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Abstract
A function defined on the Boolean hypercube is k-Fourier-sparse if it has at most k nonzero
Fourier coefficients. For a function f : Fn

2 → R and parameters k and d, we prove a strong
upper bound on the number of k-Fourier-sparse Boolean functions that disagree with f on at
most d inputs. Our bound implies that the number of uniform and independent random samples
needed for learning the class of k-Fourier-sparse Boolean functions on n variables exactly is at
most O(n · k log k).

As an application, we prove an upper bound on the query complexity of testing Booleanity
of Fourier-sparse functions. Our bound is tight up to a logarithmic factor and quadratically
improves on a result due to Gur and Tamuz (Chicago J. Theor. Comput. Sci., 2013).
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1 Introduction

Functions defined on the Boolean hypercube {0, 1}n = Fn
2 are fundamental objects in

theoretical computer science. It is well known that every such function f : Fn
2 → R can be

represented as a linear combination

f =
∑

S⊆[n]

f̂(S) · χS

of the 2n functions {χS}S⊆[n] defined by χS(x) = (−1)
∑

i∈S
xi . This representation is

known as the Fourier expansion of the function f , and the numbers f̂(S) are known as its
Fourier coefficients. The Fourier expansion of functions plays a central role in analysis of
Boolean functions and finds applications in numerous areas of theoretical computer science
including learning theory, property testing, hardness of approximation, social choice theory,
and cryptography. For an in-depth introduction to the topic the reader is referred to the
book of O’Donnell [22].

A classical result in learning theory is a general algorithm due to Kushilevitz and
Mansour [19], based on results of Linial, Mansour, and Nisan [20] and Goldreich and
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Levin [12], which enables to efficiently learn classes of Boolean functions with a “simple”
Fourier expansion. A common notion of simplicity of Fourier expansion is its sparsity. A
function is said to be k-Fourier-sparse if it has at most k nonzero Fourier coefficients. It follows
from [19] that given query access to a k-Fourier-sparse Boolean function f : Fn

2 → {0, 1}
it is possible to estimate its Fourier coefficients and to get a good approximation of f in
running time polynomial in n and k. Later, it was shown that such running time even allows
to reconstruct the function f exactly [13].

In recent years, properties of the Fourier expansion of functions were studied in the
property testing framework. We now mention some of those results; since this will not be
needed for the sequel, the reader can skip directly to the description of our results in the next
section. Gopalan, O’Donnell, Servedio, Shpilka, and Wimmer considered in [13] the problem
of testing if a given Boolean function is k-Fourier-sparse or ε-far from any such function.
Another problem studied there is that of deciding if a function is k-Fourier-dimensional,
that is, the Fourier support, viewed as a subset of Fn

2 , spans a subspace of dimension at
most k, or ε-far from satisfying this property. Gopalan et al. [13] established testers for these
properties whose query complexities depend only on k and ε. For k-Fourier-sparsity the
query complexity was a certain polynomial in k and 1/ε and for k-Fourier-dimensionality
it was O(k · 22k/ε). They also proved lower bounds of Ω(

√
k) and Ω(2k/2) respectively.

Another parameter associated with Boolean functions is the degree of its representation
as a polynomial over F2. The algorithmic task of testing if a function has F2-degree at
most d or is ε-far from any such function was considered by Alon et al. [1] and then by
Bhattacharyya et al. [6], who proved tight upper and lower bounds of Θ(2d + 1/ε) on the
query complexity. Note that all the above properties fall into the class of linear-invariant
properties, i.e., properties that are closed under compositions with any invertible linear
transformation of the domain. These properties have recently attracted a significant amount
of attention in the attempt to characterize efficient testability of them (see [24, 5] for related
surveys).

1.1 Our Results

List-decoding size

Our main technical result from which we derive all other results is concerned with the
list-decoding size of Fourier-sparse Boolean functions. In general, the list-decoding problem
of an error correcting code for a distance parameter d asks to find all the codewords whose
Hamming distance from a given word is at most d. Here we consider the (non-linear) binary
code of block length 2n whose codewords represent all the k-Fourier-sparse Boolean functions
on n variables.

It is not difficult to show that the total number of such functions is at most 2O(nk).
Indeed, there are 2O(nk) ways to choose the support of f̂ , and 2O(nk) ways to set those Fourier
coefficients which must all be integer multiples of 2−n in [−1,+1]. It is also not difficult to
show that the distance between any two distinct codewords is at least 2n/k. Indeed, it is
known that every k-Fourier-sparse Boolean function has F2-degree d ≤ log2 k (see, e.g., [4,
Lemma 3]), and therefore, by the Schwartz-Zippel lemma, every two distinct k-Fourier-sparse
Boolean functions disagree on at least 1/k fraction of the inputs. As a result, for every
function f : Fn

2 → R there is at most one codeword of distance smaller than 2n/(2k) from f .
We are not aware of any other known bounds beyond those two naive ones. We address

this question in the following theorem.
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60 The List-Decoding Size of Fourier-Sparse Boolean Functions

I Theorem 1.1. For every function f : Fn
2 → R, the number of k-Fourier-sparse Boolean

functions of distance at most d from f is 2O(ndk log k/2n).

We observe that for certain choices of k and d the bound given in Theorem 1.1 is tight.
For example, let f be the constant zero function, let k < 20.9n be a power of 2, and take
d = 2n/k. Consider all the indicator functions of linear subspaces of Fn

2 of co-dimension
log2 k. Every such function is of distance d from f and is k-Fourier-sparse (see Claim 2.4).
The number of such functions is 2Θ(n log k) = 2Θ(ndk log k/2n).

Learning from samples

As an application of the list-decoding bound, we next consider the problem of learning
the class of k-Fourier-sparse Boolean functions on n variables (exactly) from uniform and
independent random samples (see, e.g., [2, 18] for related work). Let us note already at
the outset that all the results mentioned here are not efficient: it is not known if there is
an algorithm for the problem whose running time is some fixed polynomial in n times an
arbitrary function of k. Among other things, such an algorithm would imply a breakthrough
on the long-standing open question of learning juntas from samples [7, 21, 25, 18].

The question of recovering a function that is sparse in the Fourier (or other) basis from
a few samples is the central question in the area of sparse recovery. It has been intensely
investigated for over a decade and, among other things, has applications for compressed
sensing and for the data stream model. The best previously known bounds on our question
are O(n · k log3 k) ≤ O(n4 · k) due to Cheraghchi, Guruswami, and Velingker [11] and
O(n2 · k log k) ≤ O(n3 · k) due to Bourgain [8], improving on a previous bound of Rudelson
and Vershynin [23] (who themselves improved on the work of Candès and Tao [10]). We
note in passing that they actually answer a harder question: first, because they handle all
functions, not necessarily Boolean-valued; second, because they show that a randomly chosen
set of sample locations of the above cardinality is good with high probability simultaneously
for all k-Fourier-sparse functions (sometimes known as the “deterministic” setting), whereas
we only want a random set of sample locations to be good with high probability for any
fixed k-Fourier-sparse function (the “randomized” setting); finally, because they obtain the
recovery result by proving a “restricted isometry property” of the Fourier matrix which
among other things implies a recovery algorithm running in time polynomial in 2n and k.

Using Theorem 1.1, we improve the upper bound on the sample complexity of learning
Fourier-sparse Boolean functions.

I Corollary 1.2. The number of uniform and independent random samples required for
learning the class of k-Fourier-sparse Boolean functions on n variables is O(n · k log k).

We believe that our better bound and its elementary proof shed more light on the problem
and might be useful elsewhere. In fact, in a follow-up work [15] we employ the techniques
developed here to study the “restricted isometry property” of random submatrices of Fourier
(and other) matrices, improving on the aforementioned works [11, 8]. We finally note that a
lower bound of Ω(k · (n− log2 k)) on the sample complexity can be obtained by considering
the problem of learning indicator functions of affine subspaces of Fn

2 of co-dimension log2 k

(see Theorem 3.7; see, e.g., [3] for the same lower bound in a different setting).

Testing Booleanity

We next consider the problem of testing Booleanity of Fourier-sparse functions, which was
introduced and studied by Gur and Tamuz in [14]. In this problem, given access to a
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k-Fourier-sparse function f : Fn
2 → R, one has to decide if f is Boolean, i.e., its image is

contained in {0, 1}, or not. The objective is to distinguish between the two cases with some
constant probability using as few queries to f as possible. It was shown in [14] that there
exists a (non-adaptive one-sided error) tester for the problem with query complexity O(k2),
and that every tester for the problem has query complexity Ω(k). Here, we use our result on
learning k-Fourier-sparse Boolean functions to improve the upper bound of [14] and prove
the following.

I Theorem 1.3. For every k there exists a non-adaptive one-sided error tester that using
O(k · log2 k) queries to an input k-Fourier-sparse function f : Fn

2 → R decides if f is Boolean
or not with constant success probability.

We note that, while the tester established in Theorem 1.3 has an improved query
complexity, it is not clear if it is efficient with respect to running time. It can be shown, though,
that using the learning algorithm of Fourier-sparse functions that follows from [8, 15] (instead
of Corollary 1.2) in our proof of Theorem 1.3, one can obtain an efficient algorithm (running
in time polynomial in n and k) with the slightly worse query complexity of O(k · log3 k).

Finally, we complement Theorem 1.3 by the following nearly matching lower bound.

I Theorem 1.4. Every non-adaptive one-sided error tester for Booleanity of k-Fourier-sparse
functions has query complexity Ω(k · log k).

1.2 Overview of Proofs
1.2.1 The List-Decoding Size of Fourier-Sparse Boolean Functions
In order to prove Theorem 1.1, we have to bound from above the number of k-Fourier-sparse
Boolean functions of distance at most d from a general function f : Fn

2 → R. In the discussion
below, let us consider the special case where f is the constant zero function. The general
result follows easily.

Here, we have to bound the number of k-Fourier-sparse Boolean functions g : Fn
2 → {0, 1}

of support size at most d. We start by observing using Parseval’s theorem that such functions
have small spectral norm ‖ĝ‖1 =

∑
S⊆[n] |ĝ(S)|. Next, we observe that the Fourier expansion

of the normalized function g/‖ĝ‖1 is a convex combination of functions ±χS , and thus can
be viewed, following a technique of Bruck and Smolensky [9], as an expectation over a
distribution on the S’s. Using the Chernoff-Hoeffding bound and the bound on the spectral
norm, we obtain a succinct representation for every such function g. The ability to represent
these functions by a binary string of bounded length yields the upper bound on their number.
We note that the proof approach somewhat resembles that of the upper bound on the
list-decoding size of Reed-Muller codes due to Kaufman, Lovett, and Porat [17].

1.2.2 Learning Fourier-Sparse Boolean Functions
As a warmup, let us mention an easy upper bound of O(n · k2). This follows by recalling
that there are at most 2O(nk) k-Fourier-sparse Boolean functions, and that each one differs
from any fixed function on at least 1/k fraction of the inputs. Hence by the union bound,
after O(n · k2) samples all other functions will be eliminated.

The improved bound in Corollary 1.2 follows similarly using the list-decoding result of
Theorem 1.1. Namely, we apply the union bound separately on functions of different distances
from the input function. Functions that are nearby are harder to “hit” using random samples,
but by the theorem, there are few of them; functions that are further away are in abundance,
but they are easier to “hit” using random samples.
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62 The List-Decoding Size of Fourier-Sparse Boolean Functions

1.2.3 Testing Booleanity of Fourier-Sparse Functions
The testing Booleanity problem is somewhat different from typical property testing problems.
Indeed, in property testing one usually has to distinguish objects that satisfy a certain property
from those that are ε-far from the property for some distance parameter ε > 0. However,
here the tester is required to decide if the function satisfies the Booleanity property or not,
with no distance parameter involved. This unusual setting makes sense in this case because
Fourier-sparse non-Boolean functions are always quite far from every Boolean function. More
precisely, the authors of [14] used the uncertainty principle (see Proposition 2.1) to prove
that every k-Fourier-sparse non-Boolean function f : Fn

2 → R is non-Boolean on at least
Ω(2n/k2) inputs (see Claim 2.3). This immediately implies a (non-adaptive one-sided error)
tester that uses O(k2) queries: just check that f is Boolean on O(k2) uniform inputs in Fn

2 .
The analysis of [14] turns out to be tight, as there are k-Fourier-sparse non-Boolean

functions that are not Boolean at only Θ(2n/k2) points. Indeed, for an even integer n,
consider the function f : Fn

2 → {0, 1, 2} defined by

f(x1, . . . , xn) = AND(x1, . . . , xn/2) + AND(xn/2+1, . . . , xn), (1)

which is not Boolean at only one point and has Fourier-sparsity 2 · 2n/2 (see Claim 2.4).

Upper bound

We prove Theorem 1.3 using our learning result, Corollary 1.2. To do so, we first observe that
a restriction of a k-Fourier-sparse non-Boolean function to a random subspace of dimension
O(log k) is non-Boolean with high probability (see Lemma 4.1). Since a restriction to a
subspace does not increase the Fourier-sparsity, this reduces our problem to testing Booleanity
of k-Fourier-sparse functions on n = O(log k) variables. Then, after O(k · log2 k) samples
from the subspace, if a non-Boolean value was found then we are clearly done. Otherwise, by
Corollary 1.2, the samples uniquely specify a Boolean candidate for the restricted function.
Such a function must be quite far from every other k-Fourier-sparse function (Boolean or
not; see Claim 2.2). This enables us to decide if the restricted function equals the Boolean
candidate function or not.

Lower bound

The upper bound in Theorem 1.3 gets close to the Ω(k) lower bound proven by Gur and
Tamuz in [14]. For their lower bound, they considered the following two distributions: (a)
the uniform distribution over all Boolean n-variable functions that depend only on their first
log2 k variables; (b) the uniform distribution over all n-variable functions that depend only
on their first log2 k variables and return a Boolean value on k − 1 of the assignments to the
relevant variables and the value 2 otherwise. It can be easily seen that any (possibly adaptive)
tester that distinguishes with some constant probability between distributions (a) and (b) has
query complexity Ω(k). Since the first distribution is supported on k-Fourier-sparse Boolean
functions and the second on k-Fourier-sparse non-Boolean functions, this implies that the
same lower bound holds for the query complexity of testing Booleanity of k-Fourier-sparse
functions.

Note that the distributions considered above are supported on log2 k-Fourier-dimensional
functions. It can be seen (say, using the uncertainty principle) that such functions are not
Boolean on at least 1/k fraction of their inputs, so O(k) random samples suffice for finding a
non-Boolean value if exists. Hence, in order to get beyond the Ω(k) lower bound, we need
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to consider k-Fourier-sparse functions that are not Boolean at only o(1/k) fraction of the
inputs – our functions will actually have O(1/k2) fraction of such inputs.

Specifically, we consider the distribution of functions obtained by composing the function
f given in (1) with a random invertible affine transformation. This is the class of functions
that can be represented as a sum 1V1 +1V2 of two indicators of affine subspaces V1, V2 ⊆ Fn

2 of
dimension n/2, which intersect at exactly one point. Intuitively, it seems that distinguishing
the functions in this class from those where V1 and V2 have empty intersection requires the
tester to learn the affine subspaces V1 and V2, a task that requires Ω(n · 2n/2) queries. We
prove such a lower bound for non-adaptive one-sided error testers. Since the above functions
are k-Fourier-sparse for k = O(2n/2), the obtained lower bound is Ω(k · log k).

2 Preliminaries

Let [n] denote the set {1, . . . , n}. A function f : Fn
2 → R is Boolean if its image is contained

in {0, 1} and is non-Boolean otherwise. The distance between two functions f, g : Fn
2 → R,

denoted dist(f, g), is the number of vectors x ∈ Fn
2 for which f(x) 6= g(x).

Fourier Expansion

For every S ⊆ [n], let χS : Fn
2 → {−1, 1} denote the function defined by χS(x) = (−1)

∑
i∈S

xi .
It is well known that the 2n functions {χS}S⊆[n] form an orthonormal basis of the space
of functions Fn

2 → R with respect to the inner product 〈f, g〉 = Ex[f(x) · g(x)], where x is
distributed uniformly over Fn

2 . Thus, every function f : Fn
2 → R can be uniquely represented

as a linear combination f =
∑

S⊆[n] f̂(S) · χS of this basis. This representation is called the
Fourier expansion of f , and the numbers f̂(S) are referred to as its Fourier coefficients. The
support of f is defined by supp(f) = {x ∈ Fn

2 | f(x) 6= 0} and the support of f̂ , known as the
Fourier spectrum of f , by supp(f̂) = {S ⊆ [n] | f̂(S) 6= 0}. We say that f is k-Fourier-sparse1
if | supp(f̂)| ≤ k. For every p ≥ 1 we denote ‖f̂‖p = (

∑
S⊆[n] |f̂(S)|p)1/p. For p = 1, ‖f̂‖1 is

known as the spectral norm of f . Parseval’s theorem states that Ex[f(x)2] = ‖f̂‖22.
The uncertainty principle says that there is no nonzero function f for which the supports

of both f and f̂ are small (see, e.g., [22, Exercise 3.15]). We state it below with two simple
consequences.

I Proposition 2.1 (The Uncertainty Principle). For every nonzero function f : Fn
2 → R,

| supp(f)| · | supp(f̂)| ≥ 2n.

I Claim 2.2. For every two distinct k-Fourier-sparse functions f, g : Fn
2 → R, dist(f, g) ≥

2n/(2k).

Proof. Apply Proposition 2.1 to the function f −g, whose Fourier-sparsity is at most 2k. J

I Claim 2.3 ([14]). For every k-Fourier-sparse function f : Fn
2 → R, if f is non-Boolean

then
|{x ∈ Fn

2 | f(x) /∈ {0, 1}}| ≥ 2
k2 + k + 2 · 2

n.

1 Boolean functions are sometimes defined in the literature with range {−1, +1} rather than {0, 1}. Notice
that this affects the Fourier-sparsity by at most 1.
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64 The List-Decoding Size of Fourier-Sparse Boolean Functions

Proof. Apply Proposition 2.1 to the function f · (f − 1), whose Fourier-sparsity is at most

|{S4T | S, T ∈ supp(f̂)}|+ | supp(f̂)| ≤
(
k

2

)
+ k + 1,

where 4 stands for symmetric difference of sets. J

We also need the following simple claim.

I Claim 2.4. For every affine subspace V ⊆ Fn
2 of co-dimension k, the indicator function

1V : Fn
2 → {0, 1} is 2k-Fourier-sparse.

Proof. Since V has co-dimension k, there exist a1, . . . , ak ∈ Fn
2 and b1, . . . , bk ∈ F2 such that

V = {x ∈ Fn
2 | 〈x, ai〉 = bi, i = 1, . . . , k}. For every i, let Si ⊆ [n] denote the set whose

characteristic vector is ai, and observe that for every x ∈ Fn
2 ,

1V (x) =
k∏

i=1

(1 + (−1)bi · χSi
(x)

2

)
.

This representation implies that 1V is 2k-Fourier-sparse. J

Chernoff-Hoeffding Bound
I Theorem 2.5. Let X1, . . . , XN be N identically distributed independent random variables
in [−a,+a] satisfying E[Xi] = µ for all i. Then for every δ ≤ 1/2 and N ≥ C ·a2 · log(1/δ)/ε2,
for a universal constant C, it holds that

Pr
[∣∣∣µ− 1

N
·

N∑
i=1

Xi

∣∣∣ < ε

]
≥ 1− δ.

3 The List-Decoding Size of Fourier-Sparse Boolean Functions

We turn to prove Theorem 1.1, which provides an upper bound on the list-decoding size of the
code of block length 2n of all k-Fourier-sparse Boolean functions on n variables. Equivalently,
for a general distance d and a function f : Fn

2 → R we bound the number of k-Fourier-sparse
Boolean functions on n variables of distance at most d from f .

We start by proving that a function f : Fn
2 → R with small spectral norm can be well

approximated by a linear combination of few functions from {χS}S⊆[n] with coefficients
of equal magnitude. This was essentially proved in [9] and we include here the proof for
completeness.

I Lemma 3.1. For every function f : Fn
2 → R, ε > 0, and δ ∈ (0, 1/2], there exists a

collection2 F of O(‖f̂‖21 · log(1/δ)/ε2) subsets of [n] with signs (aS ∈ {±1})S∈F such that
for all but at most δ fraction of x ∈ Fn

2 it holds that

∣∣∣f(x)− ‖f̂‖1
|F|

·
∑
S∈F

aS · χS(x)
∣∣∣ < ε .

2 Repetitions of subsets in the collection F are allowed.
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Proof. Observe that the function f can be represented as follows.

f =
∑

S⊆[n]

f̂(S) · χS =
∑

S⊆[n]

|f̂(S)|
‖f̂‖1

· ‖f̂‖1 · sign(f̂(S)) · χS = E
S∼D

[‖f̂‖1 · sign(f̂(S)) · χS ],

where D is the distribution defined by D(S) = |f̂(S)|/‖f̂‖1. Let F be a collection of
|F| = O(‖f̂‖21 · log(1/δ)/ε2) independent random samples from the distribution D. For every
x ∈ Fn

2 , the Chernoff-Hoeffding bound (Theorem 2.5) implies that with probability at least
1− δ it holds that∣∣∣f(x)− 1

|F|
·
∑
S∈F
‖f̂‖1 · aS · χS(x)

∣∣∣ < ε, (2)

where aS = sign(f̂(S)). By linearity of expectation, it follows that there exist F and signs
(aS)S∈F for which (2) holds for all but at most δ fraction of x ∈ Fn

2 , as required. J

We now apply Lemma 3.1 to Fourier-sparse functions in Fn
2 → {−1, 0,+1} with bounded

support size, and then, in Corollary 3.3, derive an upper bound on the number of these
functions.

I Corollary 3.2. Let f : Fn
2 → {−1, 0,+1} be a k-Fourier-sparse function satisfying

| supp(f)| ≤ d. Then for every δ ∈ (0, 1/2] there exists a collection F of O(dk log(1/δ)/2n)
subsets of [n] with signs (aS ∈ {±1})S∈F such that for all but at most δ fraction of x ∈ Fn

2 it
holds that ∣∣∣f(x)− ‖f̂‖1

|F|
·
∑
S∈F

aS · χS(x)
∣∣∣ < 1

2 .

Proof. By the Cauchy-Schwarz inequality and Parseval’s theorem, we obtain that

‖f̂‖21
k
≤
∑

S⊆[n]

f̂(S)2 = 2−n ·
∑

x∈Fn
2

f(x)2 ≤ d

2n
.

The corollary follows from Lemma 3.1, applied with ε = 1/2, for |F| = O(‖f̂‖21 log(1/δ)/ε2) =
O(dk log(1/δ)/2n). J

I Corollary 3.3. The number of k-Fourier-sparse functions f : Fn
2 → {−1, 0,+1} satisfying

| supp(f)| ≤ d is 2O(ndk log k/2n).

Proof. For every k-Fourier-sparse function f : Fn
2 → {−1, 0,+1} satisfying | supp(f)| ≤ d,

let F and (aS)S∈F be as given by Corollary 3.2 for, say, δ = 1/(5k). Since the range of f is
{−1, 0,+1}, it follows that the collection F , the signs (aS)S∈F , and the value of ‖f̂‖1 define
a function of distance at most δ · 2n from f . Notice that by Claim 2.2 and our choice of
δ, the distance between every two distinct k-Fourier-sparse functions is larger than 2δ · 2n.
Thus, a function of distance at most δ · 2n from f fully defines f . This implies that f can
be represented by a binary string of length O(n · dk log k/2n), so the total number of such
functions is 2O(ndk log k/2n). J

The bound in Corollary 3.3 implies a bound on the number of Fourier-sparse Boolean
functions of bounded distance from a given Boolean function.

I Corollary 3.4. For every k-Fourier-sparse Boolean function f : Fn
2 → {0, 1}, the number

of k-Fourier-sparse Boolean functions of distance at most d from f is 2O(ndk log k/2n).
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66 The List-Decoding Size of Fourier-Sparse Boolean Functions

Proof. Let f : Fn
2 → {0, 1} be a k-Fourier-sparse Boolean function. Consider the mapping

that maps every k-Fourier-sparse Boolean function g : Fn
2 → {0, 1}, whose distance from f is

at most d, to the function h = f − g. Observe that h is a 2k-Fourier-sparse function from Fn
2

to {−1, 0,+1} satisfying | supp(h)| ≤ d. By Corollary 3.3, the number of such functions h is
bounded by 2O(ndk log k/2n). Since the above mapping is bijective, this bound holds for the
number of functions g as well. J

Equipped with Corollary 3.3, we restate and prove Theorem 1.1.

I Theorem 1.1. For every function f : Fn
2 → R, the number of k-Fourier-sparse Boolean

functions of distance at most d from f is 2O(ndk log k/2n).

Proof. If there is no k-Fourier-sparse Boolean function of distance at most d from f , then
the bound trivially holds. So assume that such a function g : Fn

2 → {0, 1} exists. Observe
that every k-Fourier-sparse Boolean function of distance at most d from f has distance at
most 2d from g. Thus, by Corollary 3.4 applied to g, the number of such functions is at most
2O(ndk log k/2n). J

3.1 The Sample Complexity of Learning Fourier-Sparse Boolean
Functions

The sample complexity of learning a class of functions is the minimum number of uniform
and independent random samples needed from a function in the class for specifying it with
high success probability. Here we consider the class of k-Fourier-sparse Boolean functions on
n variables, and show how Theorem 1.1 implies an upper bound on the sample complexity of
learning it (Corollary 3.6).

I Theorem 3.5. For every n, 1 < k ≤ 2n, and a k-Fourier-sparse function f : Fn
2 → R, the

following holds. The probability that when sampling O(n · k log k) uniform and independent
random samples from f , there exists a k-Fourier-sparse Boolean function g 6= f that agrees
with f on all the samples is 2−Ω(n log k).

Proof. Consider q = O(nk log k) samples (x, f(x)) from a k-Fourier-sparse function f : Fn
2 →

R, where x is distributed uniformly and independently in Fn
2 . By Claim 2.2, the distance

between f and every other k-Fourier-sparse function is at least 2n/(2k). For an integer
` ∈ [1, blog2 2kc], consider all the k-Fourier-sparse Boolean functions whose distance from
f is in [2n−`, 2n−`+1]. By Theorem 1.1, the number of such functions is 2O(nk log k/2`). The
probability that such a function agrees with q random independent samples of f is at most
(1− 2−`)q. By the union bound, the probability that at least one of these functions agrees
with the q samples is at most

2O(nk log k/2`) · (1− 2−`)q ≤ 2O(nk log k/2`) · e−q/2`

≤ 2−Ω(n log k),

where the last inequality holds for an appropriate choice of q = O(nk log k). By applying the
union bound over all the values of `, it follows that with probability 1− 2−Ω(n log k) all the
k-Fourier-sparse Boolean functions (besides f) are eliminated, completing the proof. J

The following corollary follows immediately from Theorem 3.5 and confirms Corollary 1.2.

I Corollary 3.6. For every n and 1 ≤ k ≤ 2n, the number of uniform and independent
random samples required for learning the class of k-Fourier-sparse Boolean functions on n
variables with success probability 1− 2−Ω(n log k) is O(n · k log k).
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We end with the following simple lower bound.

I Theorem 3.7. For every n and 1 ≤ k ≤ 2n, the number of uniform and independent
random samples required for learning the class of k-Fourier-sparse Boolean functions on n
variables with constant success probability is Ω(k · (n− log2 k)).

Proof. Assume without loss of generality that k is a power of 2. Let A be an algorithm
for learning the class above with constant success probability p > 0 using q uniform and
independent random samples. Consider the class G of indicators of affine subspaces of Fn

2 of
co-dimension log2 k (i.e., affine subspaces of Fn

2 of size 2n/k). By Claim 2.4, the functions in
G are k-Fourier-sparse. Observe that their number satisfies

|G| = 2Θ(n·min(log2 k,n−log2 k)).

By Yao’s minimax principle, there exists a deterministic algorithm A′ (obtained by fixing
the random coins of A) that given evaluations of a function, chosen uniformly at random
from G, on a fixed collection of q points in Fn

2 , learns it with success probability p.
Now, observe that the expected number of 1-evaluations that A′ receives is q/k. By

Markov’s inequality, the probability that A′ receives at least 2q/(pk) 1-evaluations is at most
p/2. It follows that for at least p/2 fraction of the functions in G the algorithm A′ receives
at most 2q/(pk) 1-evaluations and learns them correctly. Assuming that pk ≥ 2, the number
of possible evaluation sequences on these inputs is at most

2q/(pk)∑
i=0

(
q

i

)
≤ (k · pe/2)2q/(pk) ≤ 2O(q·log2 k/k),

where for the first inequality we used the standard inequality
∑t

i=0
(

q
i

)
≤ (qe/t)t which holds

for t ≤ q (see, e.g., [16, Proposition 1.4]). The above is bounded from below by |G| · p/2,
implying that

q ≥ Ω(n ·min(log2 k, n− log2 k) · k/ log2 k) ≥ Ω(k · (n− log2 k)),

where the last inequality follows by considering separately the cases of k ≥ 2n/2 and k < 2n/2.
In case that pk < 2, the number of possible evaluation sequences is at most 2q, and the
bound follows similarly using the assumption that p is a fixed constant. J

4 Testing Booleanity of Fourier-Sparse Functions

In this section we prove upper and lower bounds on the query complexity of testing Booleanity
of Fourier-sparse functions. For a parameter k, consider the problem in which given access to
a k-Fourier-sparse function f : Fn

2 → R one has to decide if f is Boolean, i.e., f(x) ∈ {0, 1}
for every x ∈ Fn

2 , or not, with some constant success probability.

4.1 Upper Bound
As mentioned before, Gur and Tamuz proved in [14] that every k-Fourier-sparse non-Boolean
function f on n variables satisfies f(x) /∈ {0, 1} for at least Ω(2n/k2) inputs x ∈ Fn

2 (see
Claim 2.3). Thus, querying the input function f on O(k2) independent and random inputs
suffices in order to catch a non-Boolean value of f if such a value exists. In the following lemma
it is shown that it is not really needed to choose the O(k2) random vectors independently. It
turns out that a restriction of a k-Fourier-sparse non-Boolean function to a random linear
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subspace of size O(k2), that is, of dimension ≈ 2 log2 k, is with high probability non-Boolean.
Thus, the tester could randomly pick such a subspace and query f on all of its vectors. This
decreases the amount of randomness used in the tester of [14] from O(nk2) to O(n log k).
More importantly for us, this reduces the problem of testing Booleanity of k-Fourier-sparse
functions on n variables to the case of k = Θ(2n/2).

I Lemma 4.1. Let f : Fn
2 → R be a k-Fourier-sparse non-Boolean function, and denote

L = (k2 + k+ 2)/2. Then, for every δ > 0, the restriction of f to a uniformly chosen random
linear subspace of dimension r ≥ log2(L/δ) is also non-Boolean with probability at least 1− δ.

Proof. Let f : Fn
2 → R be a k-Fourier-sparse non-Boolean function. By Claim 2.3, there are

at least 2n/L vectors x ∈ Fn
2 for which f(x) /∈ {0, 1}. This implies that there exists a set S of

at least log2(2n/L) linearly independent vectors in Fn
2 on which f is not Boolean. Consider a

linear subspace V ⊆ Fn
2 of dimension n− 1 chosen uniformly at random. Since the vectors

in S are linearly independent, the probability that no vector in S is in V is 2−|S| ≤ L
2n . It

follows that the restriction f |V of f to V is a k-Fourier-sparse function defined on a linear
subspace of dimension n − 1, and its probability to be Boolean is at most L

2n . Note that
one can think of the domain of f |V as Fn−1

2 , because V and Fn−1
2 are isomorphic and a

composition with an invertible linear transformation does not affect the Fourier-sparsity.
Now, let us repeat the above process n− r−1 additional times, until we get a linear subspace
of dimension r. The probability that the function becomes Boolean in one of the steps is at
most

L

2n
+ L

2n−1 + · · ·+ L

2r+1 ≤
L

2r
≤ δ,

and we are done. J

We now restate and prove Theorem 1.3, which gives an upper bound of O(k · log2 k) on
the query complexity of testing Booleanity of k-Fourier-sparse functions. In the proof, we
first apply Lemma 4.1 to restrict the input function to a subspace of dimension O(log k).
Then, we apply Theorem 3.5 in an attempt to learn the restricted function and check if it is
consistent with some k-Fourier-sparse Boolean function.

I Theorem 1.3. For every k there exists a non-adaptive one-sided error tester that using
O(k · log2 k) queries to an input k-Fourier-sparse function f : Fn

2 → R decides if f is Boolean
or not with constant success probability.

Proof. Consider the tester that given access to an input k-Fourier-sparse function f : Fn
2 → R

acts as follows:
1. Pick uniformly at random a linear subspace V of Fn

2 of dimension r = min(n, dlog2(100L)e),
where L = (k2 + k + 2)/2, and let T be an invertible linear transformation mapping Fr

2
to V .

2. Query f on O(r · k log k) random vectors chosen uniformly and independently from the
subspace V . Note that these queries can be seen as uniform and independent random
samples from the function g : Fr

2 → R defined as g = f ◦ T .
3. If there exists a k-Fourier-sparse Boolean function on r variables that agrees with the

above samples of g then accept, and otherwise reject.

We turn to prove the correctness of the above tester. If f is a k-Fourier-sparse Boolean
function then so is g, because a restriction to a subspace and a composition with a linear
transformation leave the function k-Fourier-sparse and Boolean. Hence, in this case the
tester accepts with probability 1.
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On the other hand, if f is a k-Fourier-sparse non-Boolean function, then by Lemma 4.1
the restriction of f to the random subspace V of dimension r picked in Item 1, as well
as the function g defined in Item 2, are also non-Boolean with probability at least 0.99.
In this case, by Theorem 3.5, the probability that there is a k-Fourier-sparse Boolean
function on r variables that agrees with O(r · k log k) uniform and independent random
samples from g is 2−Ω(r log k), thus the tester correctly rejects with probability at least,
say, 0.9, as required. Finally, observe that the number of queries made by the tester is
O(r · k log k) = O(k · log2 k). J

4.2 Lower Bound
We turn to restate and prove our lower bound on the query complexity of testing Booleanity
of k-Fourier-sparse functions.

I Theorem 1.4. Every non-adaptive one-sided error tester for Booleanity of k-Fourier-sparse
functions has query complexity Ω(k · log k).

Proof. For a given integer k, let n be the largest even integer satisfying k ≥ 3 · 2n/2. Define
a distribution Dno over functions in Fn

2 → {0, 1, 2} as follows. Pick uniformly at random
a pair (V1, V2) of affine subspaces satisfying dim(V1) = dim(V2) = n/2 and |V1 ∩ V2| = 1,
and output the sum of indicators 1V1 + 1V2 . Notice that, by Claim 2.4, such a function has
Fourier-sparsity at most 2 · 2n/2 ≤ k. Thus, a function chosen from Dno is k-Fourier-sparse
and non-Boolean with probability 1.

Let T be a non-adaptive one-sided error randomized tester for Booleanity of k-Fourier-
sparse functions with query complexity q and success probability at least 2/3. By Yao’s
minimax principle, there exists a deterministic tester T ′ (obtained by fixing the random
coins of T ) that rejects a random function chosen from Dno with probability at least 2/3.
Since T is non-adaptive and has one-sided error, it follows that T ′ queries an input function
on q fixed vectors a1, . . . , aq ∈ Fn

2 , accepts every k-Fourier-sparse Boolean function, and
rejects a function chosen from Dno with probability at least 2/3. We turn to prove that
q > (n · 2n/2)/1000 = Ω(k · log k).

Assume in contradiction that q ≤ (n · 2n/2)/1000. Let f be a random function chosen
from Dno, that is, f = 1V1 + 1V2 for random affine subspaces V1 and V2 of dimension n/2
satisfying |V1 ∩ V2| = 1. For i = 1, 2, let Wi be the affine span of {a1, . . . , aq} ∩ Vi. Let E be
the event that the intersection of W1 and W2 is empty. We turn to prove that if the event E
happens then the tester T ′ accepts the function f and that the probability of this event is at
least 0.9. This contradicts the success probability of T ′ on functions chosen from Dno and
completes the proof.

I Lemma 4.2. If the event E happens then the tester T ′ accepts the function f .

Proof. Assume that the event E happens, i.e., W1 ∩W2 = ∅. Then, there exists an affine
subspace V ′2 of dimension n/2− 1 satisfying W2 ⊆ V ′2 ( V2 and V1 ∩ V ′2 = ∅. Consider the
function g = 1V1 + 1V ′

2
. By Claim 2.4, g is a Boolean function whose Fourier-sparsity is

at most 3 · 2n/2 ≤ k, thus it is accepted by T ′. However, g satisfies g(ai) = f(ai) for every
1 ≤ i ≤ q. This implies that T ′ cannot distinguish between g and f , so it must accept f as
well. J

I Lemma 4.3. The probability of the event E is at least 0.9.
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Proof. Denote by X the number of vectors in {a1, . . . , aq} ∩ V1. Since V1 is distributed
uniformly over all affine subspaces of dimension n/2, the probability that ai belongs to V1 is
2−n/2 for every 1 ≤ i ≤ q . Thus, by linearity of expectation,

E[X] = q

2n/2 ≤
(n · 2n/2)/1000

2n/2 = n

1000 .

By Markov’s inequality, we obtain that

Pr
[
dim(W1) ≥ n

10

]
≤ Pr

[
X ≥ n

10

]
≤ 1

100 .

Now, fix a choice of V1 for which dim(W1) < n/10, and consider the randomness over the
choice of V2. Notice that, conditioned on V1, V2 is distributed uniformly over all the affine
subspaces of dimension n/2 which contain exactly one vector from V1. By symmetry, every
vector of V1 has probability |V1|−1 = 2−n/2 to belong to V2. Thus, the probability that the
vector that belongs to both V1 and V2 is in W1 is |W1| · 2−n/2 < 2n/10 · 2−n/2 = 2−2n/5.

Finally, the probability that W1 ∩W2 = ∅ is at least the probability that W1 ∩ V2 = ∅,
and the latter is at least 1− (0.01 + 2−2n/5) ≥ 0.9 for every sufficiently large n. J

J
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