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Abstract
We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial
calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. ’99] also on proof
size. [Alekhnovich and Razborov ’03] established that if the clause-variable incidence graph of a
CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high
PC/PCR degree. We further develop the techniques in [AR03] to show that if one can “cluster”
clauses and variables in a way that “respects the structure” of the formula in a certain sense, then
it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of
this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR
degree when restricted to constant-degree expander graphs. This answers an open question in
[Razborov ’02], and also implies that the standard CNF encoding of the FPHP formulas require
exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are
easy for polynomial calculus, as shown in [Riis ’93], both FPHP and Onto-PHP formulas are
hard even when restricted to bounded-degree expanders.
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1 Introduction

In one sentence, proof complexity studies how hard it is to certify the unsatifiability of
formulas in conjunctive normal form (CNF). In its most general form, this is the question of
whether coNP can be separated from NP or not, and as such it still appears almost completely
out of reach. However, if one instead focuses on concrete proof systems, which can be thought
of as restricted models of (nondeterministic) computation, then fruitful study is possible.

Perhaps the most well-studied proof system in proof complexity is resolution [6], in which
one derives new disjunctive clauses from a CNF formula until an explicit contradiction is
reached, and for which numerous exponential lower bounds on proof size have been shown
(starting with [8, 14, 29]). Many of these lower bounds can be established by instead studying
the width of proofs, i.e., the size of a largest clause appearing in the proofs, and arguing that
any resolution proof for a certain formula must contain a large clause. It then follows from a
result by Ben-Sasson and Wigderson [5] that any resolution proof must also consist of very
many clauses. Research since [5] has led to a well-developed machinery for showing width
lower bounds, and hence also size lower bounds.
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468 A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

The focus of the current paper is the slightly more general proof system polynomial
calculus resolution (PCR). This proof system was introduced by Clegg et al. [9] in a slightly
weaker form that is usually referred to as polynomial calculus (PC) and was later extended
by Alekhnovich et al. [1]. In PC and PCR clauses are translated to multilinear polynomials
over some (fixed) field F, and a CNF formula F is shown to be unsatisfiable by proving that
the constant 1 lies in the ideal generated by the polynomials corresponding to the clauses
of F . Here the size of a proof is measured as the number of monomials in a proof when
all polynomials are expanded out as linear combinations of monomials, and the width of a
clause corresponds to the (total) degree of the polynomial representing the clause. Briefly, the
difference between PC and PCR is that the latter proof system has separate formal variables
for positive and negative literals over the same variable. Thanks to this, one can encode
wide clauses into polynomials compactly regardless of the sign of the literals in the clauses,
which allows PCR to simulate resolution efficiently. With respect to the degree measure PC
and PCR are exactly the same, and furthermore the degree needed to prove in polynomial
calculus that a formula is unsatisfiable is at most the width required in resolution.

In a work that served, interestingly enough, as a precursor to [5], Impagliazzo et al. [16]
showed that strong lower bounds on the degree of PC proofs are sufficient to establish strong
size lower bounds. The same proof goes through for PCR, and hence any lower bound on
proof size obtained via a degree lower bound applies to both PC and PCR. In this paper, we
will therefore be somewhat sloppy in distinguishing the two proof systems, sometimes writing
“polynomial calculus” to refer to both systems when the results apply to both PC and PCR.

In contrast to the situation for resolution after [5], the paper [16] has not been followed
by a corresponding development of a generally applicable machinery for proving degree lower
bounds. For fields of characteristic distinct from 2 it is sometimes possible to obtain lower
bounds by doing an affine transformation from {0, 1} to the “Fourier basis” {−1,+1}, an idea
that seems to have appeared first in [7, 13]. For fields of arbitrary characteristic Alekhnovich
and Razborov [2] developed a powerful technique for general systems of polynomial equations,
which when restricted to the standard encoding of CNF formulas F yields that polynomial
calculus proofs require high degree if the corresponding bipartite clause-variable incidence
graphs G(F ) are good enough expanders. There are many formula families for which this
is not true, however. One can have a constraint satisfaction problem where the constraint-
variable incidence graph is an expander – say, for instance, for an unsatisfiable set of linear
equations mod 2 – but where each constraint is then translated into several clauses when
encoded into CNF, meaning that the clause-variable incidence graph G(F ) will no longer
be expanding. For some formulas this limitation is inherent – it is not hard to see that an
inconsistent system of linear equations mod 2 is easy to refute in polynomial calculus over F2
– but in other cases it would seem that some kind of expansion of this sort should still be
enough, “morally speaking,” to guarantee that the CNF formulas are hard.

One important direction in proof complexity, which is the reason research in this area
was initiated by Cook and Reckhow [10], has been to prove superpolynomial lower bounds
on proof size for increasingly stronger proof systems. For proof systems where such lower
bounds have already been obtained, however, a somewhat orthogonal research direction has
been to try to gain a better understanding of the strengths and weaknesses of the proof
system by studying different combinatorial principles (encoded in CNF) and determining
how hard they are to prove.

It seems fair to say that by far the most extensively studied such combinatorial principle
is the pigeonhole principle. This principle is encoded into CNF as unsatisfiable formulas
claiming that m pigeons can be mapped in a one-to-one fashion into n holes for m > n, but
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there are several choices exactly how to do this encoding. The most basic pigeonhole principle
(PHP) formulas have clauses saying that every pigeon gets at least one pigeonhole and that
no hole contains two pigeons. While these formulas are already unsatisfiable for m ≥ n+ 1,
they do not a priori rule out “fat” pigeons residing in several holes. The functional pigeonhole
principle (FPHP) formulas perhaps correspond more closely to our intuitive understanding of
the pigeonhole principle in that they also contain functionality clauses specifying that every
pigeon gets exactly one pigeonhole and not more. Another way of making the basic PHP
formulas more constrained is to add onto clauses requiring that every pigeonhole should get
a pigeon, yielding so-called onto-PHP formulas. Finally, the most restrictive encoding, and
hence the hardest one when it comes to proving lower bounds, are the onto-FPHP formulas
containing both functionality and onto clauses, i.e., saying that the mapping from pigeons to
pigeonholes is a perfect matching. Razborov’s survey [23] gives a detailed account of these
different flavours of the pigeonhole principle formulas and results for them with respect to
various proof systems – we just quickly highlight some facts relevant to this paper below.

For the resolution proof system there is not much need to distinguish between the different
PHP versions discussed above. The lower bound by Haken [14] for formulas with m = n+ 1
pigeons can be made to work also for onto-FPHP formulas, and more recent works by Raz [20]
and Razborov [24, 25] show that the formulas remain exponentially hard (measured in the
number of pigeonholes n) even for arbitrarily many pigeons m.

Interestingly enough, for polynomial calculus the story is very different. The first degree
lower bounds were proven by Razborov [21], but for a different encoding than the standard
translation from CNF, since translating wide clauses yields initial polynomials of high degree.
Alekhnovich and Razborov [2] proved lower bounds for a 3-CNF version of the pigeonhole
principle, from which it follows that the standard CNF encoding requires proofs of exponential
size. However, as shown by Riis [27] the onto-FPHP formulas with m = n+ 1 pigeons are
easy for polynomial calculus. And while the encoding in [21] also captures the functionality
restriction in some sense, it has remained open whether the standard CNF encoding of
functional pigeonhole principle formulas translated to polynomials is hard (this question has
been highlighted, for instance, in Razborov’s open problems list [26]).

Another way of modifying the pigeonhole principle is to restrict the choices of pigeonholes
for each pigeon by defining the formulas over a bipartite graph H = (U

.
∪ V,E) with |U | = m

and |V | = n and requiring that each pigeon u ∈ U goes to one of its neighbouring holes
in N(u) ⊆ V . If the graph H has constant left degree, the corresponding graph pigeonhole
principle formula has constant width and a linear number of variables, which makes it possible
to apply [5, 16] to obtain exponential proof size lower bounds from linear width/degree
lower bounds. A careful reading of the proofs in [2] reveals that this paper establishes linear
polynomial calculus degree lower bounds (and hence exponential size lower bounds) for graph
PHP formulas, and in fact also graph Onto-PHP formulas, over constant-degree expanders H.
Razborov lists as one of the open problems in [23] whether this holds also for graph FPHP
formulas, i.e., with functionality clauses added, from which exponential lower bounds on
polynomial calculus proof size for the general FPHP formulas would immediately follow.

1.1 Our Results
We revisit the technique developed in [2] for proving polynomial calculus degree lower bounds,
restricting our attention to the special case when the polynomials are obtained by the
canonical translation of CNF formulas.

Instead of considering the standard bipartite clause-variable incidence graph G(F ) of a
CNF formula F (with clauses on the left, variables on the right, and edges encoding that a
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470 A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

variable occurs in a clause) we construct a new graph G′ by clustering several clauses and/or
variables into single vertices, reflecting the structure of the encoded combinatorial principle.
The edges in this new graph G′ are the ones induced by the original graph G(F ) in the
natural way, i.e., there is an edge from a left cluster to a right cluster in G′ if any clause in
the left cluster has an edge to any variable in the right cluster in G(F ). We remark that such
a clustering is already implicit in, for instance, the resolution lower bounds in [5] for Tseitin
formulas (which is essentially just a special form of unsatisfiable linear equations) and graph
PHP formulas, as well as in the graph PHP lower bound for polynomial calculus in [2].

We then show that if this clustering is done in the right way, the proofs in [2] still
go through and yield strong polynomial calculus degree lower bounds when G′ is a good
enough expander.1 It is clear that this cannot work in general – as already discussed above,
any inconsistent system of linear equations mod 2 is easy to refute in polynomial calculus
over F2, even though for a random instance of this problem the clauses encoding each linear
equation can be clustered to yield an excellent expander G′. Very informally (and somewhat
incorrectly) speaking, the clustering should be such that if a cluster of clauses F ′ on the left
is a neighbour of a variable cluster V on the right, then there should exist an assignment ρ
to V such that ρ satisfies all of F ′ and such that for the clauses outside of F ′ they are either
satisfied by ρ or left completely untouched by ρ. Also, it turns out to be helpful not to insist
that the clustering of variables on the right should be a partition, but that we should allow
the same variable to appear in several clusters if needed (as long as the number of clusters
for each variable is bounded).

This extension of the lower bound method in [2] makes it possible to present previously
obtained polynomial calculus degree lower bounds in [2, 12, 17] in a unified framework.
Moreover, it allows us to prove the following new results:
1. If a bipartite graph H = (U ∪̇ V,E) with |U | = m and |V | = n is a boundary expander

(a.k.a. unique-neighbour expander), then the graph FPHP formula over H requires proofs
of linear polynomial calculus degree, and hence exponential polynomial calculus size.

2. Since FPHP formulas can be turned into graph FPHP formulas by hitting them with
a restriction, and since restrictions can only decrease proof size, it follows that FPHP
formulas require proofs of exponential size in polynomial calculus.

This fills in the last missing pieces in our understanding of the different flavours of pigeonhole
principle formulas with n+ 1 pigeons and n holes for polynomial calculus. Namely, while
Onto-FPHP formulas are easy for polynomial calculus, both FPHP formulas and Onto-PHP
formulas are hard even when restricted to expander graphs.

1.2 Organization of This Paper

After reviewing the necessary preliminaries in Section 2, we present our extension of the
Alekhnovich–Razborov method in Section 3. In Section 4, we show how this method can
be used to rederive some previous polynomial calculus degree lower bounds as well as to
obtain new degree and size lower bounds for functional (graph) PHP formulas. We conclude
in Section 5 by discussing some possible directions for future research. We refer to the
full-length version [18] of this paper for the details omitted in this extended abstract.

1 For a certain twist of the definition of expander that we do not describe in full detail here in order to
keep the discussion at an informal, intuitive level. The formal description is given in Section 3.1.
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2 Preliminaries

Let us start by giving an overview of the relevant proof complexity background. This material
is standard and we refer to, for instance, the survey [19] for more details.

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation ¬x or x (a negative literal). We define x = x. We identify 0 with true and 1 with
false. We remark that this is the opposite of the standard convention in proof complexity,
but it is a more natural choice in the context of polynomial calculus, where “evaluating to
true” means “vanishing.” A clause C = a1 ∨ · · · ∨ ak is a disjunction of literals. A CNF
formula F = C1 ∧ · · · ∧Cm is a conjunction of clauses. The width W(C) of a clause C is the
number of literals |C| in it, and the width W(F ) of the formula F is the maximum width of
any clause in the formula. We think of clauses and CNF formulas as sets, so that order is
irrelevant and there are no repetitions. A k-CNF formula has all clauses of size at most k,
where k is assumed to be some fixed constant.

In polynomial calculus resolution the goal is to prove the unsatisfiability of a CNF formula
by reasoning with polynomials from a polynomial ring F[x, x, y, y, . . .] (where x and x are
viewed as distinct formal variables) over some fixed field F. The results in this paper hold
for all fields F regardless of characteristic. In what follows, a monomial m is a product of
variables and a term t is a monomial multiplied by an arbitrary non-zero field element.

I Definition 2.1 (Polynomial calculus resolution (PCR) [1, 9]). A polynomial calculus resolution
(PCR) refutation π : F `⊥ of a CNF formula F (also referred to as a PCR proof for F ) over
a field F is an ordered sequence of polynomials π = (P1, . . . , Pτ ), expanded out as linear
combinations of monomials, such that Pτ = 1 and each line Pi, 1 ≤ i ≤ τ , is either

a monomial
∏
x∈L+ x ·

∏
y∈L− y encoding a clause

∨
x∈L+ x ∨

∨
y∈L− y in F (a clause

axiom);
a Boolean axiom x2 − x or complementarity axiom x+ x− 1 for any variable x;
a polynomial obtained from one or two previous polynomials by linear combination
Q R
αQ+βR or multiplication Q

xQ for any α, β ∈ F and any variable x.
If we drop complementarity axioms and encode each negative literal x as (1− x), the proof
system is called polynomial calculus (PC).

The size S(π) of a PC/PCR refutation π = (P1, . . . , Pτ ) is the number of monomials
in π (counted with repetitions), 2 the degree Deg(π) is the maximal degree of any monomial
appearing in π, and the length L(π) is the number τ of polynomials in π. Taking the
minimum over all PCR refutations of a formula F , we define the size SPCR(F `⊥), degree
DegPCR(F `⊥), and length LPCR(F `⊥) of refuting F in PCR (and analogously for PC).

We write Vars(C) and Vars(m) to denote the set of all variables appearing in a clause C
or monomial (or term) m, respectively and extend this notation to CNF formulas and
polynomials by taking unions. We use the notation 〈P1, . . . , Pm〉 for the ideal generated
by the polynomials Pi, i ∈ [m]. That is, 〈P1, . . . , Pm〉 is the minimal subset of polynomials
containing all Pi that is closed under addition and multiplication by any polynomial. One
way of viewing a polynomial calculus (PC or PCR) refutation is as a calculation in the ideal
generated by the encodings of clauses in F and the Boolean and complementarity axioms. It
can be shown that such an ideal contains 1 if and only if F is unsatisfiable.

2 We remark that the natural definition of size is to count monomials with repetition, but all lower bound
techniques known actually establish slightly stronger lower bounds on the number of distinct monomials.
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472 A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

As mentioned above, we have DegPCR(F `⊥) = DegPC(F `⊥) for any CNF formula F .
This claim can essentially be verified by taking any PCR refutation of F and replacing all
occurrences of y by (1− y) to obtain a valid PC refutation in the same degree. Hence, we
can drop the subscript from the notation for the degree measure. We have the following
relation between refutation size and refutation degree (which was originally proven for PC
but the proof of which also works for PCR).

I Theorem 2.2 ([16]). Let F be an unsatisfiable CNF formula of width W(F ) over n variables.
Then

SPCR(F `⊥) = exp
(

Ω
(

(Deg(F `⊥)−W(F ))2

n

))
.

Thus, for k-CNF formulas it is sufficient to prove strong enough lower bounds on the PC
degree of refutations to establish strong lower bounds on PCR proof size.

Furthermore, it will be convenient for us to simplify the definition of PC so that axioms
x2 − x are always applied implicitly whenever possible. We do this by defining the result of
the multiplication operation to be the multilinearized version of the product. This can only
decrease the degree (and size) of the refutation, and is in fact how polynomial calculus is
defined in [2]. Hence, from now on whenever we refer to polynomials and monomials we mean
multilinear polynomials and multilinear monomials, respectively, and polynomial calculus is
defined over the (multilinear) polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉.

We will also need to use restrictions. A restriction ρ on F is a partial assignment to the
variables of F . We use Dom(ρ) to denote the set of variables assigned by ρ. In a restricted
formula F�ρ all clauses satisfied by ρ are removed and all other clauses have falsified literals
removed. For a PC refutation π restricted by ρ we have that if ρ satisfies a literal in a
monomial, then that monomial is set to 0 and vanishes, and all falsified literals in a monomial
get replaced by 1 and disappear. It is not hard to see that if π is a PC (or PCR) refutation
of F , then π�ρ is a PC (or PCR) refutation of F�ρ, and this restricted refutation has at most
the same size, degree, and length as the original refutation.

3 A Generalization of the Alekhnovich–Razborov Method for CNFs

Many lower bounds in proof complexity are proved by arguing in terms of expansion. One
common approach is to associate a bipartite graph G(F ) with the CNF formula F with
clauses on one side and variables on the other and with edges encoding that a variable occurs
in a clause (the so-called clause-variable incidence graph mentioned in the introduction). The
method we present below, which is an extension of the techniques developed by Alekhnovich
and Razborov [2] (but restricted to the special case of CNF formulas), is a variation on
this theme. As already discussed, however, we will need a slightly more general graph
construction where clauses and variables can be grouped into clusters. We begin by describing
this construction.

3.1 A Generalized Clause-Variable Incidence Graph
The key to our construction of generalized clause-variable incidence graphs is to keep track
of how clauses in a CNF formula are affected by partial assignments.

I Definition 3.1 (Respectful assignments and variable sets). We say that a partial assignment
ρ respects a CNF formula E, or that ρ is E-respectful, if for every clause C in E either
Vars(C) ∩ Dom(ρ) = ∅ or ρ satisfies C. A set of variables V respects a CNF formula E if
there exists an assignment ρ with Dom(ρ) = V that respects E.
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I Definition 3.2 (Respectful satisfaction). Let F and E be CNF formulas and let V be a
set of variables. We say that F is E-respectfully satisfiable by V if there exists a partial
assignment ρ with Dom(ρ) = V that satisfies F and respects E. Such an assignment ρ is
said to E-respectfully satisfy F .

Using a different terminology, Definition 3.1 says that ρ is an autarky for E, meaning that
ρ satisfies all clauses in E which it touches, i.e., that E�ρ⊆ E after we remove all satisfied
clauses in E�ρ. Definition 3.2 ensures that the autarky ρ satisfies the formula F .

Recall that we identify a CNF formula
∧m
i=1 Ci with the set of clauses {Ci | i ∈ [m]}. In

the rest of this section we will switch freely between these two perspectives. We also change
to the notation F for the input CNF formula, to free up other letters that will be needed in
notation introduced below.

To build a bipartite graph representing the CNF formula F , we will group the formula
into subformulas (i.e., subsets of clauses). In what follows, we write U to denote the part of
F that will form the left vertices of the constructed bipartite graph, while E denotes the
part of F which will not be represented in the graph but will be used to enforce respectful
satisfaction. In more detail, U is a family of subformulas F of F where each subformula
is one vertex on the left-hand side of the graph. We also consider the variables of F to be
divided into a family V of subsets of variables V . In our definition, U and V do not need to be
partitions of clauses and variables in F , respectively. This is not too relevant for U because
we will always define it as a partition, but it turns out to be useful in our applications to
have sets in V share variables. The next definition describes the bipartite graph that we
build and distinguishes between two types of neighbour relations in this graph.

I Definition 3.3 (Bipartite (U ,V)E-graph). Let E be a CNF formula, U be a set of CNF
formulas, and V be a family of sets of variables V that respect E. Then the (bipartite)
(U ,V)E-graph is a bipartite graph with left vertices F ∈ U , right vertices V ∈ V, and edges
between F and V if Vars(F ) ∩ V 6= ∅. For every edge (F, V ) in the graph we say that F and
V are E-respectful neighbours if F is E-respectfully satisfiable by V . Otherwise, they are
E-disrespectful neighbours.

We will often write (U ,V)E as a shorthand for the graph defined by U , V, and E as
above. We will also use standard graph notation and write N(F ) to denote the set of all
neighbours V ∈ V of a vertex/CNF formula F ∈ U . It is important to note that the fact
that F and V are E-respectful neighbours can be witnessed by an assignment that falsfies
other subformulas F ′ ∈ U \ {F}.

I Definition 3.4 (Respectful boundary). For a (U ,V)E-graph and a subset U ′ ⊆ U , the
E-respectful boundary ∂E(U ′) of U ′ is the family of variable sets V ∈ V such that each
V ∈ ∂E(U ′) is an E-respectful neighbour of some clause set F ∈ U ′ but is not a neighbour
(respectful or disrespectful) of any other clause set F ′ ∈ U ′ \ {F}.

It will sometimes be convenient to interpret subsets U ′ ⊆ U as formulas
∧
F∈U ′

∧
C∈F C,

and we will switch back and forth between these two interpretations as seems most suitable.
We will show that a formula F =

∧
F∈U

∧
C∈F C ∧E = U ∧E is hard for polynomial calculus

with respect to degree if the (U ,V)E-graph has a certain expansion property as defined next.

I Definition 3.5 (Respectful boundary expander). A (U ,V)E-graph is said to be an (s, δ, ξ, E)-
respectful boundary expander , or just an (s, δ, ξ, E)-expander for brevity, if for every set
U ′ ⊆ U , |U ′| ≤ s, it holds that |∂E(U ′)| ≥ δ|U ′| − ξ.

Before we state our main theorem we need one more technical definition, which is used
to ensure that there do not exist variables that appear in too many variable sets in V.
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474 A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

I Definition 3.6. The overlap of a variable x with respect to a family of variable sets V
is ol(x,V) = |{V ∈ V : x ∈ V }| and the overlap of V is ol(V) = maxx{ol(x,V)}, i.e., the
maximum number of sets V ∈ V containing any particular variable x.

Given the above definitions, we can state the main technical result in this paper as follows.

I Theorem 3.7. Let F =
∧
F∈U

∧
C∈F C ∧E = U ∧E be a CNF formula for which (U ,V)E

is an (s, δ, ξ, E)-expander with overlap ol(V) = d, and suppose furthermore that for all
U ′ ⊆ U , |U ′| ≤ s, it holds that U ′ ∧ E is satisfiable. Then any polynomial calculus refutation
of F requires degree strictly greater than (δs− 2ξ)/(2d).

In order to prove this theorem, it will be convenient to review some algebra. We do so
next.

3.2 Some Algebra Basics
We will need to compute with polynomials modulo ideals, and in order to do so we need to
have an ordering of monomials (which, as we recall, will always be multilinear).

I Definition 3.8 (Admissible ordering). We say that a total ordering ≺ on the set of all
monomials over some fixed set of variables is admissible if the following conditions hold:

If Deg(m1) < Deg(m2), then m1 ≺ m2.
For any m1,m2, and m such that m1 ≺ m2 and Vars(m) ∩

(
Vars(m1) ∪Vars(m2)

)
= ∅,

it holds that mm1 ≺ mm2.
Two terms t1 = α1m1 and t2 = α2m2 are ordered in the same way as their underlying
monomials m1 and m2.

One example of an admissible ordering is to first order monomials with respect to their
degree and then lexicographically. We write m1 4 m2 to denote that m1 ≺ m2 or m1 = m2.

I Definition 3.9 (Leading, reducible, and irreducible terms). For a polynomial P =
∑
i ti, the

leading term LT(P ) of P is the largest term ti according to ≺. Let I be an ideal over the
(multilinear) polynomial ring F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. We say that a term t

is reducible modulo I if there exists a polynomial Q ∈ I such that t = LT (Q) and that t is
irreducible modulo I otherwise.

The following fact is not hard to verify.

I Fact 3.10. Let I be an ideal over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. Then any
multilinear polynomial P ∈ F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉 can be written uniquely
as a sum Q+R, where Q ∈ I and R is a linear combination of irreducible terms modulo I.

This is what allows us to reduce polynomials modulo an ideal in a well-defined manner.

I Definition 3.11 (Reduction operator). Let I be an ideal and let P be any multilinear
polynomial over F[x, y, z, . . .]/〈x2 − x, y2 − y, z2 − z, . . .〉. The reduction operator RI is the
operator that when applied to P returns the sum of irreducible terms RI(P ) = R such that
P −R ∈ I.

We conclude our brief algebra review by stating two observations that are more or less
immediate, but are helpful enough for us to want to highlight them explicitly.

I Observation 3.12. For any two ideals I1, I2 such that I1 ⊆ I2 and any two polynomials
P , P ′ it holds that RI2(P ·RI1(P ′)) = RI2(PP ′).

I Observation 3.13. Suppose that the term t is irreducible modulo the ideal I and let ρ be
any partial assignment of variables in Vars(t) to values in F such that t�ρ 6= 0. Then t�ρ is
also irreducible modulo I.
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3.3 Proof Strategy
Let us now state the lemma on which we base the proof of Theorem 3.7.

I Lemma 3.14 ([21]). Let F be any CNF formula and D ∈ N+ be a positive integer.
Suppose that there exists a linear operator R on multilinear polynomials over Vars(F) with
the following properties:
1. R(1) 6= 0.
2. R(C) = 0 for (the translations to polynomials of) all axioms C ∈ F .
3. For every term t with Deg(t) < D and every variable x it holds that R(xt) = R(xR(t)).
Then any polynomial calculus refutation of F (and hence any PCR refutation of F) requires
degree strictly greater than D.

To prove Theorem 3.7, we construct a linear operator RG that satisfies the conditions of
Lemma 3.14 when the (U ,V)E-graph G is an expander. First, let us describe how we make
the connection between polynomials and the given (U ,V)E-graph. We remark that in the
rest of this section we will identify a clause C with its polynomial translation and will refer
to C as a (polynomial) axiom.

I Definition 3.15 (Term and polynomial neighbourhood). The neighbourhood N(t) of a term t

with respect to (U ,V)E is N(t) = {V ∈ V | Vars(t) ∩ V 6= ∅}, i.e., the family of all variable
sets containing variables mentioned by t. The neighbourhood of a polynomial P =

∑
i ti is

N(P ) =
⋃
iN(ti), i.e., the union of the neighbourhoods of all terms in P .

To every polynomial we can now assign a family of variable sets V ′. But we are interested
in the axioms that are needed in order to produce that polynomial. That is, given a family
of variable sets V ′, we would like to identify the largest set of axioms U ′ that could possibly
have been used in a derivation that yielded polynomials P with Vars(P ) ⊆

⋃
V ∈V′ V . This

is the intuition behind the next definition.3

I Definition 3.16 (Polynomial support). For a given (U ,V)E-graph and a family of variable
sets V ′ ⊆ V, we say that a subset U ′ ⊆ U is (s,V ′)-contained if |U ′| ≤ s and ∂E(U ′) ⊆ V ′.

We define the polynomial s-support Sups(V ′) of V ′ with respect to (U ,V)E , or just s-support
of V ′ for brevity, to be the union of all (s,V ′)-contained subsets U ′ ⊆ U , and the s-support
Sups(t) of a term t is defined to be the s-support of N(t).

We will usually just speak about “support” below without further qualifying this term,
since the (U ,V)E-graph G will be clear from context. The next observation follows immediately
from Definition 3.16.

I Observation 3.17. Support is monotone in the sense that if t ⊆ t′ are two terms, then it
holds that Sups(t) ⊆ Sups(t′).

Once we have identified the axioms that are potentially involved in deriving P , we define
the linear operator RG as the reduction modulo the ideal generated by these axioms as in
Definition 3.11. We will show that under the assumptions in Theorem 3.7 it holds that this
operator satisfies the conditions in Lemma 3.14. Let us first introduce some notation for the
set of all polynomials that can be generated from some axioms U ′ ⊆ U .

3 We remark that Definition 3.16 is a slight modification of the original definition of support in [2] that
was proposed by Yuval Filmus [11].
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I Definition 3.18. For a (U ,V)E-graph and U ′ ⊆ U , we write IE(U ′) to denote the ideal
generated by the polynomial axioms in U ′ ∧ E. 4

I Definition 3.19 ((U ,V)E-graph reduction). For a (U ,V)E-graph G, the (U ,V)E-graph
reduction RG on a term t is defined as RG(t) = RIE(Sups(t))(t). For a polynomial P , we define
RG(P ) to be the linear extension of the operator RG defined on terms.

3.4 Some Properties of Polynomial Support
A crucial technical property that we will need is that if a (U ,V)E-graph is a good expander in
the sense of Definition 3.5, then for small enough sets V ′ all (s,V ′)-contained subsets U ′ ⊆ U
as per Definition 3.16 are of at most half of the allowed size.

I Lemma 3.20. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤
δs/2−ξ. Then it holds that every (s,V ′)-contained subset U ′ ⊆ U is in fact (s/2,V ′)-contained.

Proof. As |U ′| ≤ s we can appeal to the expansion property of the (U ,V)E-graph to derive
the inequality |∂E(U ′)| ≥ δ|U ′| − ξ. In the other direction, we can obtain an upper bound on
the size of ∂E(U ′) by noting that for any (s,V ′)-contained set U ′ it holds that |∂E(U ′)| ≤ |V ′|.
If we combine these bounds and use the assumption that |V ′| ≤ δs/2− ξ, we can conclude
that |U ′| ≤ s/2, which proves that U ′ is (s/2,V ′)-contained. J

Even more importantly, Lemma 3.20 now allows us to conclude that for a small enough
subset V ′ on the right-hand side of (U ,V)E it holds that in fact the whole polynomial
s-support Sups(V ′) of V ′ on the left-hand side is (s/2,V ′)-contained.

I Lemma 3.21. Let (U ,V)E be an (s, δ, ξ, E)-expander and let V ′ ⊆ V be such that |V ′| ≤
δs/2− ξ. Then the s-support Sups(V ′) of V ′ with respect to (U ,V)E is (s/2,V ′)-contained.

Proof. We show that for any pair of (s,V ′)-contained sets U1,U2 ⊆ U their union U1 ∪ U2 is
also (s,V ′)-contained. First, by Lemma 3.20 we have |U1|, |U2| ≤ s/2 and hence |U1 ∪U2| ≤ s.
Second, it holds that ∂E(U1), ∂E(U2) ⊆ V ′, which implies that ∂E(U1 ∪ U2) ⊆ V ′, because
taking the union of two sets can only shrink the boundary. This establishes that U1 ∪ U2 is
(s,V ′)-contained.

By induction on the number of (s,V ′)-contained sets we can conclude that the support
Sups(V ′) is (s,V ′)-contained as well, after which one final application of Lemma 3.20 shows
that this set is (s/2,V ′)-contained. This completes the proof. J

What the next lemma says is, roughly, that if we reduce a term t modulo an ideal
generated by a not too large set of polynomials containing some polynomials outside of
the support of t, then we can remove all such polynomials from the generators of the ideal
without changing the irreducible component of t.

I Lemma 3.22. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is
such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then for any term t′ with N(t′) ⊆ N(Sups(t)) ∪N(t)
it holds that if t′ is reducible modulo IE(U ′), it is also reducible modulo IE(Sups(t)).

4 That is, IE(U ′) is the smallest set I of multilinear polynomials that contains all axioms in U ′ ∧ E and
that is closed under addition of P1, P2 ∈ I and by multiplication of P ∈ I by any multilinear polynomial
over Vars(U ∧ E) (where as before the resulting product is implicitly multilinearized).
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Proof. If U ′ is (s,N(t))-contained, then by Definition 3.16 it holds that U ′ ⊆ Sups(t) and
there is nothing to prove. Hence, assume U ′ is not (s,N(t))-contained. We claim that
this implies that we can find a subformula F ∈ U ′ \ Sups(t) with a neighbouring subset
of variables V ∈

(
∂E(U ′) ∩N(F )

)
\N(t′) in the respectful boundary of U ′ but not in the

neighbourhood of t′. To argue this, note that since |U ′| ≤ s it follows from Definition 3.16
that the reason U ′ is not (s,N(t))-contained is that there exist some F ∈ U ′ and some
set of variables V ∈ N(F ) such that V ∈ ∂E(U ′) \ N(t). Moreover, the assumption
U ′ ⊇ Sups(t) implies that such an F cannot be in Sups(t). Otherwise there would exist an
(s,N(t))-contained set U∗ such that F ∈ U∗ ⊆ Sups(t) ⊆ U ′, from which it would follow
that V ∈ ∂E(U ′) ∩N(U∗) ⊆ ∂E(U∗) ⊆ N(t), contradicting V /∈ N(t). We have shown that
F /∈ Sups(t) ⊆ U ′ and V ∈ ∂E(U ′) ∩N(F ), and by combining these two facts we can also
deduce that V /∈ N(Sups(t)), since otherwise V could not be contained in the boundary
of U ′. In particular, this means that V /∈ N(t′) ⊆ N(Sups(t)) ∪N(t), which establishes the
claim made above.

Fixing F and V such that F ∈ U ′ \ Sups(t) and V ∈
(
∂E(U ′)∩N(F )

)
\N(t′), our second

claim is that if F is removed from the generators of the ideal, it still holds that if t′ is
reducible modulo IE(U ′), then this term is also reducible modulo IE(U ′ \ {F}). Given
this second claim we are done, since we can then argue by induction over the elements in
U ′ \ Sups(t) and remove them one by one to arrive at the conclusion that every term t′

with N(t′) ⊆ N(Sups(t)) ∪N(t) that is reducible modulo IE(U ′) is also reducible modulo
IE(Sups(t)), which is precisely what the lemma says.

We proceed to establish this second claim. The assumption that t′ is reducible modulo
IE(U ′) means that there exists a polynomial P ∈ IE(U ′) such that t′ = LT (P ). Since P is
in the ideal IE(U ′) it can be written as a polynomial combination P =

∑
i PiCi of axioms

Ci ∈ U ′ ∧ E for some polynomials Pi. If we could hit P with a restriction that satisfies (and
hence removes) F while leaving t′ and (U ′ \ {F}) ∧ E untouched, this would show that t′
is the leading term of some polynomial combination of axioms in (U ′ \ {F}) ∧ E. This is
almost what we are going to do.

As our restriction ρ we choose an arbitrary assignment with domain Dom(ρ) = V

that E-respectfully satisfies F . Note that at least one such assignment exists since V ∈
∂E(U ′) ∩N(F ) is an E-respectful neighbour of F by Definition 3.4. By the choice of ρ it
holds that F is satisfied, i.e., that all axioms in F are set to 0. Furthermore, none of the
axioms in U ′ \ {F} are affected by ρ since V is in the boundary of U ′. 5 As for axioms in
E it is not necessarily true that ρ will leave all of them untouched, but by assumption ρ
respects E and so any axiom in E is either satisfied (and zeroed out) by ρ or is left intact. It
follows that P�ρ can be be written as a polynomial combination P�ρ=

∑
i

(
Pi�ρ

)
Ci, where

Ci ∈ (U ′ \ {F}) ∧ E, and hence P�ρ∈ IE(U ′ \ {F}).
To see that t′ is preserved as the leading term of P�ρ, note that ρ does not assign any

variables in t′ since V /∈ N(t′). Hence, t′ = LT(P�ρ), as ρ can only make the other terms
smaller with respect to ≺. This shows that there is a polynomial P ′ = P�ρ∈ IE(U ′ \ {F})
with LT (P ′) = t′, and hence t′ is reducible modulo IE(U ′ \ {F}). The lemma follows. J

We need to deal with one more detail before we can prove the key technical lemma that
it is possible to reduce modulo suitably chosen larger ideals without changing the reduction
operator. We refer to the full-length version [18] for the proof of the next lemma.

5 Recalling the remark after Definition 3.3, we note that we can ignore here if ρ happens to falsify axioms
in U \ U ′.
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I Lemma 3.23. Suppose that U∗ ⊆ U for some (U ,V)E-graph and let t be any term. Then
it holds that N

(
RIE(U∗)(t)

)
⊆ N(U∗) ∪N(t).

Now we can state the formal claim that enlarging the ideal does not change the reduction
operator if the enlargement is done in the right way.

I Lemma 3.24. Let G be a (U ,V)E-graph and let t be any term. Suppose that U ′ ⊆ U is
such that U ′ ⊇ Sups(t) and |U ′| ≤ s. Then it holds that RIE(U ′)(t) = RIE(Sups(t))(t).

Proof. We prove RIE(U ′)(t) = RIE(Sups(t))(t) by applying the contrapositive of Lemma 3.22.
Recall that this lemma states that any term t′ with N(t′) ⊆ N(Sups(t)) ∪ N(t) that is
reducible modulo IE(U ′) is also reducible modulo IE(Sups(t)). Since every term t′ in
RIE(Sups(t))(t) is irreducible modulo IE(Sups(t)) and since by applying Lemma 3.23 with
U∗ = Sups(t) we have that N(t′) ⊆ N(Sups(t)) ∪N(t), it follows that t′ is also irreducible
modulo IE(U ′). This shows that RIE(U ′)(t) = RIE(Sups(t))(t) as claimed, and the lemma
follows. J

3.5 Putting the Pieces in the Proof Together
We just need two more lemmas to establish Theorem 3.7. To keep the length of this extended
abstract reasonable, we just state these lemmas and hint at how to prove them.

I Lemma 3.25. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for
any term t with Deg(t) ≤ (δs− 2ξ)/(2d) it holds that |Sups(t)| ≤ s/2.

This is a fairly straightforward application of Lemma 3.21.

I Lemma 3.26. Let (U ,V)E be an (s, δ, ξ, E)-expander with overlap ol(V) = d. Then for
any term t with Deg(t) < b(δs− 2ξ)/(2d)c, any term t′ occurring in RIE(Sups(t))(t), and any
variable x, it holds that RIE(Sups(xt′))(xt′) = RIE(Sups(xt))(xt′).

This lemma follows from Observation 3.17, Lemma 3.23, Lemma 3.24, and Lemma 3.25.

Proof of Theorem 3.7. Recall that the assumptions of the theorem are that we have a
(U ,V)E-graph for a CNF formula F =

∧
F∈U F ∧ E such that (U ,V)E is an (s, δ, ξ, E)-

expander with overlap ol(V) = d and that furthermore for all U ′ ⊆ U , |U ′| ≤ s, it holds that∧
F∈U ′ F ∧E is satisfiable. We want to prove that no polynomial calculus derivation from∧
F∈U F ∧ E = U ∧ E of degree at most (δs− 2ξ)/(2d) can reach contradiction.
We can focus on a (U ,V)E-graph where the degree of axioms in U ∧ E is at most

(δs− 2ξ)/(2d), as it is not hard to show that axioms of higher degree can safely be ignored.
We want to show that the operator RG from Definition 3.19 satisfies the conditions of
Lemma 3.14, from which Theorem 3.7 immediately follows. We can note right away that the
operator RG is linear by construction.

To prove that RG(1) = RIE(Sups(1))(1) 6= 0, we start by observing that the size of the
s-support of 1 is upper-bounded by s/2 according to Lemma 3.25. Using the assumption
that for every subset U ′ of U , |U ′| ≤ s, the formula U ′ ∧ E is satisfiable, it follows that 1 is
not in the ideal IE(Sups(1)) and hence RIE(Sups(1))(1) 6= 0.

We next show that RG(C) = 0 for any axiom clause C ∈ U ∧ E (where we recall that
we identify a clause C with its translation into a linear combination of monomials). By the
assumption above it holds that the degree of C is bounded by (δs− 2ξ)/(2d), from which it
follows by Lemma 3.25 that the size of the s-support of every term in C is bounded by s/2.
Since C is the polynomial encoding of a clause, the leading term LT(C) contains all the
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variables appearing in C. 6 Hence, the s-support Sups(LT (C)) of the leading term contains
the s-support of every other term in C by Observation 3.17 and we can use Lemma 3.24
to conclude that RG(C) = RIE(Sups(LT(C)))(C). If C ∈ E, this means we are done because
IE(Sups(LT (C))) contains all of E, implying that RG(C) = 0.

For C ∈ U we cannot immediately argue that C reduces to 0, since (in contrast to [2])
it is not immediately clear that Sups(LT(C)) contains C. The problem here is that we
might worry that C is part of some subformula F ∈ U for which the boundary ∂E(F ) is not
contained in N(LT (C)) = Vars(C), and hence there is no obvious reason why C should be
a member of any (s,N(LT (C)))-contained subset of U . However, in view of Lemma 3.24
(applied, strictly speaking, once for every term in C) we can choose some F ∈ U such that
C ∈ F and add it to the s-support Sups(LT (C)) to obtain a set U ′ = Sups(LT (C))∪ {F} of
size |U ′| ≤ s/2 + 1 ≤ s such that RIE(Sups(LT(C)))(C) = RIE(U ′)(C). Since IE(U ′) contains
C as a generator we conclude that RG(C) = RIE(U ′)(C) = 0 also for C ∈ U .

It remains to prove the last property in Lemma 3.14 stating that RG(xt) = RG(xRG(t))
for any term t such that Deg(t) < b(δs− 2ξ)/(2d)c. We can see that this holds by studying
the following sequence of equalities:

RG(xRG(t)) =
∑

t′∈RG(t)

RG(xt′)
[
by linearity

]
=

∑
t′∈RG(t)

RIE(Sups(xt′))(xt′)
[
by definition of RG

]
=

∑
t′∈RG(t)

RIE(Sups(xt))(xt′)
[
by Lemma 3.26

]
= RIE(Sups(xt))(xRG(t))

[
by linearity

]
= RIE(Sups(xt))(xRIE(Sups(t))(t))

[
by definition of RG

]
= RIE(Sups(xt))(xt)

[
by Observation 3.12

]
= RG(xt)

[
by definition of RG

]
Thus, RG satisfies all the properties of Lemma 3.14, from which the theorem follows. J

We conclude the section by stating the following version of Theorem 3.7 for the most
commonly occuring case with standard expansion without any slack.

I Corollary 3.27. Suppose that (U ,V)E is an (s, δ, 0, E)-expander with overlap ol(V) = d

such that Vars(U ∧ E) =
⋃
V ∈V V . Then any polynomial calculus refutation of the formula∧

F∈U F ∧ E requires degree strictly greater than δs/(2d).

Proof sketch. It is not hard to show that if a (U ,V)E-graph is an (s, δ, 0, E)-expander such
that Vars(U ∧ E) =

⋃
V ∈V V , then for any U ′ ⊆ U , |U ′| ≤ s, it holds that the formula U ′ ∧E

is satisfiable. Now the corollary follows immediately from Theorem 3.7. J

4 Applications

In this section, we demonstrate how to use the machinery developed in Section 3 to establish
degree lower bounds for polynomial calculus. As a warm-up, let us consider the bound

6 We remark that this is the only place in the proof where we are using that C is (the encoding of) a
clause.
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from [2] for CNF formulas F whose clause-variable incidence graph G(F) are good enough
expanders in the following sense.

I Definition 4.1 (Bipartite boundary expander). A bipartite graph G = (U ∪̇ V,E) is a
bipartite (s, δ)-boundary expander if for every set of vertices U ′ ⊆ U, |U ′| ≤ s, it holds that
|∂(U ′)| ≥ δ|U ′|, where the boundary ∂(U ′) =

{
v ∈ V : |N(v) ∩ U ′| = 1

}
consists of all

vertices on the right-hand side V that have a unique neighbour in U ′ on the left-hand side.

We can simply identify the (U ,V)E-graph with the standard clause-variable incidence
graph G(F) (setting E = ∅) to recover the degree lower bound in [2] as stated next.

I Theorem 4.2 ([2]). For any CNF formula F and any constant δ > 0 it holds that if the
clause-variable incidence graph G(F) is an (s, δ)-boundary expander, then the polynomial
calculus degree required to refute F in polynomial calculus is Deg(F `⊥) > δs/2.

As a second application, which is more interesting in the sense that the (U ,V)E-graph is
nontrivial, we show how the degree lower bound for the ordering principle formulas in [12]
can be established using this framework. For an undirected (and in general non-bipartite)
graph G, the graph ordering principle formula GOP(G) says that there exists a totally
ordered set of |V (G)| elements where no element is minimal, since every element/vertex v
has a neighbour u ∈ N(v) which is smaller according to the ordering. Formally, the CNF
formula GOP(G) is defined over variables xu,v, u, v ∈ V (G), u 6= v, where the intended
meaning of the variables is that xu,v is true if u < v according to the ordering, and consists
of the following axiom clauses:

xu,v ∨ xv,w ∨ xu,w u, v, w ∈ V (G), u 6= v 6= w 6= u (transitivity) (4.1a)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (anti-symmetry) (4.1b)
xu,v ∨ xv,u u, v ∈ V (G), u 6= v (totality) (4.1c)∨
u∈N(v)

xu,v v ∈ V (G) (non-minimality) (4.1d)

We remark that the graph ordering principle on the complete graph Kn on n vertices
is the (linear) ordering principle formula LOPn (also known as a least number principle
formula, or graph tautology in the literature), for which the non-minimality axioms (4.1d)
have width linear in n. By instead considering graph ordering formulas for graphs G of
bounded degree, one can bring the initial width of the formulas down so that the question of
degree lower bounds becomes meaningful.

To prove degree lower bounds for GOP(G) we need the following extension of boundary
expansion to the case of non-bipartite graphs.

I Definition 4.3 (Non-bipartite boundary expander). A graph G = (V,E) is an (s, δ)-boundary
expander if for every subset of vertices V ′ ⊆ V (G), |V ′| ≤ s, it holds that |∂(V ′)| ≥ δ|V ′|,
where the boundary ∂(V ′) =

{
v ∈ V (G) \ V ′ :

∣∣N(v) ∩ V ′
∣∣ = 1

}
is the set of all vertices in

V (G) \ V ′ that have a unique neighbour in V ′.

We want to point out that the definition of expansion used by Galesi and Lauria in [12]
is slightly weaker in that they do not require boundary expansion but just vertex expansion
(measured as |N(V ′) \ V ′| for vertex sets V ′ with |V ′| ≤ s), and hence their result is slightly
stronger than what we state below in Theorem 4.4. With some modifications of the definition
of E-respectful boundary in (U ,V)E-graphs it would be possible to match the lower bound
in [12], but it would also make the definitions more cumbersome and so we choose not to do
so here.
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I Theorem 4.4 ([12]). For a non-bipartite graph G that is an (s, δ)-boundary expander it
holds that Deg(GOP(G) `⊥) > δs/4.

Proof sketch. To form the (U ,V)E-graph for GOP(G), we let E consist of all transitivity
axioms (4.1a), anti-symmetry axioms (4.1b), and totality axioms (4.1c). The non-minimality
axioms (4.1d) viewed as singleton sets form the family U , while V is the family of variable
sets Vv for each vertex v containing all variables that mention v, i.e., Vv = {xu,w | u,w ∈
V (G), u = v or w = v}. We leave it to the reader to verify that (U ,V)E is an (s, δ, 0, E)-
expander and that the overlap ol(V) is 2, which implies the lower bound. J

Let us now turn our attention back to bipartite graphs and consider different flavours
of pigeonhole principle formulas. We will focus on formulas over bounded-degree bipartite
graphs, where we will convert standard bipartite boundary expansion as in Definition 4.1
into respectful boundary expansion as in Definition 3.5. For a bipartite graph G = (U ∪̇V,E)
the axioms appearing in the different versions of the graph pigeonhole principle formulas are
as follows:∨

v∈N(u)

xu,v u ∈ U (pigeon axioms) (4.2a)

xu,v ∨ xu′,v v ∈ V, u, u′ ∈ N(v), u 6= u′, (hole axioms) (4.2b)
xu,v ∨ xu,v′ u ∈ U, v, v′ ∈ N(u), v 6= v′ (functionality axioms) (4.2c)∨
u∈N(v)

xu,v v ∈ V (onto axioms) (4.2d)

The “plain vanilla” graph pigeonhole principle formula PHPG is the CNF formula over vari-
ables {xu,v | (u, v) ∈ E} consisting of clauses (4.2a) and (4.2b); the graph functional pigeon-
hole principle formula FPHPG contains the clauses of PHPG and in addition clauses (4.2c);
the graph onto pigeonhole principle formula Onto-PHPG contains PHPG plus clauses (4.2d);
and the graph onto functional pigeonhole principle formula Onto-FPHPG consists of all the
clauses (4.2a)–(4.2d).

We obtain the standard versions of the PHP formulas by considering graph formulas as
above over the complete bipartite graph Kn+1,n. In the opposite direction, for any bipartite
graph G with n+ 1 vertices on the left and n vertices on the right we can hit any version of
the pigeonhole principle formula over Kn+1,n with the restriction ρG setting xu,v to false for
all (u, v) /∈ E(G) to recover the corresponding graph pigeonhole principle formula over G.
When doing so, we will use the observation from Section 2 that restricting a formula can
only decrease the size and degree required to refute it.

As mentioned in Section 1, it was established already in [2] that good bipartite boundary
expanders G yield formulas PHPG that require large polynomial calculus degree to refute.
We can reprove this result in our language – and, in fact, observe that the lower bound in [2]
works also for the onto version Onto-PHPG – by constructing an appropriate (U ,V)E-graph.
In addition, we can generalize the result in [2] slightly by allowing some additive slack ξ > 0
in the expansion in Theorem 3.7. This works as long as we have the guarantee that no too
small subformulas are unsatisfiable.

I Theorem 4.5. Suppose that G = (U ∪̇V,E) is a bipartite graph with |U | = n and |V | = n−1
and that δ > 0 is a constant such that

for every set U ′ ⊆ U of size |U ′| ≤ s there is a matching of U ′ into V , and
for every set U ′ ⊆ U of size |U ′| ≤ s it holds that |∂(U ′)| ≥ δ|U ′| − ξ.

Then Deg(Onto-PHPG `⊥) > δs/2− ξ.
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Proof sketch. The (U ,V)E-graph for PHPG is formed by taking U to be the set of pigeon
axioms (4.2a), E to consist of the hole axioms (4.2b) and onto axioms (4.2d), and V to be the
collection of variable sets Vv = {xu,v | u ∈ N(v)} partitioned with respect to the holes v ∈ V .
It is straightforward to check that this (U ,V)E-graph is isomorphic to the graph G and that
all neighbours in (U ,V)E are E-respectful (for

∨
v∈N(u) xu,v ∈ U and Vv for some v ∈ N(u),

apply the partial assignment sending pigeon u to hole v and ruling out all other pigeons
in N(v) \ {u} for v). Moreover, using the existence of matchings for all sets of pigeons U ′
of size |U ′| ≤ s we can prove that every subformula U ′ ∧ E is satisfiable as long as |U ′| ≤ s.
Hence, we can apply Theorem 3.7 to derive the claimed bound. We refer to the upcoming
full-length version of [17] for the omitted details. J

Theorem 4.5 is the only place in this paper where we use non-zero slack for the expansion.
The reason that we need slack is so that we can establish lower bounds for another type
of formulas, namely the subset cardinality formulas studied in [17, 28, 30]. A brief (and
somewhat informal) description of these formulas is as follows. We start with a 4-regular
bipartite graph to which we add an extra edge between two non-connected vertices. We then
write down clauses stating that each degree-4 vertex on the left has at least 2 of its edges set
to true, while the single degree-5 vertex has a strict majority of 3 incident edges set to true.
On the right-hand side of the graph we encode the opposite, namely that all vertices with
degree 4 have at least 2 of its edges set to false, while the vertex with degree 5 has at least
3 edges set to false. A simple counting argument yields that the CNF formula consisting of
these clauses must be unsatisfiable. Formally, we have the following definition (which strictly
speaking is a slightly specialized case of the general construction, but again we refer to [17]
for the details).

I Definition 4.6 (Subset cardinality formulas [17, 30]). Suppose that G = (U ∪̇ V,E) is a
bipartite graph that is 4-regular except that one extra edge has been added between two
unconnected vertices on the left and right. Then the subset cardinality formula SC (G) over
G has variables xe, e ∈ E, and clauses:

xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any u ∈ U ,
xe1 ∨ xe2 ∨ xe3 for every triple e1, e2, e3 of edges incident to any v ∈ V .

To prove lower bounds on refutation degree for these formulas we use the standard notion
of vertex expansion on bipartite graphs, where all neighbours on the left are counted and not
just unique neighbours as in Definition 4.1.

I Definition 4.7 (Bipartite expander). A bipartite graph G = (U ∪̇ V,E) is a bipartite
(s, δ)-expander if for each vertex set U ′ ⊆ U, |U ′| ≤ s, it holds that |N(U ′)| ≥ δ|U ′|.

The existence of such expanders with appropriate parameters can again be established by
straightforward calculations (as in, for instance, [15]).

I Theorem 4.8 ([17]). Suppose that G = (U ∪̇ V,E) is a 4-regular bipartite
(
γn, 5

2 + δ
)
-

expander for |U | = |V | = n and some constants γ, δ > 0, and let G′ be obtained from G

by adding an arbitrary edge between two unconnected vertices in U and V . Then re-
futing the formula SC (G′) requires degree Deg(SC (G′) ` ⊥) = Ω(n), and hence size
SPCR(SC (G′) `⊥) = exp

(
Ω(n)

)
.

Proof sketch. The proof is by reducing to graph PHP formulas and applying Theorem 4.5
(which of course also holds with onto axioms removed). We fix some complete matching
in G, which is guaranteed to exist in regular bipartite graphs, and then set all edges in the
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matching as well as the extra added edge to true. Now the degree-5 vertex v∗ on the right
has only 3 neighbours and the constraint for v∗ requires all of these edges to be set to false.
Hence, we set these edges to false as well which makes v∗ and its clauses vanish from the
formula. The restriction leaves us with n vertices on the left which require that at least 1 of
the remaining 3 edges incident to them is true, while the n− 1 vertices on the right require
that at most 1 out of their incident edges is true. That is, we have restricted our subset
cardinality formula to obtain a graph PHP formula.

As the original graph is a (γn, 5
2 + δ)-expander, a simple calculation can convince us

that the new graph is a boundary expander where each set of vertices U ′ on the left with
size |U ′| ≤ γn has boundary expansion |∂(U ′)| ≥ 2δ|U ′| − 1. Note the additive slack of 1
compared to the usual expansion condition, which is caused by the removal of the degree-5
vertex v∗ from the right. Now we can appeal to Theorem 4.5 (and Theorem 2.2) to obtain
the lower bounds claimed in the theorem. J

Let us conclude this section by presenting our new lower bounds for the functional
pigeonhole principle formulas. As a first attempt, we could try to reason as in the proof
of Theorem 4.5 (but adding the axioms (4.2c) and removing axioms (4.2d)). The naive
idea would be to modify our (U ,V)E-graph slightly by substituting the functionality axioms
for the onto axioms in E while keeping U and V the same. This does not work, however –
although the sets Vv ∈ V are E-respectful, the only assignment that respects E is the one
that sets all variables xu,v ∈ Vv to false. Thus, it is not possible to satisfy any of the pigeon
axioms, meaning that there are no E-respectful neighbours in (U ,V)E . In order to obtain a
useful (U ,V)E-graph, we instead need to redefine V by enlarging the variable sets Vv, using
the fact that V is not required to be a partition. Doing so in the appropriate way yields the
following theorem.

I Theorem 4.9. Suppose that G = (U ∪̇V,E) is a bipartite (s, δ)-boundary expander with left
degree bounded by d. Then it holds that refuting FPHPG in polynomial calculus requires degree
strictly greater than δs/(2d). It follows that if G is a bipartite (γn, δ)-boundary expander
with constant left degree and γ, δ > 0, then any polynomial calculus (PC or PCR) refutation
of FPHPG requires size exp(Ω(n)).

Proof. We construct a (U ,V)E-graph from FPHPG as follows. We let the set of clauses E
consist of all hole axioms (4.2b) and functionality axioms (4.2c). We define the family U to
consist of the pigeon axioms (4.2a) interpreted as singleton CNF formulas. For the variables
we let V = {Vv | v ∈ V }, where for every hole v ∈ V the set Vv is defined by

Vv =
{
xu′,v′

∣∣u′ ∈ N(v) and v′ ∈ N(u′)
}
. (4.3)

That is, to build Vv we start with the hole v on the right, consider all pigeons u′ on the
left that can go into this hole, and finally include in Vv for all such u′ the variables xu′,v′
for all holes v′ incident to u′. We want to show that (U ,V)E as defined above satisfies the
conditions in Corollary 3.27.

Note first that every variable set Vv respects the clause set E since setting all variables
in Vv to false satisfies all clauses in E mentioning variables in Vv. It is easy to see from (4.3)
that when a hole v is a neighbour of a pigeon u, the variable set Vv is also a neighbour in
the (U ,V)E-graph of the corresponding pigeon axiom Fu =

∨
v∈N(u) xu,v. These are the only

neighbours of the pigeon axiom Fu, as each Vv contains only variables mentioning pigeons
in the neighbourhood of v. In other words, G and (U ,V)E share the same neighbourhood
structure.
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Moreover, we claim that every neighbour Vv of Fu is an E-respectful neighbour. To see
this, consider the assignment ρu,v that sets xu,v to true and the remaining variables in Vv to
false. Clearly, Fu is satisfied by ρu,v. All axioms in E not containing xu,v are either satisfied
by ρu,v or left untouched, since ρu,v assigns all other variables in its domain to false. Any
hole axiom xu,v ∨ xu′,v in E that does contain xu,v is satisfied by ρu,v since xu′,v ∈ Vv for
u′ ∈ N(v) by (4.3) and this variable is set to false by ρu,v. In the same way, any functionality
axiom xu,v ∨ xu,v′ containing xu,v is satisfied since the variable xu,v′ is in Vv by (4.3) and
is hence assigned to false. Thus, the assignment ρu,v E-respectfully satisfies Fu, and so Fu
and Vv are E-respectful neighbours as claimed.

Since our constructed (U ,V)E-graph is isomorphic to the original graph G and all
neighbour relations are respectful, the expansion parameters of G trivially carry over to
respectful expansion in (U ,V)E . This is just another way of saying that (U ,V)E is an
(s, δ, 0, E)-expander.

To finish the proof, note that the overlap of V is at most d. This is so since a variable xu,v
appears in a set Vv′ only when v′ ∈ N(u). Hence, for all variables xu,v it holds that they
appear in at most |N(u)| ≤ d sets in V. Now the conclusion that any polynomial calculus
refutation of FPHPG requires degree greater than δs/(2d) can be read off from Corollary 3.27.
In addition, the exponential lower bound on the size of a refutation of FPHPG when G is a
(γn, δ)-boundary expander G with constant left degree follows by plugging the degree lower
bound into Theorem 2.2. J

It is not hard to show (again we refer to [15] for the details) that there exist bipartite
graphs with left degree 3 which are (γn, δ)-boundary expanders for γ, δ > 0 and hence our
size lower bound for polynomial calculus refutations of FPHPG can be applied to them.
Moreover, if |U | = n+ 1 and |V | = n, then we can identify some bipartite graph G that is a
good expander and hit FPHPn+1

n = FPHPKn+1,n
with a restriction ρG setting xu,v to false

for all (u, v) /∈ E to obtain FPHPn+1
n �ρG

= FPHPG. Since restrictions can only decrease
refutation size, it follows that size lower bounds for FPHPG apply also to FPHPn+1

n , yielding
the second lower bound claimed in Section 1.1.

I Theorem 4.10. Any polynomial calculus or polynomial calculus resolution refutation
of (the standard CNF encoding of) the functional pigeonhole principle FPHPn+1

n requires
size exp(Ω(n)).

5 Concluding Remarks

In this work, we extend the techniques developed by Alekhnovich and Razborov [2] for
proving degree lower bounds on refutations of CNF formulas in polynomial calculus. Instead
of looking at the clause-variable incidence graph G(F ) of the formula F as in [2], we allow
clustering of clauses and variables and reason in terms of the incidence graph G′ defined
on these clusters. We show that the CNF formula F requires high degree to be refuted
in polynomial calculus whenever this clustering can be done in a way that “respects the
structure” of the formula and so that the resulting graph G′ has certain expansion properties.

This provides us with a unified framework within which we can reprove previously
established degree lower bounds in [2, 12, 17]. More importantly, this also allows us to obtain
a degree lower bound on the functional pigeonhole principle defined on expander graphs,
solving an open problem from [23]. It immediately follows from this that the (standard CNF
encodings of) the usual functional pigeonhole principle formulas require exponential proof
size in polynomial calculus resolution, resolving a question on Razborov’s problems list [26]
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which had (quite annoyingly) remained open. This means that we now have an essentially
complete understanding of how the different variants of pigeonhole principle formulas behave
with respect to polynomial calculus in the standard setting with n+ 1 pigeons and n holes.
Namely, while Onto-FPHP formulas are easy, both FPHP formulas and Onto-PHP formulas
are exponentially hard in n even when restricted to bounded-degree expanders.

A natural next step would be to see if this generalized framework can also be used to
attack other interesting formula families which are known to be hard for resolution but for
which there are currently no lower bounds in polynomial calculus. In particular, can our
framework or some modification of it prove a lower bound for refuting the formulas encoding
that a graph does not contain an independent set of size k, which were proven hard for
resolution in [4]? Or what about the formulas stating that a graph is k-colorable, for which
resolution lower bounds were established in [3]?

Returning to the pigeonhole principle, we now understand how different encodings behave
in polynomial calculus when we have n+ 1 pigeons and n holes. But what happens when we
increase the number of pigeons? For instance, do the formulas become easier if we have n2

pigeons and n holes? (This is the point where lower bound techniques based on degree break
down.) What about arbitrary many pigeons? In resolution these questions are fairly well
understood, as witnessed by the works of Raz [20] and Razborov [22, 24, 25], but as far as
we are aware they remain wide open for polynomial calculus.
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