traversing
the ST from root to leaves can be implemented in C(ST) exactly as in ST [8]. Allowing
upward traversal in ST is also possible (with additional pointers from children to parents)
and this has been shown to improve the efficiency of some operations, such as face or coface
retrieval. In C(ST), parents are not unique. To account for this, we mark the parents that
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Figure 4 Simplex Automaton of the complex in
Figure 1.
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Figure 5 Minimal Simplex Automa-
ton of the complex in Figure 1.

were accessed, and use this to go back in the upward direction. This implies an additional
storage of O(d logn) while traversing, but a node (simplex) having many parents can assist
to locate cofaces much faster.

Next, we will introduce an automaton perspective of the above compression and show
how to deduce the optimal compression algorithm for the ST. We will also describe insertion
and removal operations on C(ST) through the automaton perspective.

3.2 Minimal Simplex Automaton

A Deterministic Finite state Automaton (DFA) recognizing a language is defined by a set
of states and labeled transitions between these states to detect if a given word is in a
predefined language or not. ST can be seen as a DFA: let us define the set of m states by
V = {nodes of ST}. A transition from state u to state v is labeled by a if and only if there is
in ST an edge from u to v, and v contains the vertex a. We define the Simplex Automaton
of K (denoted by SA(K)) as the automaton described above (cf. Figure 4).

SA is basically the same data structure as ST except that the labels are not put on
the nodes but on the edges entering these nodes and thus, basic operations in SA can be
implemented as in ST. Also, by construction of SA, it is obvious that the number of states
and transitions of SA are equal to the number of nodes and edges in ST respectively.

It is known [19] that if a language L is regular (accepted by a DFA) then, L has a unique
minimal automaton. DFA minimization is the task of transforming a given DFA into an
equivalent DFA that has a minimum number of states. We represent the action of performing
DFA minimization byM. The compression of ST can be seen as DFA minimization since
merging identical subtrees corresponds to merging indistinguishable states in the automaton.
DFA minimization has been well studied. For instance, Hopcroft’s algorithm [17] minimizes
an automaton with m transitions over an alphabet of size n in O(m logm logn) steps and
needs at most O(m logn) space. This run-time is shown in [17] to be optimal over the set of
regular languages. Additionally, Revuz showed that acyclic automaton (which SA indeed is)
can be minimized in linear time [20]. For any K ∈ Kθ(n, k, d,m), let us define the minimal
simplex automaton (M(SA)) as the minimal deterministic automaton which recognizes the
language LKθ . In Figure 5, we give the minimal automaton for the complex of Figure 1.
Finally, it is possible to get C(ST) from M(SA) by duplicating states such that for each
node, the labels of all its incoming edges are the same and by moving the labels from the
edges to the next node. Now let us look at how to perform operations onM(SA).
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Operations on the Minimal Simplex Automaton

The set of all paths originating from the root are the same in both ST and M(SA). All
operations which involve only traversal along ST are performed with equal (if not better)
efficiency inM(SA) as, for every such operation on ST, we start by traversing from the root.
As an example, consider the operation of determining if a simplex σ is in the complex. Let
us adapt the algorithm described in [8] toM(SA). Note that there is a unique path from
the initial state which identifies σ inM(SA). If σ = v`0 − · · · − v`dσ , then from the initial
state we go through dσ + 1 states by following the transitions `0, . . . , `dσ in that order. If at
some point the requisite transition is not found then, declare that the simplex is not in the
complex. Hence, performing any static operation i.e. an operation where we don’t change
M(SA) in any way, can be carried out in very much the same way in both M(SA) and
ST, although it might be more efficient forM(SA) as discussed in subsection 3.1 for C(ST).
Addition and deletion of simplices can be trickier in M(SA) than in ST. We can always
expandM(SA) to SA, (locally) perform the operation and recompress. If the nature of the
operation is itself expensive (i.e. worst-case Ω(m)), then the worst-case cost does not change,
which is indeed the case for operations such as removal of a face and edge contraction.

We denote by |SA| and |M(SA)|, the number of states in SA andM(SA) respectively.
Analysis of |M(SA)| will be done in section 5, after introducing a new data structure in the
next section. This is done to put the impact of compression in better perspective.

4 Maximal Simplex Tree

We define the Maximal Simplex Tree MxST(K) as an induced subgraph of ST(K). All leaves
in the ST corresponding to maximal simplices and the nodes encountered on the path from
the root to these leaves are kept in the MxST and the remaining nodes are removed. Figure 6
shows the MxST of the simplicial complex given in Figure 1. In MxST(K), the leaves are in
bijection with the maximal simplices of K. Any path starting from the root provides the
vertices of a simplex of K. However, in general, not all simplices in K can be associated to a
path from the root in MxST(K).

X

1 2

3 3

4 6 4

5 5

Figure 6 Simplicial Complex of Fig-
ure 1 represented using Maximal Simplex
Tree.

Table 1 Cost of performing basic operations
on MxST.

Operation Cost
Identifying maximal co-
faces of simplex σ / Deter-
mining membership of σ

O(kd logn)

Insertion of a maximal sim-
plex σ

O(kdσ logn)

Removal of a face O(kd logn)
Elementary Collapse O(kd logn)
Edge Contraction Θ(kd logn)

We note that in MxST we add at most d+1 nodes per maximal simplex. Hence, MxST(K)
has at most k(d+ 1) + 1 nodes and at most k(d+ 1) edges (therefore requiring O(kd logn)
space). We denote by |MxST| the number of edges in MxST. Since MxST is a factor of
ST, the size of MxST is usually much smaller than the size of ST. Further, it always meets
the lower bound of Theorem 1, making it a compact data structure. We discuss below the
efficiency of MxST in answering queries.

SoCG’15
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Operations on the Maximal Simplex Tree

In [8] some important basic operations (with appropriate motivation) have been discussed
for ST. We will bound now the cost of these operations using MxST. Note that any node
in MxST(K) has O(n) children and we can search for a particular child of a node in time
O(logn) (using red–black trees). We summarize in Table 1, the asymptotic cost of some
basic operations and note that it is already better than ST for some operations. Moreover,
we can augment the structure of MxST without paying a lot of extra storage space, so that
the above operations can be performed more efficiently. This is explained in section 6.

5 Results on Minimization of the Simplex Automaton

In this section we will see some results, both theoretical and experimental on the minimization
of SA, i.e. on the extent of compression of the Simplex Tree.

5.1 Bounds on the Number of States of the Minimal Simplex
Automaton

We observe below that the number of leaves in ST is large and grows linearly w.r.t. the
number of nodes in ST. The proof follows by a simple induction argument on n.

I Lemma 2. If K ∈ K(n, k, d,m) then, at least half the nodes of ST(K) are leaves.

Differently from ST,M(SA) has only one leaf. The following lemma shows thatM(SA)
has at most half the number of nodes of ST plus one (follows directly from Lemma 2).

I Lemma 3. For any K ∈ K(n, k, d,m),M(SA(K)) has at most m
2 + 1 states.

Similar toM(SA), we may defineM(MxSA(K)) as the minimal DFA which recognizes
only maximal simplices as words. Then the following inequality follows:

I Lemma 4. For any pure complex K ∈ K(n, k, d,m), |M(SA(K))| ≥ |M(MxSA(K))|.

Proof Sketch. Notice that every maximal simplex corresponds to a path of exactly d+ 1
transitions and vice versa. Therefore, if all transitions which do not take part in even a single
such path are removed, we would obtain the minimized maximal simplex automaton. J

In fact, one can prove that for a large class of simplices the equality does not hold. For
instance, consider K′ ⊂ K(n, k, d,m) such that for any K ∈ K′ we have that there exists two
maximal simplices which have different first letters (i.e. when the simplices are treated as
words) but have the same letter at position i, for some i that is not the last position. For
this subclass the equality does not hold. Observe also that Lemma 4 holds only for pure
simplicial complexes because, if all complexes were allowed, then we will have complexes like
in Example 5 where |M(SA(K))| < |M(MxSA(K))|.

I Example 5. Consider the simplicial complex on 7 vertices given by the following maximal
simplices: a 4-cell 1–2–3–6–7, two triangles 2–3–5 and 4–6–7 and an edge 4–5.

5.2 Conditions for Compression
We will first see a result guaranteeing compression regardless of the labeling of the vertices:

I Lemma 6. For any pure simplicial complex K ∈ K(n, k, d,m), we have that |M(SA)| is
always less than |SA| when k < d and d ≥ 2.
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Proof Sketch. Since d > k there should exist a free pair (τ, σ) such that τ is a maximal
simplex and such that the last two vertices of τ are in σ as well. If sτ and sσ are the states
recognizing the simplex τ and σ respectively in SA then, they are merged inM(SA). J

In fact, the above result is close to tight: in Example 11 we have a pure simplicial
complex with k = d and |ST| = |C(ST)|. Note that we analyze compression of ST rather than
minimization of SA, and we shall continue to do so through out this section because analyzing
ST provides better insight into the combinatorial structures which hinder compression.

Intuitively, it seems natural that if the given simplicial complex has a large number of
maximal simplices then, regardless of the labeling we should be able to compress some pairs
of nodes in MxST. However, Example 7 says otherwise.

I Example 7. Consider the simplicial complex on 2n vertices of dimension n/2 defined by
the set of maximal simplices given by:{

g(i) ∪ {gr(i) + n}
∣∣∣∣i ∈ {1, 2, . . . ,

(
n

n/2

)}
, r ∈ {1, 2, . . . , n/2}

}
where g is a bijective map from {1, 2, . . . ,

(
n
n/2
)
} to the set of all simplices on n vertices of

dimension n/2− 1 and gr corresponds to picking the rth vertex (in lexicographic order).

Here k = n
2
(
n
n/2
)
≈ 2n− 1

2
√
n/π and there is no compression in MxST. Also note that

|C(MxST)| < |MxST| does not imply |C(ST)| < |ST| as can be seen in Example 8.

I Example 8. Consider the simplicial complex on seven vertices given by the maximal
simplices: tetrahedron 1-2-4-6 and three triangles 2-4-5, 3-4-5 and 1-4-7.

In Example 11, we saw a simplicial complex of large dimension which cannot be compressed,
but this is due to the way the vertices were labeled. Now, we state a lemma which says that
there is always a labeling which ensures compression.

I Lemma 9. If Kθ ∈ K(n, k, d,m) with d > 1, then we can find a permutation π on
{1, 2, . . . , n} such that |M(SA(Kπ◦θ))| < |SA(Kπ◦θ)|.

We would have liked to obtain better bounds for the size ofM(SA) through conditions
just based on n, k, d and m, but sadly this is a hard combinatorial problem. Also, while
there is always a good labeling, we show in section 7 that it is NP-Hard to find it.

5.3 Experiments
We define two parameters here, ρST and ρMxST . The first is given by the ratio of |ST| and
|C(ST)| and the second by the ratio of |MxST| and |C(MxST)|.

Data Set 1: The set of points were obtained through sampling of a Klein bottle in R5 and
construct the Rips Complex (see [8] for definition) with parameter α using libraries provided
by the GUDHI project [16] on input of various values for α. We record in Table 2, |C(ST)|
and |C(MxST)| for the various complexes constructed.

First, observe that for this set of data, log k
logn is small (which is expected for Rips complexes)

and thus |MxST| would be considerably smaller than |ST|. Also, note that MxST hardly
compresses but as α increases, ρST increases quite fast. This indicates that compression
strongly exploits the combinatorial redundancy of ST (i.e. storing each simplex explicitly
through a node) in order to compress efficiently.

SoCG’15
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Table 2 Analysis of experiments on Data Set 1.

No n α d k |ST| = m− 1 |MxST| |C(ST)| ρST |C(MxST)| ρMxST

1 10,000 0.15 10 24,970 604,572 96,104 218,452 2.77 90,716 1.06
2 10,000 0.16 13 25,410 1,387,022 110,976 292,974 4.73 104,810 1.06
3 10,000 0.17 15 27,086 3,543,582 131,777 400,426 8.85 123,154 1.07
4 10,000 0.18 17 27,286 10,508,485 149,310 524,730 20.03 137,962 1.08

Table 3 Analysis of experiments on Data Set 2.

No n p d k |ST| = m− 1 |MxST| |C(ST)| ρST |C(MxST)| ρMxST

1 25 0.8 17 77 315,369 587 467 537.3 121 4.85
2 30 0.75 18 83 4,438,558 869 627 7,079.0 134 6.49
3 35 0.7 17 181 3,841,590 1,592 779 4,931.4 245 6.50
4 40 0.6 19 204 9,471,219 1,940 896 10,570.6 276 7.03
5 50 0.5 20 306 25,784,503 2,628 1,163 22,170.7 397 6.62

Data Set 2: All experiments conducted above are for Rips complexes with d
n small. We

now check the extent of compression for simplicial complexes with large d
n . To the aim, we

look at flag complexes generated using a random graph Gn,p on n vertices where a pair of
vertices share an edge with probability p, and record in Table 3, |C(ST)| and |C(MxST)| for
the various complexes constructed.

Here we observe staggering values for ρST which only seems to grow as larger simplicial
complexes were constructed. This is primarily because random simplicial complexes don’t
behave like pathological simplicial complexes which hinder compression; it is rare that there
exists both large cliques and a large fraction of low dimensional maximal simplices.

6 Simplex Array List

In this section, we build a new data structure which is a hybrid of ST and MxST. The Simplex
Array List SAL(K) is a (rooted) directed acyclic graph on at most k

(
d(d+1)

2 + 1
)
nodes

with maximum out-degree d, which is obtained by modifying MxST or constructed from the
maximal simplices of K. Intuitively, SAL is representing K by storing all the edges of K
explicitly as nodes in SAL(K) and the edges in SAL(K) are used to capture the incidence
relations between simplices. More precisely, a path of length j in SAL(K) corresponds to a
unique j-simplex in K. We describe the construction of SAL below.

6.1 Construction
We will first see how to obtain SAL from MxST by performing three operations which we
define below.
1. Unprefixing (U): Excluding the root and the leaves, for every node v in MxST with

outdegree dv, duplicate it into dv nodes with outdegree 1, (one copy of v for each of its
children) by starting from the parents of the leaves and recursively moving up in the tree.

2. Transitive Closure (T ): For every pair of nodes (u, v) in U(MxST) (u not being the
root), if there is a path from u to v, then add an edge from u to v in T (U(MxST)) (if it
doesn’t already exist).

3. Expanding Representation (R): For every node v in T (U(MxST)) with outdegree dv,
duplicate it into dv nodes with outdegree 1, i.e. one copy of v for each of its children, by



J.-D. Boissonnat, Karthik C. S., and S. Tavenas 651

X

1 1 1 1 1 2 2 2

3 3 3 3 3

4 6 4

5 5

Figure 7 Simplicial Complex
of Figure 1 represented using
R(T (U(MxST))).

0 1 2 3 4 5 6

(1,3,1)

(1,4,1)

(1,5,1)

(1,3,3)

(1,6,3)

(2,3,2)

(2,4,2)

(2,5,2)

(3,4,1)

(3,5,1)

(3,4,2)

(3,5,2)

(3,6,3)

(4,5,1)

(4,5,2)

(5,ϕ,1)

(5,ϕ,2) (6,ϕ,3)

A1

A2 A3

A4 A5 A6

Figure 8 Simplex Array List for complex in Figure 1
embedded on the number line.

starting from the children of the root and recursively moving down to children of smallest
label. Therefore, if we append i empty labels at the end of each maximal simplex, R
applied i times will give a graph where every node uniquely represents a i-simplex.

SAL can be seen as R(T (U(MxST))) and each node uniquely represents an edge in the
complex. Figure 7 shows R(T (U(MxST))) of the simplicial complex given in Figure 1.

We will now see an equivalent construction of SAL from its maximal simplices and
it is this construction we will use to perform operations. For a given maximal simplex
σ = v`0 · · ·v`j , associate a unique key between 1 and k generated using a hash function H and
then introduce j(j+1)

2 + 1 new nodes in SAL. We build a set of j(j+1)
2 + 1 labels and assign

uniquely a label to each node. The set of labels is defined as the union of the following two
sets: S1 = {(`i, `i′ ,H(σ)) | i ∈ {0, 1, . . . , j − 1}, i′ ∈ {i+ 1, . . . , j}} and S2 = {(`j , ϕ,H(σ))},
where ϕ denotes an empty label (cf. Figure 8 for an example). We introduce an edge
from node with label (`p, `p′ ,H(σ)) to node with label (`q, `q′ ,H(σ)) if and only if p′ = q.
Additionally, we introduce an edge from every node with label (`p, `j ,H(σ)) in S1 to the
node with label (`j , ϕ,H(σ)) in S2. Thus, in SAL we represent a maximal j-simplex using a
connected component containing |S1|+ |S2| = j(j+1)

2 + 1 nodes and j(j2+5)
6 directed edges.

To perform basic operations efficiently, we embed SAL on the number line such that for every
i ∈ {1, 2, . . . , n} on the number line we have an array Ai of nodes which has labels of the
form (i, i′, z) for some z ∈ {1, . . . , k} and i′ ∈ {i+ 1, . . . , n, ϕ}. Sort each Ai based on i′ and
in case of ties, sort them based on z.

If the root is removed in R(T (U(MxST))), the graph we get is the same as the
one described in the previous paragraph. Labels (as described above) for the nodes in
R(T (U(MxST))) can be easily given by just looking at the vertex represented by the node,
and its children. Further, the number of nodes and number of edges in SAL are both invariant
over the labeling of the vertices because SAL is constructed from U(MxST).

6.2 Some Observations about the Simplex Array List

SAL(K) has at most k
(
d(d+1)

2 + 1
)
nodes. Also, for each maximal simplex of dimension dσ,

the outdegree of any node in the connected component corresponding to the maximal simplex,
is at most dσ. Therefore, the total number of edges in SAL(K) is at most k

(
d2(d+1)

2 + d
)
.
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Hence, the space required to store SAL(K) is O(kd3 logn). Also, unless otherwise stated
|SAL| refers to number of edges in SAL.

We now see that, differently from MxST, the simplices of K are all associated with paths
in SAL(K). We say a path p is associated to a simplex σ if the sequence of numbers obtained
by looking at the corresponding nodes which are embedded on the number line along p are
exactly the labels of the vertices of σ in lexicographic order.

I Lemma 10. Any path in SAL(K) is associated to a simplex of K and any simplex of K
is associated to at least one such path.

Observe that several paths can provide the same simplex since a simplex may appear in
several maximal simplices. Hence, the vertices of a given simplex cannot be accessed in a
deterministic way. The previous lemma together with this observation implies that SAL is a
non-deterministic finite automaton (NFA). NFA are a natural generalization of DFA. The
size of a NFA is smaller than that of a DFA detecting the same language, but the operations
on NFA take in general more time. We demonstrate the above fact using Example 11.

I Example 11. Let K ∈ K(2k + 1, k, k,m) be defined on the vertices {1, . . . , 2k + 1} and
the set of maximal simplices be given by {({1, . . . , k + 1} \ {i}) ∪ {k + 1 + i} | 1 ≤ i ≤ k}.

Thus SAL(K) has k2(k+1)
2 + k nodes whileM(SA(K)) has at least 2k states (all states

reached after reading the words s ⊆ {1, . . . , k} are pairwise distinct). Moreover, this motivates
the need for considering SAL overM(SA), as the gap in their sizes can be exponential.

Building SAL(K) can be seen as partially compressing the ST(σ) associated to each
maximal simplex σ (where σ and its subfaces are seen as a subcomplex). Compressing
ST(σ) will lead to a subtree which is exactly the same as the transitive closure of MxST(σ).
Therefore, collecting all C(ST)(σ) for all maximal simplices σ and merging the roots is the
same as T (U(MxST(K))). Now applying R on T (U(MxST(K))) can be seen as an act of
uncompression. We apply R once to ensure that for every node, all its children represent
the same vertex and thus belong to the same Ai. If R is applied multiple times then, it is
equivalent to duplicating nodes (seen as an act of uncompression) to get all children of a
node closer together inside Ai. Next, we discuss below how to perform operations in SAL at
least as efficiently as in ST.

6.3 Operations on the Simplex Array List
Let us now analyze the cost of performing basic operations on SAL (the motivation behind
these operations are well described in [8]). Denote by Γj(σ, τ) the number of maximal
simplices that contain a j-simplex τ which is in σ. Define Γj(σ) = max

τ
Γj(σ, τ) and

Γj = max
σ∈K

Γj(σ). It is easy to see that k ≥ Γ0 ≥ Γ1 ≥ · · · ≥ Γd = 1. In the case of SAL,
we are interested in the value of Γ1 which we use to estimate the worst-case cost of basic
operations in SAL.

Membership of Simplex. To determine membership of σ = v`0 · · ·v`dσ in K, first determine
the contiguous subarray of A`0 , . . . , A`dσ , say B`0 , . . . , B`dσ such that every B`i contains all
nodes with labels of the form (`i, `i+1, z), for some z (B`i ’s indeed form a contiguous subarray
because of the way elements in A`i were sorted). We emphasize here that we determine each
B`i only by its starting and ending location in A`i and do not explicitly read the contents of
each element in B`i . Thus, if P is a projection function such that P ((`i, `i+1, z)) = z then, we
see each P (B`i) as a subset of {1, . . . , k} because the only part of the label that distinguishes
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two elements in B`i is the hash value of the maximal simplex. Now we have σ ∈ K if and
only if ∩

0≤i≤dσ
P (B`i) 6= ∅. This is because if σ ∈ K then, from Lemma 10 there should exist

a path corresponding to this simplex which would imply ∩
i
P (B`i) 6= ∅, and if m ∈ ∩

i
P (B`i),

then σ is a face of m. Computing the intersection can be done in O(γdσ log ζ) time, where
γ = min

i
|B`i | and ζ = max

i
|A`i |. Computing the subarrays can be done in O(dσ log ζ) time.

Thus total running time is O(dσ(γ log ζ + log ζ)) = O(dσΓ1 log(kd)).

For example, consider the SAL of figure 8 and the task of checking membership of σ =
2− 3− 5 in the complex of figure 1. Then, we have B2 = {(2, 3, 2)}, B3 = {(3, 5, 1), (3, 5, 2)},
and B5 = {(5, ϕ, 1), (5, ϕ, 2)}. We see each P (Bi) as a subset of {1, 2, 3} as follows: P (B2) =
{2}, P (B3) = {1, 2}, and P (B5) = {1, 2}. Clearly ∩

i
P (Bi) = {2} and σ is indeed a face of

the second maximal simplex 2− 3− 4− 5.

Insertion. Suppose we want to insert a maximal simplex σ then, building a connected
component takes time O(d3

σ). Updating the arrays Ai takes time O(d2
σ log ζ). Next, we have

to check if there exist maximal simplices in K which are now faces of σ, and remove them.
We consider every edge σ∆ in σ and compute Z∆ the set of all maximal simplices which
contain σ∆ (which can be done in time O(d3

σΓ1 log(kd))). Then, we compute ∪
σ∆∈σ

Z∆ whose

size is at most d2
σΓ1 and check if any of these maximal simplices are faces in σ (can be done

in O(d3
σΓ1) time). To remove all such faces of σ which were previously maximal takes at the

most O(d4
σΓ1) time. Therefore, total time for insertion is O(d3

σΓ1(dσ + log(kd))).

Removal. To remove a face σ, obtain the maximal simplices which contain it (can be done
in O(dσΓ1 log(kd)) time) and for each of them make dσ copies of the connected component,
and in the ith copy delete all nodes with label (σi, x, y) for some x, y, and where σi denotes
the label of the ith vertex of σ. Thus, the total running time is O(dσd3Γ1 log(kd)).

Elementary Collapse. Given a pair of simplices (σ, τ), first check if it is a free pair. This is
done by obtaining a list of all maximal simplices which contain σ, through a membership
query (costs O(dσΓ1 log(kd)) time) and then checking if τ is the only member in that list.
If yes, remove σ (and add its facets). This takes time O(d4

σ). Thus, total running time is
O(dσ(d3

σ + Γ1 log(kd))).

Edge Contraction. Here we cannot do better than rebuilding the entire SAL (as in MxST)
and therefore the cost of the operation is O(kd3). However, it’s not really bad as size of SAL
is already smaller than the size of ST which takes time proportional to O(md+ k2d logn) to
perform edge contraction.

We summarize in Table 4 the asymptotic cost of the basic operations discussed above
and compare it with ST and MxST, through which the efficiency of SAL is established.

Filtration. We know from Lemma 10 that to every simplex in the complex, we can associate
a set of paths in SAL. This can be used to store filtration in some cases. However, if a data
structure needs to support all possible filtrations then, it can be provably shown that there

∗ We would like to recapitulate here the lower bound from Theorem 1 of Ω(kd logn).
† The space needed to represent ST is Θ(m logn) which is written as O(k2d logn) to help in comparison.
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Table 4 Cost of performing basic operations on SAL in comparison with ST and MxST.

ST MxST SAL
Storage∗ O(k2d logn)† O(kd logn) O(kd3(logn+ log k))
Membership of a simplex σ O(dσ logn) O(kd logn) O(dσΓ1 log(kd))
Insertion of a maximal simplex σ O(2dσdσ logn) O(kdσ logn) O(d3

σΓ1(dσ + log(kd)))
Removal of a face O(m logn) O(kd logn) O(dσd3Γ1 log(kd))
Elementary Collapse O(2dσ logn) O(kd logn) O(dσ(d3

σ+Γ1 log(kd2)))
Edge Contraction O(k2d logn) O(kd logn) O(kd3)

Table 5 Values of Γ0, Γ1, Γ2, and Γ3 for the simplicial complexes generated from Data Set 1.

No n α d k m Γ0 Γ1 Γ2 Γ3 |SAL|
1 10,000 0.15 10 24,970 604,573 62 53 47 37 424,440
2 10,000 0.16 13 25,410 1,387,023 71 61 55 48 623,238
3 10,000 0.17 15 27,086 3,543,583 90 67 61 51 968,766
4 10,000 0.18 17 27,286 10,508,486 115 91 68 54 1,412,310

is no better way to do so, than by storing the filtration value explicitly for each simplex in
the complex. Therefore one cannot hope to find a more compact representation than ST in
order to support all possible filtrations.

Performance of SAL. Plainly, if the number of maximal simplices is small (i.e. can be
treated as a constant), SAL and MxST are very efficient data structures and this is indeed
the case for a large class of complexes encountered in practice as discussed in section 2.

Remarkably, even if k is not small but d is small then, SAL is a compact data structure
as given by the lower bound in Theorem 1. This is because O(kd3(logn+ log k)) bits are
sufficient to represent SAL and the lower bound is met when d is fixed (as it translates to
needing O(k logn) bits to represent SAL). Also, it is worth noting here that Γ0 is usually a
small fraction of k and since Γ1 is at most Γ0, the above operations are performed considerably
faster than in MxST where almost always the only way to perform operations is to traverse
the entire tree. Indeed SAL was intended to be efficient in this regard as even if k is not
small the construction of SAL replaces the dependence on k by a dependence on a more local
parameter Γ1 that reflects some “local complexity” of the simplicial complex. As a simple
demonstration, we estimated Γ0,Γ1,Γ2, and Γ3 for the simplicial complexes of Data Set 1
(see section 5.3). These values are recorded in Table 5.

It is interesting to note that |SAL| is larger than |C(ST)| but much smaller than |ST|.
This is expected, as SAL promises to perform basic operations more efficiently than ST while
compromising slightly on size. Further our intuition as described previously was that Γ0
should be much smaller than k, and this is supported by the above results. Also, we note
that for larger simplicial complexes such as complexes No 3 and 4, there is a significant gap
between Γ0 and Γ1. Since complexity of basic operations using SAL is parametrized by Γ1
(and not Γ0), the above results support our claim that SAL is an efficient data structure.

Local Sensitivity of Simplex Array List. We note here that while the cost of basic operations
are bounded using Γ1, we could use local parameters such as γ and Z∆ (see previous
paragraphs on Membership of Simplex and Insertion for definition) to get a better estimate
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on the cost of these operations. γ captures local information about a simplex σ sharing an
edge with other maximal simplices of the complex. More precisely, it is the minimum, over
all edges of σ, of the largest number of maximal simplices that contain the edge. If σ has
an edge which is contained in a few maximal simplices then, γ is very small. Z∆ captures
another local property of a simplex σ – the set of all maximal simplices that contain the
edge σ∆. Therefore, SAL is indeed sensitive to the local structure of the complex.

7 Labeling Dependency

In this section, we discuss how the labeling of the vertices affects the size of the data structures
discussed in this paper. In particular, both MxST andM(SA) are not label invariant like
ST and SAL. To see this, consider a simplicial complex which contains a maximal triangle
and a maximal tetrahedron, sharing an edge. We could label the triangle and tetrahedron as
1–2–3 and 1–2–4–5, or as 1–3–4 and 2–3–4–5 respectively. Note that the two labelings give
twoM(SA) (and MxST) of different sizes. We skip all the proofs in this section and instead
direct the reader to the full version of the paper [7].

First, we formalize the label ordering problem on MxST (and C(MxST), C(ST), and
M(SA)) as follows: Given an integer α and a simplicial complex Kθ ∈ Kθ(n, k, d,m), does
there exist a permutation π of 1, 2, . . . , n such that |MxST(Kπ◦θ)| ≤ α (similarly we ask
|C(MxST(Kπ◦θ))| ≤ α, |C(ST(Kπ◦θ))| ≤ α, and |M(SA(Kπ◦θ))| ≤ α)? Let us refer to this
problem as MxSTMINIMIZATION(Kθ, α) (similarly we have CMxSTMINIMIZATION(Kθ, α),
CSTMINIMIZATION(Kθ, α), and MSAMINIMIZATION(Kθ, α)). We have the following results:

I Theorem 12 ([9]). MxSTMINIMIZATION is NP-Complete.

I Theorem 13. CMxSTMINIMIZATION, CSTMINIMIZATION, and MSAMINIMIZATION are
all NP-Complete.

8 Discussion and Conclusion

In this paper, we introduced a compression technique for the Simplex Tree without com-
promising on functionality. Additionally, we have proposed two new data structures for
simplicial complexes – the Maximal Simplex Tree and the Simplex Array List. We observed
that the Minimal Simplex Automaton is generally smaller than the Simplex Automaton.
Further, we showed that the Maximal Simplex Tree is compact and that the Simplex Array
List is efficient (and compact when d is fixed). This is summarized in Table 4.

The transitive closure of MxST may have a node, with as many as kd outgoing edges
to neighbors containing the same label. SAL reduces the number of outgoing edges to
such neighbors with the same label from kd to d, making it much more powerful. In short,
it reduces the non-determinism of their equivalent automaton representation. Also, most
complexes observed in practice have k to be a low degree polynomial in n. Example 11
and Lemma 6 both deal with complexes where k is small. Further, all hardness results in
section 7 are for complexes of dimension at most 2. Thus, complexes where either k or d is
small are interesting to study and for these cases, SAL is very efficient.

Trie Compression, like that ofM(SA), are efficient techniques when the trie is assumed to
be static. However, over the last decade, this has been extended using Dynamic Minimization
– the process of maintaining an automaton minimal when insertions or deletions are performed.
This has been well studied in [21], and extended to acyclic automata in [12] which would be
of particular interest to us.
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Another direction, is to look at approximate data structures for simplicial complexes, i.e.
we store almost all the simplices (introducing an error) and gain efficiency in compression (i.e.
little storage). This is a well explored topic in automata theory called hyperminimization
[18] and since our language is finite, k−minimization [5] and cover automata [10] might give
efficient approximate data structures by hyperminimizing SA.

Theorem 13 provides a new dimension to the hardness results obtained by Comer and
Sethi in [11]. It would be worth exploring this direction further. Also, it would be interesting
to find approximation algorithms for MSAMINIMIZATION. Finally proving better bounds
on extent of compression remains an open problem and may be geometric constraints will
eliminate pathological examples which hinder in proving good bounds on compression.
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some experiments.
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