
On the (Non) NP-Hardness of Computing Circuit
Complexity∗

Cody D. Murray and R. Ryan Williams

Computer Science Department, Stanford University
Stanford, CA, USA
cdmurray@stanford.edu, rrw@cs.stanford.edu

Abstract
The Minimum Circuit Size Problem (MCSP) is: given the truth table of a Boolean function f

and a size parameter k, is the circuit complexity of f at most k? This is the definitive problem
of circuit synthesis, and it has been studied since the 1950s. Unlike many problems of its kind,
MCSP is not known to be NP-hard, yet an efficient algorithm for this problem also seems very
unlikely: for example, MCSP ∈ P would imply there are no pseudorandom functions.

Although most NP-complete problems are complete under strong “local” reduction notions
such as poly-logarithmic time projections, we show that MCSP is provably not NP-hard under
O(n1/2−ε)-time projections, for every ε > 0. We prove that the NP-hardness of MCSP under
(logtime-uniform) AC0 reductions would imply extremely strong lower bounds: NP 6⊂ P/poly and
E 6⊂ i.o.-SIZE(2δn) for some δ > 0 (hence P = BPP also follows). We show that even the NP-
hardness of MCSP under general polynomial-time reductions would separate complexity classes:
EXP 6= NP ∩ P/poly, which implies EXP 6= ZPP. These results help explain why it has been so
difficult to prove that MCSP is NP-hard.

We also consider the nondeterministic generalization of MCSP: the Nondeterministic Mini-
mum Circuit Size Problem (NMCSP), where one wishes to compute the nondeterministic circuit
complexity of a given function. We prove that the Σ2P-hardness of NMCSP, even under arbitrary
polynomial-time reductions, would imply EXP 6⊂ P/poly.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases circuit lower bounds, minimum circuit size problem, NP-completeness,
projections, reductions

Digital Object Identifier 10.4230/LIPIcs.CCC.2015.365

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the canonical logic synthesis problem: we are
given 〈T, k〉 where T is a string of n = 2` bits (for some `), k is a positive integer (encoded
in binary or unary), and the goal is to determine if T is the truth table of a boolean function
with circuit complexity at most k. (For concreteness, let’s say our circuits are defined over
AND, OR, NOT gates of fan-in at most 2.) MCSP is in NP, because any circuit of size at
most k could be guessed nondeterministically in O(k log k) ≤ O(n) time, then verified on all
bits of the truth table T in poly(2`, k) ≤ poly(n) time.1

∗ Supported by NSF CCF-1212372. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

1 Recall that every Boolean function f : {0, 1}` → {0, 1} has a circuit of size at most k ≤ ` · 2`. Hence
every instance 〈T, k〉 with k > 2n log n is automatically a yes-instance of MCSP.

© Cody D. Murray and R. Ryan Williams;
licensed under Creative Commons License CC-BY

30th Conference on Computational Complexity (CCC’15).
Editor: David Zuckerman; pp. 365–380

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

366 On the (Non) NP-Hardness of Computing Circuit Complexity

MCSP is natural and basic, but unlike thousands of other computational problems studied
over the last 40 years, the complexity of MCSP has yet to be determined. The problem could
be NP-complete, it could be NP-intermediate, or it could even be in P. (It is reported that
Levin delayed publishing his initial results on NP-completeness out of wanting to include
a proof that MCSP is NP-complete [3]. More notes on the history of this problem can be
found in [15].)

Lower Bounds for MCSP?

There is substantial evidence that MCSP /∈ P. If MCSP ∈ P, then (essentially by definition)
efficient algorithms for MCSP imply that there are no pseudorandom functions. Kabanets and
Cai [15] made this critical observation, noting that the hardness of factoring Blum integers
implies that MCSP is hard. Allender et al. [4] strengthened these results considerably,
showing that Discrete Log and many approximate lattice problems from cryptography are
solvable in BPPMCSP and Integer Factoring is in ZPPMCSP. (Furthermore, [4] also prove
that MCSP /∈ AC0.) Allender and Das [5] recently showed that Graph Isomorphism is in
RPMCSP, and in fact every problem with statistical zero-knowledge interactive proofs [11] is
in promise-BPP with a MCSP oracle.

NP-Hardness for MCSP?

These reductions indicate strongly that MCSP is not solvable in randomized polynomial
time; perhaps it is NP-complete? Evidence for the NP-completeness of MCSP has been
less conclusive. The variant of the problem where we are looking for a minimum size DNF
(instead of an arbitrary circuit) is known to be NP-complete [10, 6]. Kabanets and Cai [15]
show that, if MCSP is NP-complete under so-called “natural” poly-time reductions (where
the circuit size parameter k output by the reduction is a function of only the input length to
the reduction) then EXP 6⊂ P/poly, and E 6⊂ SIZE(2εn) for some ε > 0 unless NP ⊂ SUBEXP.
Therefore NP-completeness under a restricted reduction type would imply (expected) circuit
lower bounds. This doesn’t necessarily show that such reductions do not exist, but rather
that they will be difficult to construct.

Allender et al. [4] show that if PH ⊂ SIZE(2no(1)) then a (variant of) MCSP is not hard
for TC0 under AC0 reductions. The generalization MCSPA for circuits with A-oracle gates
has also been studied; it is known for example that MCSPQBF is complete for PSPACE under
ZPP reductions [4], and recently Allender, Holden, and Kabanets [7] proved that MCSPQBF

is not PSPACE-complete under logspace reductions. They also showed, among similar results,
that if there is a set A ∈ PH that such that MCSPA is hard for P under AC0 reductions,
then P 6= NP.

NP-completeness has been defined for many different reducibility notions: polynomial
time, logarithmic space, AC0, even logarithmic time reductions. In this paper, we study the
possibility of MCSP being NP-complete for these reducibilities. We prove several new results
in this direction, summarized as follows:
1. Under “local” polynomial-time reductions where any given output bit can be computed

in no(1) time, MCSP is provably not NP-complete, contrary to many other natural NP-
complete problems. (In fact, even PARITY cannot reduce to MCSP under such reductions:
see Theorem 1.2.)

2. Under slightly stronger reductions such as uniform AC0, the NP-completeness of MCSP

C.D. Murray and R. R. Williams 367

would imply NP 6⊂ P/poly2 and E 6⊂ i.o.-SIZE(2δn) for some δ > 0, therefore P = BPP as
well by [14].

3. Under the strongest reducibility notions such as polynomial time, the NP-completeness of
MCSP would still imply major separations of complexity classes. For example, EXP 6= ZPP
would follow, a major (embarrassingly) open problem.

Together, the above results tell a convincing story about why MCSP has been difficult to
prove NP-complete (if that is even true). Part 1 shows that, unlike many textbook reductions
for NP-hardness, no simple “gadget-based” reduction can work for proving the NP-hardness of
MCSP. Part 2 shows that going only a little beyond the sophistication of textbook reductions
would separate P from NP and fully derandomize BPP, which looks supremely difficult (if
possible at all). Finally, part 3 shows that even establishing the most relaxed version of the
statement “MCSP is NP-complete” requires separating exponential time from randomized
polynomial time, a separation that appears quite far from a proof at the present time.

MCSP is Not Hard Under “Local” Reductions

Many NP-complete problems are still complete under polynomial-time reductions with severe-
looking restrictions, such as reductions which only need O(logc n) time to output an arbitrary
bit of the output. Let t : N→ N; think of t(n) as n1−ε for some ε > 0.

I Definition 1.1. An algorithm R : Σ? × Σ? → {0, 1, ?} is a TIME(t(n)) reduction from L

to L′ if there is a constant c ≥ 1 such that for all x ∈ Σ?,
R(x, i) has random access to x and runs in O(t(|x|)) time for all i ∈ {0, 1}d2c log2 |x|e.
There is an `x ≤ |x|c + c such that R(x, i) ∈ {0, 1} for all i ≤ `x, and R(x, i) = ? for all
i > `x, and
x ∈ L ⇐⇒ R(x, 1) ·R(x, 2) · · ·R(x, `x) ∈ L′.

(Note that ? denotes an “out of bounds” character to mark the end of the output.) That
is, the overall reduction outputs strings of polynomial length, but any desired bit of the
output can be printed in O(t(n)) time. TIME(no(1)) reductions are powerful enough for
almost all NP-completeness results, which have “local” structure transforming small pieces
of the input to small pieces of the output.3 More precisely, an O(nk)-time reduction R from
L to L′ is a projection if there is a polynomial-time algorithm A that, given i = 1, . . . , nk in
binary, A outputs either a fixed bit (0 or 1) which is the ith bit of R(x) for all x of length n,
or a j = 1, . . . , n with b ∈ {0, 1} such that the ith bit of R(x) (for all x of length n) equals
b · xj + (1 − b) · (1 − xj). Skyum and Valiant [17] observed that almost all NP-complete
problems are also complete under projections. So for example, we have:

I Proposition 1 ([17, 16]). SAT, Vertex Cover, Independent Set, Hamiltonian Path, and
3-Coloring are NP-complete under TIME(poly(logn)) reductions.

In contrast to the above, we prove that MCSP is not complete under TIME(n1/3) re-
ductions. Indeed there is no local reduction from even the simple language PARITY to
MCSP:

2 After learning of our preliminary results, Allender, Holden, and Kabanets [7] found an alternative proof
of the consequence NP 6⊂ P/poly.

3 We say “almost all NP-completeness results” because one potential counterexample is the typical
reduction from Subset Sum to Partition: two numbers in the output of this reduction require taking the
sum of all numbers in the input Subset Sum instance. Hence the straightforward reduction does not
seem to be computable even in 2no(1)

-size AC0.

CCC 2015

368 On the (Non) NP-Hardness of Computing Circuit Complexity

I Theorem 1.2. For every δ < 1/2, there is no TIME(nδ) reduction from PARITY to MCSP.
As a corollary, MCSP is not AC0[2]-hard under TIME(nδ) reductions.4

This establishes that MCSP cannot be “locally” NP-hard in the way that many canonical
NP-complete problems are known to be.

Hardness Under Stronger Reducibilities

For stronger reducibility notions than sub-polynomial time, we do not yet have unconditional
non-hardness results for MCSP. (Of course, a proof that MCSP is not NP-complete under
poly-time reductions would immediately imply P 6= NP.) Nevertheless, we can still prove
interesting complexity consequences assuming the NP-hardness of MCSP under these sorts
of reductions.

I Theorem 1.3. If MCSP is NP-hard under polynomial-time reductions, then EXP 6=
NP ∩ P/poly. Consequently, EXP 6= ZPP.

I Corollary 1.4. If MCSP is NP-hard under logspace reductions, then PSPACE 6= ZPP.

I Theorem 1.5. If MCSP is NP-hard under logtime-uniform AC0 reductions, then NP 6⊂
P/poly and E 6⊂ i.o.-SIZE(2δn) for some δ > 0. As a consequence, P = BPP also follows.

That is, the difficulty of computing circuit complexity would imply lower bounds, even in
the most general setting (there are no restrictions on the polynomial-time reductions here, in
contrast with Kabanets and Cai [15]). We conjecture that the consequence of Theorem 1.3
can be strengthened to EXP 6⊂ P/poly, and that MCSP is (unconditionally) not NP-hard
under uniform AC0 reductions.

Σ2-Hardness for Nondeterministic MCSP Implies Circuit Lower Bounds

Intuitively, the difficulty of solving MCSP via uniform algorithms should be related to circuit
lower bounds against functions defined by uniform algorithms. That is, our intuition is
that “MCSP is NP-complete” implies circuit lower bounds. We have not yet shown a result
like this (but come close with EXP 6= ZPP in Theorem 1.3). However, we can show that
Σ2P-completeness for the nondeterministic version of MCSP would imply EXP 6⊂ P/poly.

In the Nondeterministic Minimum Circuit Size Problem (NMCSP), we are given 〈T, k〉 as
in MCSP, but now we want to know if T denotes a boolean function with nondeterministic
circuit complexity at most k. It is easy to see that NMCSP is in Σ2P: nondeterministically
guess a circuit C with a “main” input and “auxiliary” input, nondeterministically evaluate
C on all 2` inputs x for which T (x) = 1, then universally verify on all 2` inputs y satisfying
T (y) = 0 that no auxiliary input makes C output 1 on y.

We can show that if NMCSP is hard even for Merlin-Arthur games, then circuit lower
bounds follow.

I Theorem 1.6. If NMCSP is MA-hard under polynomial-time reductions, then EXP 6⊂
P/poly.

Vinodchandran [18] studied NMCSP for strong nondeterministic circuits, showing that
a “natural” reduction from SAT or Graph Isomorphism to this problem would have several
interesting implications.

4 Dhiraj Holden and Chris Umans (personal communication) proved independently that there is no
TIME(poly(log n)) reduction from SAT to MCSP unless NEXP ⊂ Σ2P.

C.D. Murray and R. R. Williams 369

1.1 Intuition

The MCSP problem is a special kind of “meta-algorithmic” problem, where the input describes
a function (and a complexity upper bound) and the goal is to essentially compute the circuit
complexity of the function. That is, like many of the central problems in theory, MCSP is a
problem about computation itself.

In this paper, we apply many tools from the literature to prove our results, but the key
idea is to exploit the meta-algorithmic nature of MCSP directly in the assumed reductions
to MCSP. We take advantage of the fact that instances of MCSP are written in a rather
non-succinct way: the entire truth table of the function is provided. (This observation was
also used by Kabanets and Cai [15], but not to the same effect.)

For the simplest example of the approach, let L be a unary (tally) language, and suppose
there is a TIME(poly(logn)) reduction R from L to MCSP. The outputs of R are pairs
〈T, k〉, where T is a truth table and k is the size parameter. Because every bit of R is
computable in polylog time, it follows that each truth table T output by R can in fact be
described by a polylogarithmic size circuit specifying the length of the input instance of L,
and the mechanics of the polylog time reduction used to compute a given bit of R. Therefore
the circuit complexities of all outputs of R are at most polylogarithmic in n (the input
length). Furthermore, the size parameters k in the outputs of R on n-bit inputs are at most
poly(logn), otherwise the MCSP instance is trivially a yes instance. That is, the efficient
reduction R itself yields a strong upper bound on the witness sizes of the outputs of R.

This ability to bound k from above by a small value based on the existence of an efficient
reduction to MCSP is quite powerful. It can also be carried out for more complex languages.
For example, consider a polylog time reduction from PARITY to MCSP, where we are
mapping n-bit strings to instances of MCSP. Given any polylog time reduction from PARITY
to MCSP, we can construct another polylog time reduction which on every n-bit string
always outputs the same circuit size parameter kn. That is, we can turn any polylog time
reduction into a natural reduction in the sense of Kabanets and Cai [15], and apply their
work to general reductions. (The basic idea is to answer “no” to every bit query of the
polylog time reduction, and to then “pad” a given PARITY instance with a few strategically
placed zeroes, so that it always satisfies those “no” answers.)

Several of our theorems have the form that, if computing circuit complexity is NP-hard
(or nondeterministic circuit complexity is Σ2P-hard), then circuit lower bounds follow. This is
intriguing to us, as one also expects that efficient algorithms for computing circuit complexity
also lead to lower bounds! (For example, [15, 13, 19] show that polynomial-time algorithms
for MCSP in various forms would imply circuit lower bounds against EXP and/or NEXP.) If
a circuit lower bound can be proved to follow from assuming MCSP is NP-intermediate (or
NMCSP is Σ2P-intermediate), perhaps we can prove circuit lower bounds unconditionally
without necessarily resolving the complexity of MCSP.

2 Preliminaries

For simplicity, all languages are over {0, 1}. We assume knowledge of the basics of complexity
theory [8]. Here are a few (perhaps) non-standard notions we use. For a function s : N→ N,
poly(s(n)) is shorthand for O(s(n)c) for some constant c, and Õ(s(n)) is shorthand for
s(n) · poly(logn). Define SIZE(s(n)) to be the class of languages computable by a circuit
family of size O(s(n)). Define Σ2TIME[t(n)] to be the class of languages recognizable by a
Σ2 machine in time O(t(n)); more precisely, the languages L such that there exists a linear

CCC 2015

370 On the (Non) NP-Hardness of Computing Circuit Complexity

time machine M such that for all strings x,

x ∈ L ⇐⇒ (∃y ∈ {0, 1}t(|x|))(∀z ∈ {0, 1}t(|x|))[M(x, y, z) accepts].

In some of our results, we apply the well-known PARITY lower bound of Håstad:

I Theorem 2.1 (Håstad [12]). For every k ≥ 2, PARITY cannot be computed by circuits
with AND, OR, and NOT gates of depth k and size 2o(n

1/(k−1)).

Machine model

The machine model used in our results may be any model with random access to the input
via addressing, such as a random-access Turing machine. The main component we want is
that the “address” of the bit/symbol/word being read at any step is stored as a readable
and writable binary integer.

A remark on sub-polynomial reductions

In Definition 1.1 we defined sub-polynomial time reductions to output out-of-bounds charac-
ters which denote the end of an output string. We could also have defined our reductions to
output a string of length 2dc log2 ne on an input of length n, for some fixed constant c ≥ 1.
This makes it easy for the reduction to know the “end” of the output. We can still compute
the length ` of the output in O(log `) time via Definition 1.1, by performing a doubling
search on the indices i to find one ? (trying the indices 1, 2, 4, 8, etc.), then performing a
binary search for the first ?. The results in this paper hold for either reduction model (but
the encoding of MCSP may have to vary in trivial ways, depending on the reduction notion
used).

Encoding MCSP

Let y1, . . . , y2` ∈ {0, 1}` be the list of k-bit strings in lex order. Given f : {0, 1}` → {0, 1},
the truth table of f is defined to be tt(f) := f(y1)f(y2) · · · f(y2`).

The truth table of a circuit is the truth table of the function it computes. Let T ∈ {0, 1}?.
The function encoded by T , denoted as fT , is the function satisfying tt(fT) = T02k−|T |, where
k is the minimum integer satisfying 2k ≥ T . The circuit complexity of T , denoted as CC(T),
is simply the minimum number of gates of any circuit computing fT .

There are several possible encodings of MCSP we could use. The main point we wish
to stress is that it’s possible to encode the circuit size parameter k in essentially unary
or in binary, and our results remain the same. (This is important, because some of our
proofs superficially seem to rely on a short encoding of k.) We illustrate our point with
two encodings, both of which are suitable for the reduction model of Definition 1.1. First,
we may define MCSP to be the set of strings Tx where |T | is the largest power of two
satisfying |T | < |Tx| and CC(fT) ≤ |x|; we call this a unary encoding because k is effectively
encoded in unary. (Note we cannot detect if a string has the form 1k in logtime, so we
shall let any k-bit string x denote the parameter k. Further note that, if the size parameter
k > |T |/2, then the instance would be trivially a yes-instance. Hence this encoding captures
the “interesting” instances of the problem.) Second, we may define MCSP to be the set of
binary strings Tk such that |T | is the largest power of two such that |T | < |Tk|, k is written
in binary (with most significant bit 1) and CC(fT) ≤ k. Call this the binary encoding.

I Proposition 2. There are TIME(poly(logn)) reductions between the unary encoding of
MCSP and the binary encoding of MCSP.

C.D. Murray and R. R. Williams 371

The proof is a simple exercise, in Appendix A. More points on encoding MCSP for these
reductions can be found there as well.

Another variant of MCSP has the size parameter fixed to a large value; this version has
been studied extensively in the context of KT-complexity [2, 4]. Define MCSP′ to be the
version with circuit size parameter set to |T |1/2, that is, MCSP ′ := {T | CC(T) ≤ |T |1/2}.
To the best of our knowledge, all theorems in this paper hold for MCSP′ as well; indeed
most of the proofs only become simpler for this case.

A simple lemma on the circuit complexity of substrings

We also use the fact that for any string T , the circuit complexity of an arbitrary substring of
T can be bounded via the circuit complexity of T .

I Lemma 2.2 ([19]). There is a universal c ≥ 1 such that for any binary string T and any
substring S of T , CC(fS) ≤ CC(fT) + c log |T |.

Proof. Let c′ be sufficiently large in the following. Let k be the minimum integer satisfying
2k ≥ |T |, so the Boolean function fT representing T has truth table T02k−|T |. Suppose
C is a size-s circuit for fT . Let S be a substring of T = t1 · · · t2k ∈ {0, 1}2

k , and let
A,B ∈ {1, . . . , 2k} be such that S = tA · · · tB. Let ` ≤ k be a minimum integer which
satisfies 2` ≥ B −A. We wish to construct a small circuit D with ` inputs and truth table
S02`−(B−A). Let x1, . . . , x2` be the `-bit strings in lex order. Our circuit D on input xi first
computes i+A; if i+A ≤ B−A then D outputs C(xi+A), otherwise D outputs 0. Note there
are circuits of c′ · n size for addition of two n-bit numbers (this is folklore). Therefore in size
at most c′ · k we can, given input xi of length `, output i+A. Determining if i+A ≤ B −A
can be done with (c′ · `)-size circuits. Therefore D can either be implemented as a circuit of
size at most s+ c′(k + `+ 1). To complete the proof, let c ≥ 3c′. J

3 MCSP and Sub-Polynomial Time Reductions

In this section, we prove the following impossibility results for NP-hardness of MCSP:

Reminder of Theorem 1.2. For every δ < 1/2, there is no TIME(nδ) reduction from
PARITY to MCSP. As a corollary, MCSP is not AC0[2]-hard under TIME(nδ) reductions.

The proof has the following outline. First we show that there are poly(logn)-time reduc-
tions from PARITY to itself which can “insert poly(n) zeroes” into a PARITY instance. Then,
assuming there is a TIME(nδ) reduction from PARITY to MCSP, we use the aforementioned
zero-inserting algorithm to turn the reduction into a “natural reduction” (in the sense of
Kabanets and Cai [15]) from PARITY to MCSP, where the circuit size parameter k output by
the reduction depends only on the input length n. Next, we show how to bound the value of
k from above by Õ(nδ), by exploiting naturalness. Then we use this bound on k to construct
a Σ2 algorithm for PARITY which existentially guesses an Õ(nδ)-size circuit for the truth
table produced by the reduction, then universally verifies the circuit is correct on all bits of
the truth table. Finally, we convert the Σ2 algorithm into a depth-three circuit family of
2Õ(nδ) size, and appeal to Håstad’s AC0 lower bound for PARITY for a contradiction.

We start with a simple poly(logn)-time reduction for padding a string with zeroes in a
poly(n)-size set of prescribed bit positions. Let S ∈ Z` for a positive integer `. We say S is
sorted if S[i] < S[i+ 1] for all i = 1, . . . , `− 1.

CCC 2015

372 On the (Non) NP-Hardness of Computing Circuit Complexity

I Proposition 3. Let p(n) be a polynomial. There is an algorithm A which, given x of
length n, a sorted tuple S = (i1, . . . , ip(n)) of indices from {1, . . . , n+ p(n)}, and a bit index
j = 1, . . . , p(n) + n, A(x, S, j) outputs the jth bit of the string x′ obtained by inserting zeroes
in the bit positions i1, i2, . . . , ip(n) of x. Furthermore, A(x, S, j) runs in O(log2 n) time on x
of length n.

Proof. Given x of length n, a sorted S = (i1, . . . , ip) ∈ {1, . . . , n + p}p, and an index
j = 1, . . . , n+ p, first A checks if j ∈ S in O(log2 n) time by binary search, comparing pairs
of O(logn)-bit integers in O(logn) time. If yes, then A outputs 0. If no, there are two cases:
either (1) j < i1, or (2) ik < j for some k = 1, . . . , p. In case (1), A simply outputs xj . In
case (2), A outputs xj−k. (Note that computing j − k is possible in O(logn) time.) It is
easy to verify that the concatenation of all outputs of A over j = 1, . . . , |x|+ p is the string
x but with zeroes inserted in the bit positions i1, . . . , ip. J

Let t(n) = n1−ε for some ε > 0. The next step is to show that a TIME(t(n)) reduction
from PARITY to MCSP can be turned into a natural reduction, in the following sense:

I Definition 3.1 (Kabanets-Cai [15]). A reduction from a language L to MCSP is natural if
the size of all output instances and the size parameters k depend only on the length of the
input to the reduction.

The main restriction in the above definition is that the size parameter k output by the
reduction does not vary over different inputs of length n.

I Claim 1. If there is a TIME(t(n)) reduction from PARITY to MCSP, then there is a
TIME(t(n) log2 n) natural reduction from PARITY to MCSP. Furthermore, the value of k in
this natural reduction is Õ(t(n)).

Proof. By assumption, we can choose n large enough to satisfy t(2n) log(2n)� n. We define
a new (natural) reduction R′ from PARITY to MCSP:

R′(x, i) begins by gathering a list of the bits of the input that affect the size parameter
k of the output, for a hypothetical 2n-bit input which has zeroes in the positions
read by R. This works as follows. We simulate the TIME(t(n)) reduction R from L

to MCSP on the output indices corresponding to bits of the size parameter k, as if
R is reading an input x′ of length 2n. When R attempts to read a bit of the input,
record the index ij requested in a list S, and continue the simulation as if the bit at
position ij is a 0. Since the MCSP instance is polynomial in size, k written in binary
is at most O(logn) bits (otherwise we may simply output a trivial “yes” instance), so
the number of indices of the output that describe k is at most O(logn) in the binary
encoding. It follows that the size parameter k in the output depends on at most
t(2n) log(2n) bits of the (hypothetical) 2n-bit input. Therefore |S| ≤ t(2n) log(2n).
Sort S = (i1, . . . , i|S|) in O(t(n) log2 n) time, and remove duplicate indices.
R′ then simulates the TIME(t(n)) reduction R(x, i) from PARITY to MCSP. However,
whenever an input bit j of x is requested by R, if j ≤ n+ |S| then run the algorithm
A(x, S, j) from Proposition 3 to instead obtain the jth bit of the O(n+ |S|)-bit string
x′ which has zeroes in the bit positions in the sorted tuple S. Otherwise, if j > n+ |S|
and j ≤ 2n then output 0, and if j > 2n then output ? (out of bounds). Since the
algorithm of Proposition 3 runs in O(log2 n) time, this step of the reduction takes
O(t(n) log2 n) time.

C.D. Murray and R. R. Williams 373

That is, the reduction R′ first looks for all the bits in a 2n-bit input that affect the output
size parameter k in the reduction R, assuming the bits read are all 0. Then R′ runs R on a
simulated string 2n-bit string x′ for which all those bits are zero (and possibly more at the
end, to enforce |x′| = 2n). Since the parity of x′ equals the parity of x, the MCSP instance
output by R′ is a yes-instance if and only if x has odd parity. However for the reduction R′,
the output parameter k is now a function of only the input length; that is, R′ is natural.

Now let us argue for an upper bound on k. Define a function f(i) which computes z := 0n,
then runs and outputs R′(z, i). The truth table of f , tt(f), is therefore an instance of MCSP.
Since R′ is natural, the value of k appearing in tt(f) is the same as the value of k for all
length-n instances of PARITY.

However, the circuit complexity of f is small: on any i, R′(0n, i) can be computed in
time O(t(n) log2 n). Therefore the circuit complexity of f is at most some s which is Õ(t(n)).
In particular, the TIME(t(n) log2 n) reduction can be efficiently converted to a circuit, with
any bit of the input 0n efficiently computed in O(logn) time at every request (the only thing
to check is that the index requested doesn’t exceed n). As the instance f of MCSP has
CC(f) ≤ s, by Lemma 2.2 the truth table T in the instance tt(f) has CC(T) ≤ cs as well
for some constant c.

Since 0n has even parity, the truth table of f is not in MCSP. This implies that the value
of k in the instance tt(f) must be less than cs = Õ(t(n)). Therefore the value of k fixed in
the reduction from PARITY to MCSP must be at most Õ(t(n) log2 n). J

Now, we show that efficient reductions from PARITY to MCSP yield efficient Σ2 algo-
rithms for PARITY:

I Claim 2. If there is a TIME(t(n)) reduction from PARITY to MCSP, then there is a
Σ2TIME(Õ(t(n))) algorithm for PARITY.

Proof. Construct a Σ2 algorithm for PARITY as follows:

Given an input x, existentially guess a circuit C with O(logn) inputs and size at most
s = Õ(t(n)), where s is taken from Claim 1. Then universally verify over all possible
O(logn)-bit inputs i to C that C(i) = R′(x, i), where R′ is from Claim 1. If yes, then
accept, else reject.

Since we know the value of the size parameter in the instance output by R′(x, ·) is at
most s (from Claim 1), there is a circuit C of size at most s with the above property if
and only if x has odd parity. Since the number of inputs to C is O(logn), the universal
quantification in the above procedure is only O(logn) bits. Verification also takes Õ(t(n))
time, since C can be evaluated in Õ(t(n)) time on any input. Hence the Σ2 procedure has
the claimed running time. J

Finally, we can complete the proof of Theorem 1.2:

Proof of Theorem 1.2. Suppose that PARITY has a TIME(nδ) reduction from PARITY to
MCSP, for some δ < 1/2. Then by Claim 2, there is a Σ2 algorithm for PARITY running in
Õ(nδ) time. Such an algorithm can be converted into a depth-three OR-AND-OR circuit of
size 2Õ(nδ): the top OR at the output has incoming wires for all possible 2Õ(nδ) existential
guesses for the Σ2 machine, the middle AND tries all 2Õ(nδ) universal guesses, and the
remaining deterministic computation on Õ(nδ) bits is computable with a CNF (AND of
ORs) of size 2Õ(nδ). Therefore, the assumed reduction implies that PARITY has depth-three
AC0 circuits of size 2Õ(nδ). For δ < 1/2, this is false by Håstad (Theorem 2.1). J

CCC 2015

374 On the (Non) NP-Hardness of Computing Circuit Complexity

I Remark. We used only the following properties of PARITY in the above proof: (a) one
can insert zeroes into a string efficiently without affecting its membership in PARITY,
(b) PARITY has trivial no-instances (strings of all zeroes), and (c) PARITY lacks small
depth-three circuits. We imagine that some of the ideas in the above proof may be useful for
other “non-hardness” results in the future.

4 NP-Hardness of MCSP Implies Lower Bounds

We now turn to stronger reducibility notions, showing that even NP-hardness of MCSP under
these reductions implies separation results that currently appear out of reach.

4.1 Consequences of NP-Hardness Under Polytime and Logspace
Reductions

Our two main results here are:

Reminder of Theorem 1.3. If MCSP is NP-hard under polynomial-time reductions, then
EXP 6= NP ∩ P/poly. Consequently, EXP 6= ZPP.

Reminder of Corollary 1.4. If MCSP is NP-hard under logarithmic space reductions, then
PSPACE 6= ZPP.

These theorems follow from establishing that the NP-hardness of MCSP and small circuits
for EXP implies NEXP = EXP. In fact, it suffices that MCSP is hard for only sparse
languages in NP. (Recall that a language L is sparse if there is a c such that for all n,
|L ∩ {0, 1}n| ≤ nc + c.)

I Theorem 4.1. If every sparse language in NP has a polynomial-time reduction to MCSP,
then EXP ⊆ P/poly =⇒ EXP = NEXP.

Proof. Suppose that MCSP is hard for sparse NP languages under polynomial-time reductions,
and that EXP ⊆ P/poly. Let L ∈ NTIME(2nc) for some c ≥ 1. It is enough to show that
L ∈ EXP.

Define the padded language L′ := {x012|x|
c

| x ∈ L}. The language L′ is then a sparse
language in NP. By assumption, there is a polynomial time reduction from L′ to MCSP.
Composing the obvious reduction from L to L′ with the reduction from L′ to MCSP, we
have a 2c′·nc -time reduction R from n-bit instances of L to 2c′·nc -bit instances of MCSP, for
some constant c′. Define the language

BITSR := {(x, i) | the ith bit of R(x) is 1}.

BITSR is clearly in EXP. Since EXP ⊆ P/poly, for some d ≥ 1 there is a circuit family {Cn}
of size at most nd + d computing BITSR on n-bit inputs.

Now, on a given instance x of L, the circuit D(i) := C2|x|+c′·|x|c(x, i) has c′ · |x|c inputs
(ranging over all possible i = 1, . . . , 2c′·|x|c) and size at most s(|x|) := (2 + c′)d|x|cd + d,
such that tt(D) is the output of R(x). Therefore, for every x, the truth tables output by
R(x) all have circuit complexity at most e · s(|x|) for some constant e, by Lemma 2.2. This
observation leads to the following exponential time algorithm for L:

On input x, run the reduction R(x), obtaining an exponential sized instance 〈T, k〉 of
MCSP. If k > e · s(|x|) then accept. Otherwise, cycle through every circuit E of size
at most k; if tt(E) = T then accept. If no such E is found, reject.

C.D. Murray and R. R. Williams 375

Producing the truth table T takes exponential time, and checking all 2O(s(n) log s(n)) circuits
of size O(s(n)) on all polynomial sized inputs to the truth table also takes exponential time.
As a result L ∈ EXP, which completes the proof. J

The same argument can be used to prove collapses for other reducibilities. For example,
swapping time for space in the proof of Theorem 4.1, we obtain:

I Corollary 4.2. If MCSP is NP-hard under logspace reductions, then PSPACE ⊆ P/poly =⇒
NEXP = PSPACE.

Theorem 4.1 shows that complexity class separations follow from establishing that MCSP
is NP-hard in the most general sense. We now prove Theorem 1.3, that NP-hardness of
MCSP implies EXP 6= NP ∩ P/poly:

Proof of Theorem 1.3. By contradiction. Suppose MCSP is NP-hard and EXP = NP∩P/poly.
Then EXP ⊂ P/poly implies NEXP = EXP by Theorem 4.1, but NEXP = EXP ⊆ NP,
contradicting the nondeterministic time hierarchy [20]. J

Corollary 1.4 immediately follows from the same argument as Theorem 1.3, applying
Corollary 4.2.

We would like to strengthen Theorem 1.3 to show that the NP-hardness of MCSP
actually implies circuit lower bounds such as EXP 6⊂ P/poly. This seems like a more natural
consequence: an NP-hardness reduction would presumably be able to print truth tables of
high circuit complexity from no-instances of low complexity. (Indeed this is the intuition
behind Kabanets and Cai’s results concerning “natural” reductions [15].)

4.2 Consequences of NP-Hardness under AC0 Reductions
Now we turn to showing consequences of assuming that MCSP is NP-hard under uniform
AC0 reductions. Here we obtain consequences so strong that we are skeptical the hypothesis
is true.

Reminder of Theorem 1.5. If MCSP is NP-hard under logtime-uniform AC0 reductions,
then NP 6⊂ P/poly and E 6⊂ i.o.-SIZE(2δn) for some δ > 0. As a consequence, P = BPP also
follows.

We will handle the two consequences in two separate theorems.

I Theorem 4.3. If MCSP is NP-hard under LOGTIME-uniform AC0 reductions, then
NP ⊆ P/poly =⇒ NEXP ⊆ P/poly.

Proof. The proof is similar in spirit to that of Theorem 4.1. Suppose that MCSP is NP-hard
under LOGTIME-uniform AC0 reductions, and that NP ⊆ P/poly. Then ΣkP ⊆ P/poly for
every k ≥ 1.

Let L ∈ NEXP; in particular, let L ∈ NTIME(2nc) for some c. As in Theorem 4.1,
define the sparse NP language L′ = {x01t | x ∈ L, t = 2|x|c}. By assumption, there is a
LOGTIME-uniform AC0 reduction R from the sparse language L′ to MCSP. This reduction
can be naturally viewed as a ΣkP reduction S(·, ·) from L to exponential-sized instances of
MCSP, for some constant k. In particular, S(x, i) outputs the ith bit of the reduction R on
input x01t, and S can be implemented in ΣkP, and hence in P/poly as well.

That is, for all inputs x, the string S(x, 1) · · ·S(x, 2O(|x|c)) is the truth table of a function
with poly(|x|)-size circuits. Therefore by Lemma 2.2, the truth table of the MCSP instance

CCC 2015

376 On the (Non) NP-Hardness of Computing Circuit Complexity

being output on x must have a poly(|x|)-size circuit. We can then decide L in Σk+2P time:
on an input x, existentially guess a circuit C of poly(|x|) size, then for all inputs y to C,
verify that S(x, y) = C(y). The latter equality can be checked in ΣkP. As a result, we have
NEXP ⊆ Σk+2P ⊆ P/poly. J

I Theorem 4.4. If MCSP is NP-hard under P-uniform AC0 reductions, then there is a
δ > 0 such that E 6⊂ i.o.-SIZE(2δn). As a consequence, P = BPP also follows from the same
assumption (Impagliazzo and Wigderson [14]).

Proof. Assume the opposite: that MCSP is NP-hard under P-uniform AC0 reductions and
for every ε > 0, E ⊂ i.o.-SIZE(2εn). By Agrawal et al. [1] (Theorem 4.1), all languages
hard for NP under P-uniform AC0 reductions are also hard for NP under P-uniform NC0
reductions. Therefore MCSP is NP-hard under P-uniform NC0 reductions. Since in an NC0
circuit all outputs depend on a constant number of input bits, the circuit size parameter k
in the output of the reduction depends on only O(logn) input bits. By Claim 1, the NC0
reduction from PARITY to MCSP can be converted into a natural reduction. Therefore we
may assume that the size parameter k in the output of the reduction is a function of only
the length of the input to the reduction.

Let R be a polynomial-time algorithm that on input 1n produces a P-uniform NC0 circuit
Cn on n inputs that reduces PARITY to MCSP. Fix c such that R runs in at most nc + c

time and every truth table produced by the reduction is of length at most nc + c. Define an
algorithm R′ as follows:

On input (n, i, b), where n is a binary integer, i = 1, . . . , nc + c, and b ∈ {0, 1}, run
R(1n) to produce the circuit Cn, then evaluate Cn(0n) to produce a truth table Tn.
If b = 0, output the ith bit of Cn. If b = 1, output the ith bit of Tn.

For an input (n, i, b), R′ runs in time O(nc); when m = |(n, i, b)|, this running time is
2O(m) ≤ nO(1). By assumption, for every ε > 0, R′ has circuits {Dm} of size O(2εm) ≤ O(n2ε)
for infinitely many input lengths m. This has two important consequences:
1. For every ε > 0 there are infinitely many input lengths m = O(logn) such that the size

parameter k in the natural reduction from PARITY to MCSP is at most n2ε (or, the
instance is trivial). To see this, first observe that 0n is always a no-instance of PARITY,
so R(0n) always maps to a truth table Tm of circuit complexity greater than k(n) (for
some k(n)). Since R′(n, i, 1) prints the ith bit of R(0n), and the function R′(n, ·, 1) is
computable with an O(n2ε)-size circuit Dn, the circuit complexity of Tm is at most
O(n2ε), by Lemma 2.2. Therefore the output size parameter k of R(0n) for these input
lengths m is at most O(n2ε).

2. On the same input lengths m for which k is O(n2ε), the same circuit Dm of size O(n2ε)
can compute any bit of the NC0 circuit Cn that reduces PARITY to MCSP. This follows
from simply setting b = 0 in the input of Dm.

The key point is that both conditions are simultaneously satisfied for infinitely many
input lengths m, because both computations are made by the same 2O(n) time algorithm R′.
We use these facts to construct an i.o.-Σ2TIME(Õ(n2ε)) algorithm A, as follows:

On input (x,D), where n = |x| and D is an O(n2ε) size circuit with m = O(logn)
inputs:
Assume D computes R′(n, i, b) on inputs such that m = |(n, i, b)|. Evaluate D on n,
O(logn) different choices of i, and b = 0, to construct the portion of the NC0 circuit

C.D. Murray and R. R. Williams 377

Cn that computes the size parameter k in the output of the reduction from PARITY
to MCSP. Then, use this O(logn)-size subcircuit to compute the value of k for the
input length n.
Next, nondeterministically guess a circuit C ′ of size at most k; we wish to verify
that for all i, C ′(i) outputs the ith bit of the truth table Tx produced by the NC0
reduction on input x. We can verify this by noting that the ith bit of Tx can also
be computed in O(nε) time, via D. Namely, universally choose an i, and produce
the O(1)-size subcircuit that computes the ith output bit of the NC0 circuit Cn (by
making a constant number of queries to D with b = 0). Then, simulate the resulting
O(1)-size subcircuit on the relevant input bits of x to compute the ith bit of Tx, and
check that C ′(i) equals this bit. If all checks pass, accept, else reject.

Assuming the circuit D actually computes R′, A(x,D) computes PARITY correctly. For
every ε > 0, there are infinitely many m such that the circuit size parameter k is at most
2O(εm) ≤ O(n2ε), and the circuit D of size 2O(εm) ≤ O(n2ε) exists. Under these conditions,
the above Σ2 algorithm A runs in Õ(n2ε) time. As a result, for every ε > 0 we can find
for infinitely many n such that the algorithm A has a corresponding depth-3 AC0 circuit
of 2Õ(nε) size. Suppose we hardwire the O(n2ε)-size circuit D that computes R′ into the
corresponding AC0 circuit, on input lengths n for which D exists. Then for all ε > 0, PARITY
can be solved infinitely often with depth-3 AC0 circuits of 2Õ(nε) size, contradicting Håstad
(Theorem 2.1). J

Proof of Theorem 1.5. Suppose MCSP is NP-hard under logtime-uniform AC0 reductions.
The consequence E 6⊂ SIZE(2δn) was already established in Theorem 4.4. The consequence
NP 6⊂ P/poly follows immediately from combining Theorem 4.3 and Theorem 4.4. J

4.3 The Hardness of Nondeterministic Circuit Complexity
Finally, we consider the generalization of MCSP to the nondeterministic circuit model. Recall
that a nondeterministic circuit C of size s takes two inputs, a string x on n bits and a string
y on at most s bits. We say C computes a function f : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,
f(x) = 1 ⇐⇒ there is a y of length at most s such that C(x, y) = 1.

Observe that the Cook-Levin theorem implies that every nondeterministic circuit C of
size s has an equivalent nondeterministic depth-two circuit C ′ of size s · poly(log s) (and
unbounded fan-in). Therefore, it is no real loss of generality to define Nondeterministic MCSP
(NMCSP) to be the set of all pairs 〈T, k〉 where T is the truth table of a function computed
by a depth-two nondeterministic circuit of size at most k. This problem is in Σ2P : given
〈T, k〉, existentially guess a nondeterministic circuit C of size at most k, then for every x
such that T (x) = 1, existentially guess a y such that C(x, y) = 1; for every x such that
T (x) = 0, universally verify that for all y, C(x, y) = 0. However, NMCSP is not known to
be Σ2P -hard. (The proof of Theorem 1.6 below will work for the depth-two version with
unbounded fan-in, and the unrestricted version.)

Recall that it is known that MCSP for depth-two circuits is NP-hard [10, 6]. That is, the
“deterministic counterpart” of MCSP is known to be NP-hard.

Reminder of Theorem 1.6. If NMCSP is MA-hard under polynomial-time reductions, then
EXP 6⊆ P/poly.

Proof. Suppose that NMCSP is MA-hard under polynomial-time reductions, and suppose
that EXP ⊆ P/poly. We wish to establish a contradiction. The proof is similar in structure to

CCC 2015

378 On the (Non) NP-Hardness of Computing Circuit Complexity

other theorems of this section (such as Theorem 4.1). Let L ∈ MATIME(2nc), and define
L′ = {x012|x|

c

| x ∈ L} ∈ MA. By assumption, there is a reduction R from L′ to NMCSP
that runs in polynomial time. Therefore for some constant d we have a reduction R′ from L

that runs in 2dnc time, and outputs 2dnc-sized instances of NMCSP with a size parameter
s(x) on input x. Since R′ runs in exponential time, and we assume EXP is in P/poly, there is
a k such that for all x, there is a nondeterministic circuit C((x, i), y) of ≤ nk + k size that
computes the ith bit of R′(x). Therefore we know that s(x) ≤ |x|k + k on such instances
(otherwise we can trivially accept). We claim that L ∈ EXP, by the following algorithm:

Given x, run R′(x) to compute s(x). If s(x) > |x|k + k then accept.
For all circuits C in increasing order of size up to s(x),

Initialize a table T of 2dnc bits to be all-zero.
For all i = 1, . . . , 2dnc and all 2s(x) possible nondeterministic strings y,

Check for each i if there is a y such that C((x, i), y) = 1; if so, set T [i] = 1.
If T = R′(x) then accept.

Reject (no nondeterministic circuit of size at most s(x) was found).

Because s(x) ≤ |x|k + k, the above algorithm runs in 2nk·poly(logn) time and decides L.
Therefore L ∈ EXP. But this implies that MAEXP = EXP ⊆ P/poly, which contradicts the
circuit lower bound of Buhrman, Fortnow, and Thierauf [9]. J

5 Conclusion

We have demonstrated several formal reasons why it has been difficult to prove that MCSP
is NP-hard. In some cases, proving NP-hardness would imply longstanding complexity class
separations; in other cases, it is simply impossible to prove NP-hardness.

There are many open questions left to explore. Based on our study, we conjecture that:
If MCSP is NP-hard under polynomial-time reductions then EXP 6⊂ P/poly. We showed
that if MCSP is hard for sparse NP languages then EXP 6= ZPP; surely a reduction from
SAT to MCSP would provide a stronger consequence.
MCSP is (unconditionally) not NP-hard under logtime-uniform AC0 reductions. The-
orem 1.2 already implies that MCSP isn’t NP-hard under polylogtime-uniform NC0
reductions. Perhaps this next step isn’t far away, since we already know that hardness
under P-uniform AC0 reductions implies hardness under P-uniform NC0 reductions (by
Agrawal et al. [1]).

It seems that we can prove that finding the minimum DNF for a given truth table is
NP-hard, because of 2Ω(n) size lower bounds against DNFs [6]. Since there are 2Ω(nδ) size
lower bounds against AC0, can it be proved that finding the minimum AC0 circuit for a given
truth table is QuasiNP-hard? In general, can circuit lower bounds imply hardness results for
circuit minimization?

Acknowledgements. We thank Greg Bodwin and Brynmor Chapman for their thoughtful
discussions on these results. We also thank Eric Allender and Oded Goldreich for helpful
comments. We’re also grateful to Eric for providing a preprint of his work with Dhiraj
Holden.

C.D. Murray and R. R. Williams 379

References
1 Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven Rudich.

Reducing the complexity of reductions. Computational Complexity, 10(2):117–138, 2001.
2 Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov

complexity. In FSTTCS, volume 2245 of LNCS, pages 1–15. Springer, 2001.
3 Eric Allender. Personal communication, 2014.
4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-

urger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.
5 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Mathematical

Foundations of Computer Science (MFCS), Part II, pages 25–32, 2014.
6 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael Saks. Mini-

mizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J.
Comput., 38(1):63–84, 2008.

7 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In STACS, pages 21–33, 2015.

8 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

9 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Proceedings of 13th Annual IEEE Conf. Computational Complexity, pages 8–12, 1998.

10 Sebastian Czort. The complexity of minimizing disjunctive normal form formulas. Master’s
Thesis, University of Aarhus, 1999.

11 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729,
1991.

12 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

13 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. JCSS, 65(4):672–694, 2002.

14 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing, pages 220–229, 1997.

15 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In STOC, pages 73–79,
2000.

16 Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct representations of
graphs. Information and Control, 71(3):181–185, 1986.

17 Sven Skyum and Leslie G Valiant. A complexity theory based on boolean algebra. J. ACM,
32(2):484–502, 1985.

18 N. V. Vinodchandran. Nondeterministic circuit minimization problem and derandomiz-
ing Arthur-Merlin games. International Journal of Foundations of Computer Science,
16(6):1297–1308, 2005.

19 Ryan Williams. Natural proofs versus derandomization. In STOC, pages 21–30, 2013.
20 Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–

333, 1983.

CCC 2015

380 On the (Non) NP-Hardness of Computing Circuit Complexity

A Appendix: Unary and Binary Encodings of MCSP

We will describe our reductions in the reduction model with “out of bounds” errors (Defini-
tion 1.1). In that model, we may define a unary encoding of MCSP (T, k) to be Tx where |T |
is the largest power of two such that |T | ≤ |Tx|, k = |x|. This encoding is sensible because
we may assume WLOG that k ≤ 2|T |/ log |T |: the size of a minimum circuit for a boolean
function on n inputs is always less than 2n+1/n. Similarly, we defined MCSP (T, k) in the
binary encoding to simply be Tk where |T | is the largest power of two such that |T | ≤ |Tk|.

Note that these encodings may be undesirable if one really wants to allow trivial yes
instances in a reduction to MCSP where the size parameter k is too large for the instance
to be interesting, or if one wants to allow T to have length other than a power of two. For
those cases, the following binary encoding works: we can encode the instance (T, k) as the
strings T00k′ such that k′ is k written “in binary” over the alphabet {01, 11}. There are also
TIME(poly(logn)) reductions to and from this encoding to the others above, mainly because
k′ has length O(logn).

I Proposition 4. There are TIME(poly(logn)) reductions between the unary encoding of
MCSP and the binary encoding of MCSP.

Proof. We can reduce from the binary encoding to the unary encoding as follows. Given an
input y, perform a doubling search (probing positions 1, 2, 4, . . ., 2`, etc.) until a ? character
is returned. Letting 2` < |y| be the position of the last bit read, this takes O(log |y|) probes
to the input. Then we may “parse” the input y into T as the first 2` bits, and integer k′
as the remainder. To process the integer k′, we begin by assuming k′ = 1, then we read in
log |y|) bits past the position 2`, doubling k′ for each bit read and adding 1 when the bit
read is 1, until k′ > |y| (in which case we don’t have to read further: the instance is trivially
yes) or we read a ? (in which case we have determined the integer k′). Finally, if the bit
position i requested is at most 2`, then we output the identical bit from the input Tk. If not,
we print 1 if i < 2` + k + 1, and ? otherwise. The overall output of this reduction is T1k′

where k < |T |. Since addition of O(logn) numbers can be done in O(logn) time, the above
takes poly(logn) time.

To reduce from the unary encoding to the binary encoding, we perform a doubling search
on the input y as in the previous reduction, to find the largest ` such that 2` < |y|. Then we
let the first 2` bits be T , and set the parameter k = |y| − 2` − 1. (Finding |y| can be done
via binary search in O(log |y|) calls to the reduction.) From here, outputting the ith bit of
either T or k in the binary encoding is easy, since |k| = O(log |y|).

J

	Introduction
	Intuition

	Preliminaries
	MCSP and Sub-Polynomial Time Reductions
	NP-Hardness of MCSP Implies Lower Bounds
	Consequences of NP-Hardness Under Polytime and Logspace Reductions
	Consequences of NP-Hardness under AC0 Reductions
	The Hardness of Nondeterministic Circuit Complexity

	Conclusion
	Appendix: Unary and Binary Encodings of MCSP

