
Incompressible Functions, Relative-Error
Extractors, and the Power of Nondeterministic
Reductions (Extended Abstract)∗

Benny Applebaum1, Sergei Artemenko2, Ronen Shaltiel2, and
Guang Yang3

1 Tel Aviv University, Tel Aviv, Israel, bennyap@post.tau.ac.il
2 Haifa University, Haifa, Israel, sartemen@gmail.com, ronen@cs.haifa.ac.il
3 Tsinghua University, Beijing, China, guang.research@gmail.com

Abstract
A circuit C compresses a function f : {0, 1}n → {0, 1}m if given an input x ∈ {0, 1}n the circuit
C can shrink x to a shorter `-bit string x′ such that later, a computationally-unbounded solver D
will be able to compute f(x) based on x′. In this paper we study the existence of functions which
are incompressible by circuits of some fixed polynomial size s = nc. Motivated by cryptographic
applications, we focus on average-case (`, ε) incompressibility, which guarantees that on a random
input x ∈ {0, 1}n, for every size s circuit C : {0, 1}n → {0, 1}` and any unbounded solver D,
the success probability Prx[D(C(x)) = f(x)] is upper-bounded by 2−m + ε. While this notion
of incompressibility appeared in several works (e.g., Dubrov and Ishai [12]), so far no explicit
constructions of efficiently computable incompressible functions were known. In this work we
present the following results:
1. Assuming that E is hard for exponential size nondeterministic circuits, we construct a poly-

nomial time computable boolean function f : {0, 1}n → {0, 1} which is incompressible by
size nc circuits with communication ` = (1 − o(1)) · n and error ε = n−c. Our technique
generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the
previous construction of Shaltiel and Artemenko [5].

2. We show that it is possible to achieve negligible error parameter ε = n−ω(1) for nonboolean
functions. Specifically, assuming that E is hard for exponential size Σ3-circuits, we construct
a nonboolean function f : {0, 1}n → {0, 1}m which is incompressible by size nc circuits with
` = Ω(n) and extremely small ε = n−c · 2−m. Our construction combines the techniques of
Trevisan and Vadhan [47] with a new notion of relative error deterministic extractor which
may be of independent interest.

3. We show that the task of constructing an incompressible boolean function f : {0, 1}n → {0, 1}
with negligible error parameter ε cannot be achieved by “existing proof techniques”. Namely,
nondeterministic reductions (or even Σi reductions) cannot get ε = n−ω(1) for boolean incom-
pressible functions. Our results also apply to constructions of standard Nisan-Wigderson type
PRGs and (standard) boolean functions that are hard on average, explaining, in retrospective,
the limitations of existing constructions. Our impossibility result builds on an approach of
Shaltiel and Viola [40].
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1 Introduction

In this paper we study several non-standard pseudorandom objects including incompressible
functions, non-boolean PRGs and relative-error extractors for samplable and recognizable
distributions. We present new constructions of these objects, relate them to each other and
to standard pseudorandom objects, and study their limitations. Following some background
on “traditional” pseudorandom objects (Section 1.1), we define and motivate incompressible
functions, non-boolean PRGs and extractors for samplable distributions (Section 1.2). We
continue with additional background on Hardness assumptions (Section 1.3), and state our
results in Sections 1.4 – 1.7. The reader is referred to [1] for a full version of the paper.

1.1 Incomputable functions and Pseudorandom generators
Functions that are hard to compute on a random input, and pseudorandom generators (PRGs)
are fundamental objects in Complexity Theory, Pseudorandomness and Cryptography.

I Definition 1.1 (incomputable functions and pseudorandom generators).
A function f : {0, 1}n → {0, 1}m is incomputable by a class C of functions if f
is not contained in C. We say that f is ε-incomputable by C if for every function
C : {0, 1}n → {0, 1}m in C, Prx←Un [C(x) = f(x)] ≤ 1

2m + ε.
A function G : {0, 1}r → {0, 1}n is an ε-PRG for a class C of functions if for every
function C : {0, 1}n → {0, 1} in C, |Pr[C(G(Ur)) = 1]− Pr[C(Un) = 1]| ≤ ε.

A long line of research is devoted to achieving constructions of explicit incomputable
functions and PRGs. As we are unable to give unconditional constructions of such explicit
objects, the focus of many previous works is on achieving conditional constructions, that rely
on as weak as possible unproven assumption. A common assumption under which explicit
incomputable functions and PRGs can be constructed is the assumption below:

I Assumption 1.2 (E is hard for exponential size circuits). There exists a problem L in
E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n, circuits of
size 2βn fail to compute the characteristic function of L on inputs of length n.

A long line of research in complexity theory is concerned with “hardness amplification”
(namely, conditional constructions of explicit ε-incomputable functions with small ε) and
“hardness versus randomness tradeoffs” (namely, conditional constructions of explicit PRGs).
We sum up some of the main achievements of this line of research in the theorem below.

I Theorem 1.3 ([30, 34, 6, 25, 44]). If E is hard for exponential size circuits, then for every
constant c > 1 there exists a constant a > 1 such that for every sufficiently large n, and every
r such that a logn ≤ r ≤ n:

There is a function f : {0, 1}r → {0, 1} that is n−c-incomputable for size nc circuits.
Furthermore, f is computable in time poly(nc).1
There is a function G : {0, 1}r → {0, 1}n that is an n−c-PRG for size nc circuits.
Furthermore, G is computable in time poly(nc).

In the statement of Theorem 1.3 we allow input length r (of the functions f and G) to
vary between a logn and n. It should be noted that the case of r > a logn easily follows

1 A statement like this means that we consider a family f = {fn} for growing input lengths, and we think
of r = r(n) as a function. We use this convention throughout the paper.
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584 Incompressible Functions

from the case of r = a logn. We state the theorem this way, as we want to emphasize that by
choosing r = nΩ(1), we obtain incomputable functions/PRGs which run in time polynomial
in their input length.

We also stress that in many settings in derandomization, increasing the input length r
of a pseudorandom object, allows achieving very small error of ε = 2−Ω(r). In contrast, in
Theorem 1.3 this dependance is not achieved. More precisely, if we set r = nΩ(1), we only
get ε = n−c = r−Ω(1) which is polynomially small in the input length. We will elaborate on
this limitation later on.

1.2 Additional Pseudorandom objects
In this paper we consider generalizations of incomputable functions and PRGs that were
introduced by Dubrov and Ishai [12]. We also consider the notion of extractors for samplable
distributions introduced by Trevisan and Vadhan [47].

1.2.1 Incompressible functions
1.2.1.1 Compression

Consider the following scenario. A computationally-bounded machine C wishes to compute
some complicated function f on an input x of length n. While C cannot compute f(x) alone,
it has a communication-limited access to a computationally-unbounded trusted “solver” D,
who is willing to help. Hence, C would like to “compress” the n-bit input x to a shorter
string x′ of length ` (the communication bound) while preserving the information needed to
compute f(x).

This notion of compression was introduced by Harnik and Naor [24] who studied the case
where f is an NP-hard function. (Similar notions were also studied by the Parameterized
Complexity community, see [24] for references.) Following Dubrov and Ishai [12], we focus
on a scaled-down version of the problem where the gap between the complexity of f to
the complexity of the compressor C is some fixed polynomial (e.g., C runs in time n2,
while f is computable in time n3). In this setting, the notion of incompressibility is a
natural strengthening of incomputability (as defined in Definition 1.1). We proceed with a
formal definition. It is more useful to define the notion of “incompressibility” rather than
“compressibility”. In the following, the reader should think of m < ` < n.

I Definition 1.4 (incompressible function [12]). A function f : {0, 1}n → {0, 1}m is incom-
pressible by a function C : {0, 1}n → {0, 1}` if for every function D : {0, 1}` → {0, 1}m,
there exists x ∈ {0, 1}m such that D(C(x)) 6= f(x). We say that f is ε-incompressible
by C if for every function D : {0, 1}` → {0, 1}m, Prx←Un [D(C(x)) = f(x)] ≤ 1

2m + ε. We
say that f is `-incompressible (resp. (`, ε)-incompressible) by a class C if for every
C : {0, 1}n → {0, 1}` in C, f is incompressible (resp. ε-incompressible) by C.

Incompressible functions are a generalization of incomputable functions in the sense that
for every ` ≥ 1 an (`, ε)-incompressible function is in particular ε-incomputable. However,
incompressibility offers several additional advantages and yield some interesting positive and
negative results.

1.2.1.2 Communication lower-bounds for verifiable computation

As an immediate example, consider the problem of verifiable computation where a computa-
tionally bounded client C who holds an input x ∈ {0, 1}n wishes to delegate the computation
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of f : {0, 1}n → {0, 1} (an n3-time function) to a computationally strong (say n10-time)
untrusted server, while verifying that the answer is correct. This problem has attracted a
considerable amount of research, and it was recently shown [28] that verifiable computa-
tion can be achieved with one-round of communication in which the client sends x to the
server, and, in addition, the parties exchange at most polylogarithmic number of bits. If
(1−o(1)) ·n-incompressible functions exist, then this is essentially optimal. Furthermore, this
lower-bound holds even in the preprocessing model ( [15, 9, 2]) where the client is allowed to
send long messages before seeing the input. Similar tight lower bounds can be shown for other
related cryptographic tasks such as instance-hiding or garbled circuits (cf. [3, Section 6]).

1.2.1.3 Leakage-resilient storage [10]

On the positive side, consider the problem of storing a cryptographic keyK on a computer that
may leak information. Specifically, assume that our device was hacked by a computationally-
bounded virus C who reads the memory and sends at most ` bits to a (computationally
unbounded) server D.2 Is it possible to securely store a cryptographic key in such a scenario?
Given an (`, ε)-incompressible function f : {0, 1}n → {0, 1}m we can solve the problem
(with an information-theoretic security) by storing a random x ← {0, 1}n and, whenever
a cryptographic key K is needed, compute K = f(x) on-the-fly without storing it in the
memory. For this application, we need average-case incompressibility (ideally with negligible
ε), and a large output length m. Furthermore, it is useful to generalize incompressibility to
the interactive setting in which the compressor C is allowed to have a multi-round interaction
with the server D. (See the full version [1] for a formal definition.)
Unfortunately, so far no explicit constructions of incompressible functions (based on “standard
assumptions”) are known, even in the worst-case setting.

1.2.2 PRGs for nonboolean circuits
Dubrov and Ishai [12] considered a generalization of pseudorandom generators, which should
be secure even against distinguishers that output many bits. In the definition below, the
reader should think of ` ≤ r < n.

I Definition 1.5 (PRG for boolean and nonboolean distinguishers [12]). A function G :
{0, 1}r → {0, 1}n is an ε-PRG for a function C : {0, 1}n → {0, 1}` if the distributions
C(G(Ur)) and C(Un) are ε-close.3 G is an (`, ε)-PRG for a class C of functions, if G is an
ε-PRG for every function C : {0, 1}n → {0, 1}` in C.

Indeed, note that a (1, ε)-PRG is simply an ε-PRG. Dubrov and Ishai noted that PRGs
with large ` can be used to reduce the randomness of sampling procedures. We now explain
this application. In the definition below, the reader should think of ` ≤ n.

I Definition 1.6 (Samplable distribution). We say that a distribution X on ` bits is samplable
by a class C of functions C : {0, 1}n → {0, 1}` if there exists a function C in the class such
that X is C(Un).

Imagine that we can sample from some interesting distribution X on ` = n1/10 bits
using n random bits, by a procedure C that runs in time n2. If we have a poly(n)-time

2 One may argue that if the outgoing communication is too large, the virus may be detected.
3 We use Un to denote the uniform distribution on n bits. Two distributions X,Y over the same domain

are ε-close if for any event A, |Pr[X ∈ A]− Pr[Y ∈ A]| ≤ ε.
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586 Incompressible Functions

computable (`, ε)-PRG G : {0, 1}r → {0, 1}n against size n2 circuits, then the procedure
P (s) = C(G(s)) is a polynomial time procedure that samples a distribution that is ε-close
to X (meaning that even an unbounded adversary cannot distinguish between the two
distributions). Furthermore, this procedure uses only r random bits (rather than n random
bits) and we can hope to obtain r � n.

1.2.3 Extractors for samplable distributions
Deterministic (seedless) extractors are functions that extract randomness from “weak sources
of randomness”. The reader is referred to [35, 36] for survey articles on randomness extractors.

I Definition 1.7 (deterministic extractor). Let C be a class of distributions over {0, 1}n. A
function E : {0, 1}n → {0, 1}m is a (k, ε)-extractor for C if for every distribution X in the
class C such that H∞(X) ≥ k, E(X) is ε-close to uniform.4

Trevisan and Vadhan [47] considered extractors for the class of distributions samplable by
small circuits (e.g., distributions samplable by circuits of size n2).5 The motivation presented
by Trevisan and Vadhan is to extract randomness from “weak sources of randomness” in order
to generate keys for cryptographic protocols. Indeed, extractors for samplable distributions
are seedless and require no additional randomness (in contrast to seeded extractors). Note
that for this application we would like extractors that run in polynomial time. The model
of samplable distributions (say by circuits of size n2) is very general, and contains many
subclasses of distributions studied in the literature on seedless extractors. Finally, Trevisan
and Vadhan make the philosophical assumption that distributions obtained by nature must
be efficiently samplable.

Summing up, if we are convinced that the physical device that is used by an honest party
as a “weak source of randomness” has low complexity, (say size n2), then even an unbounded
adversary that gets to choose or affect the source, cannot distinguish between the output of
the extractor and the random string with advantage ≥ ε.

1.3 Hardness assumptions against nondeterministic and Σi-circuits
In contrast to incomputable functions and (standard) PRGs, poly(n)-time constructions of
the three objects above (incompressible functions, PRGs for nonboolean distinguishers and
extractors for samplable distributions) are not known to follow from the assumption that E
is hard for exponential size circuits. We now discuss stronger variants of this assumption
under which such constructions can be achieved.

I Definition 1.8 (nondeterministic circuits, oracle circuits and Σi-circuits). A non-deterministic
circuit C has additional “nondeterministic input wires”. We say that the circuit C evaluates
to 1 on x iff there exist an assignment to the nondeterministic input wires that makes C
output 1 on x. An oracle circuit C(·) is a circuit which in addition to the standard gates uses
an additional gate (which may have large fan in). When instantiated with a specific boolean
function A, CA is the circuit in which the additional gate is A. Given a boolean function
A(x), an A-circuit is a circuit that is allowed to use A gates (in addition to the standard
gates). An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit

4 For a distribution X over {0, 1}n, H∞(X) := minx∈{0,1}n log 1
Pr[X=x] .

5 In this paper we won’t implicitly set a bound on the input length of the sampling circuit as such a
bound is implied by the bound on its size.
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is an A-circuit where A is the canonical ΣPi -complete language. The size of all circuits is the
total number of wires and gates.6

Note, for example, that an NP-circuit is different than a nondeterministic circuit. The
former is a nonuniform analogue of PNP (which contains coNP) while the latter is an
analogue of NP. Hardness assumptions against nondeterministic/NP/Σi circuits appear in
the literature in various contexts of complexity theory and derandomization [13, 29, 33, 47,
37, 16, 23, 38, 8, 39, 11]. Typically, the assumption used is identical to that of Assumption 1.2
except that “standard circuits” are replaced by one of the circuit types defined above. For
completeness we restate this assumption precisely.

I Definition 1.9. We say that “E is hard for exponential size circuits of type X” if there exists
a problem L in E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently
large n, circuits of type X with size 2βn fail to compute the characteristic function of L on
inputs of length n.

Such assumptions can be seen as the nonuniform and scaled-up versions of assumptions of
the form EXP 6= NP or EXP 6= ΣP

2 (which are widely believed in complexity theory). As such,
these assumptions are very strong, and yet plausible - the failure of one of these assumptions
will force us to change our current view of the interplay between time, nonuniformity and
nondeterminism.7

Hardness assumptions against nondeterministic or Σi-circuits appear in the literature
in several contexts (most notably as assumptions under which AM = NP. It is known that
Theorem 1.3 extends to to every type of circuits considered in Definition 1.8.

I Theorem 1.10 ([25, 29, 37, 38]). For every i ≥ 0, the statement of Theorem 1.3 also
holds if we replace every occurrence of the word “circuits” by “Σi-circuits” or alternatively
by “nondeterministic Σi-circuits”.

Thus, loosely speaking, if E is hard for exponential size circuits of type X, then for every
c > 1 we have PRGs and incomputable functions for size nc circuits of type X, and these
objects are poly(nc)-time computable, and have error ε = n−c.8

1.4 New constructions based on hardness for nondeterministic circuits
Our first results are explicit constructions of incompressible functions and PRGs for non-
boolean distinguishers from the assumption that E is hard for exponential size nondetermin-
istic circuits.

6 An alternative approach is to define using the Karp-Lipton notation for Turing machines with
advice. For s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a
size sΘ(1) nondeterministic circuit is equivalent to NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit
is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic NP-circuit is equivalent to
NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to DTIMEΣPi (sΘ(1))/sΘ(1).

7 Another advantage of constructions based on this type of assumptions is that any E-complete problem
(and such problems are known) can be used to implement the constructions, and the correctness of the
constructions (with that specific choice) follows from the assumption. We do not have to consider and
evaluate various different candidate functions for the hardness assumption.

8 Historically, the interest in PRGs for nondeterministic/NP circuits was motivated by the goal of proving
that AM = NP, which indeed follows using sufficiently strong PRGs [29, 33, 37, 38]. It is important
to note, that in contrast to PRGs against deterministic circuits, PRGs for nondeterministic circuits
are trivially impossible to achieve, if the circuit can simulate the PRG. Indeed, this is why we consider
PRGs against circuits of size nc that are computable in larger time of poly(nc).
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1.4.1 A construction of incompressible functions
Our first result is a construction of polynomial time computable incompressible functions,
based on the assumption that E is hard for exponential size nondeterministic circuits. This is
the first construction of incompressible functions from “standard assumptions”. The theorem
below is stated so that the input length of the function is n. However, The input length
can be shortened to any Ω(logn) ≤ r ≤ n as in the case of incomputable function stated in
Theorem 1.3.

I Theorem 1.11. If E is hard for exponential size nondeterministic circuits, then for every
constant c > 1 there exists a constant d > 1 such that for every sufficiently large n, there
is a function f : {0, 1}n → {0, 1} that is (`, n−c)-incompressible for size nc circuits, where
` = n− d · logn. Furthermore, f is computable in time poly(nc).

The theorem smoothly generalizes to the case of non-boolean functions f : {0, 1}n →
{0, 1}n−`−d logn, and can also be extended to the interactive setting at the expense of
strengthening the assumption to “E is hard for exponential size nondeterministic NP-circuits”.
(See the full version [1].)

1.4.2 A construction of PRGs for nonboolean circuits
Dubrov and Ishai [12] showed that incompressible functions imply PRGs for nonboolean
distinguishers. More precisely, they used the analysis of the Nisan-Wigderson generator [34]
to argue that an incompressible function with the parameters obtained by Theorem 1.11
implies that for every constant c > 1, and every sufficiently large n and nΩ(1) ≤ ` < n, there
is a poly(nc)-time computable (`, n−c)-PRG G : {0, 1}r=O(`2) → {0, 1}n for circuits of size
nc. Using this relationship, one can obtain such PRGs under the assumption that E is hard
for exponential size nondeterministic circuits. Note that a drawback of this result is that the
seed length r is quadratic in `, whereas an optimal PRG can have seed length r = O(`). This
difference is significant in the application of reducing the randomness of sampling procedures
(as explained in detail by Artemenko and Shaltiel [5]).

Artemenko and Shaltiel [5] constructed PRGs for nonboolean circuits with the parameters
above, while also achieving seed length r = O(`). However, they used the stronger assumption
that E is hard for nondeterministic NP-circuits. In the theorem below we obtain the “best of
both worlds”: We start from the assumption that E is hard for nondeterministic circuits and
obtain PRGs with the optimal seed length of r = O(`).

I Theorem 1.12. If E is hard for exponential size non-deterministic circuits, then there
exists a constant b > 1 such that for every constant c > 1 there exists a constant a > 1
such that for every sufficiently large n, and every ` such that a logn ≤ ` ≤ n, there is a
function G : {0, 1}b·` → {0, 1}n that is an (`, n−c)-PRG for size nc circuits. Furthermore, G
is computable in time poly(nc).

It should be noted that if ` ≤ c logn then standard PRGs against size 2 · nc circuits are
also nb-PRGs. This is because any statistical test on ` = c logn bits can be implemented by
a circuit of size nc.

1.5 The power and limitations of nondeterministic reductions
1.5.1 Negligible error in pseudorandom objects?
A common theme in Theorems 1.3, 1.10, 1.11 and 1.12 is that we can get ε = n−c, but
we never get ε = n−ω(1) which would be desired, for example, for the virus application.
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This holds even if we are allowed to increase the input/seed length r, and let r approach
n (say r = nΩ(1)). More generally, in all these results (and in fact, in all the literature on
achieving incomputable functions/PRGs from the assumption that E is hard for exponential
size deterministic circuits) 1/ε is always smaller than the running time of the constructed
object. Consequently, polynomial time computable constructs do not obtain negligible error
of ε = n−ω(1). This phenomenon is well understood, in the sense that there are general
results showing that “current proof techniques” cannot beat this barrier. [40, 4]. (We give a
more precise account of these results in the full version [1]).

However, there are examples in the literature where assuming hardness against nondeter-
ministic (or more generally Σi) circuits, it is possible to beat this barrier. The first example
is the seminal work of Feige and Lund [13] on hardness of the permanent. More relevant
to our setup are the following two results by Trevisan and Vadhan [47], and Drucker [11],
stated precisely below. Note that in both cases, the target function is a polynomial time
computable function that is ε-incomputable for negligible ε = n−ω(1).

I Theorem 1.13 (Nonboolean incomputable function with negligible error [47]). If E is hard
for exponential size NP-circuits, then there exists some constant α > 0 such that for every
constant c > 1 and for every sufficiently large n, there is a function f : {0, 1}n → {0, 1}m that
is ε-incomputable by size nc circuits for m = αn and ε = 2−(m/3) = 2−Ω(n). Furthermore, f
is computable in time poly(nc).

I Theorem 1.14 (Nonboolean incomputable function with negligible error (corollary of [11])9).
For every c > 1 there is a constant c′ > c such that if there is a problem in P that for every
sufficiently large n is ( 1

2 −
1
n )-incomputable by nondeterministic circuits of size nc′ , then for

every sufficiently large n, there is a function f : {0, 1}n → {0, 1}
√
n that is ε-incomputable by

circuits of size nc, for ε = 2−nΩ(1) . Furthermore, f is computable in time poly(nc).10

It is important to note that in both cases above the target function that is constructed
is nonboolean. We stress that the aforementioned lower bounds of [4] apply also to the
case of nonboolean target functions, and the proofs above bypass these limitations by using
nondeterministic reductions.

More precisely, assuming that the target function can be computed too well, the proofs
need to contradict the assumption that E is hard for nondeterministic/Σi-circuits. They do
this by designing a reduction. This reduction uses a deterministic circuit that computes the
target function too well, in order to construct a nondeterministic/Σi-circuit that contradicts
the assumption. This setting allows the reduction itself to be a nondeterministic/Σi-circuit.
A precise definition of nondeterministic reductions appears in the full version [1].

Nondeterministic reductions are very powerful and previous limitations on reductions
[40, 4] do not hold for nondeterministic reductions. (Indeed, Theorems 1.13 and 1.14 beat the
barrier and achieve polynomial time computable functions that are n−ω(1)-incomputable).

9 Drucker [11] considers a more general setting, on which we will not elaborate, and proves a direct
product result. The result we state is a corollary that is easy to compare to the aforementioned results.

10The assumption of Theorem 1.14 is known to follow from the assumptions E is hard for exponential size
nondeterministic circuits by Theorem 1.10. Consequently, the assumption used in Theorem 1.14 follows
from the assumption in Theorem 1.13. The converse does not hold. We also remark that our Theorem
1.11 holds also if we replace the assumption by the following assumption that is similar in structure to
Drucker’s assumption: For every c > 1 there is a constant c′ > c such that there is a problem in P that
for every sufficiently large n is ( 1

2 −
1
n )-incomputable by NP-circuits of size nc

′
. The same holds for our

Theorem 1.12 if we make the additional requirement that ` = nΩ(1).
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590 Incompressible Functions

Our Theorems 1.11 and 1.12 are also proven using nondeterministic reductions. This
raises the question whether nondeterministic reductions can achieve error ε = n−ω(1) in these
cases. More generally, given the success of Trevisan and Vadhan, and Drucker, it is natural
to hope that we can get ε = n−ω(1) in the classical results stated in Theorem 1.3, if we are
willing to assume the stronger assumption that E is hard for exponential size Σi-circuits, for
some i > 0. Assuming this stronger assumption will allow the proof to use nondeterministic
reductions (and the aforementioned lower bounds do not hold).

1.5.2 Limitations on nondeterministic reductions

In this paper we show that nondeterministic reductions (or even Σi-reductions) cannot
be used to obtain a polynomial time n−ω(1)-incomputable boolean function, starting from
the assumption that E is hard for exponential size Σi-circuits (no matter how large i is).
To the best of our knowledge, our model of nondeterministic reduction (that is explained
in the full version [1]) is sufficiently general to capture all known proofs in the literature
on hardness amplification and PRGs.11 This is a startling contrast between boolean and
non-boolean hardness amplification - the latter can achieve negligible error, while the former
cannot.12 Our results provide a formal explanation for the phenomenon described above,
and in particular, explains why Trevisan and Vadhan, and Drucker did not construct boolean
functions.

We show that the same limitations hold, also for incompressible functions, PRGs against
both boolean and nonboolean distinguishers, and extractors for samplable distributions. Our
results are summarized informally below, and the precise statement of our limitations appears
in the full version [1].

I Informal Theorem 1.15. For every i ≥ 0 and c > 0, it is impossible to use “black-box
reductions” to prove that the assumption that E is hard for Σi-circuits implies that for
ε = n−ω(1), there is a poly(n)-time computable:

ε-incomputable functions f : {0, 1}n → {0, 1} by size nc circuits, or
ε-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every r ≤ n− 1),
or
(`, ε)-PRG G : {0, 1}r → {0, 1}n for size nc circuits (the limitation holds for every
r ≤ n− 1), or
(k, ε)-extractor E : {0, 1}n → {0, 1}m for size nc circuits (the limitation holds for every
m ≥ 1 and k ≤ n− 1).

Furthermore, these limitations hold even if we allow reductions to perform Σi-computations,
make adaptive queries to the “adversary breaking the security guarantee”, and receive arbitrary
polynomial size nonuniform advice about the adversary.

It is interesting to note that previous work on (deterministic) black-box reductions often
cannot handle reductions that are both adaptive and nonuniform [20, 40] (see [4] for a
discussion) and so the model of nondeterministic reductions that we consider is very strong.

11 It should be noted that there are proof techniques (see e.g. [21, 22]) that bypass analogous limitations
in a related setup. See [22] for a discussion.

12Another contrast between boolean and nonboolean hardness amplification was obtained by Shaltiel and
Viola [40] for reductions that are non-adaptive constant depth circuits, and the reasons for the current
contrast, are similar. Our proof follows the strategy of [40] as explained in detail in Section 2.
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1.5.2.1 Related work on limitations on black-box hardness amplification

A “black-box proof of hardness amplification” consists of two components: A construction
(showing how to to compute the target function given access to the hardness assumption) and
a reduction (showing that an adversary that is able to compute the target function too well,
can be used to break the initial hardness assumption). We stress that in this paper we prove
limitations on reductions. Our limitation holds without placing limitations on the complexity
of the construction (and this only makes our results stronger). There is an orthogonal line
of work which is interested in proving limitations on low complexity constructions. There
is a superficial similarity to our work in that some of these results [48, 31, 32] show lower
bounds on constructions implementable in the polynomial time hierarchy. However, this
line of work is incomparable to ours, and is not relevant to the setting that we consider.
Specifically, we want to capture cases in which the hardness assumption is for a function
in exponential time. Typical polynomial time constructions use the hardness assumption
on inputs of length O(logn) where n is the input length of the target function (so that the
initial function is computable in time polynomial in n) and this allows the construction
to inspect the entire truth table of the function in the hardness assumption. All previous
limitations on the complexity of the construction trivially do not hold in this setting. We
elaborate on our model and the meaning of our results in the full version [1].

1.6 Nonboolean incompressible functions with negligible error

In light of the previous discussion, if we want to achieve poly-time computable ε-incompressible
functions with ε = n−ω(1) we must resort to nonboolean functions. In the next theorem we
give such a construction.

I Theorem 1.16 (Nonboolean incompressible function with negligible error). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant
c > 1 and every sufficiently large n, and m ≤ α · n there is a function f : {0, 1}n → {0, 1}m
that is (`, n−c · 2−m)-incompressible for size nc circuits, where ` = α · n. Furthermore, f is
computable in time poly(nc).

We remark that the proof of Theorem 1.16 uses different techniques from the proof of
Theorem 1.11. We also note that the conclusion of Theorem 1.16 is stronger than that
of Theorems 1.13 and 1.14, even if we restrict our attention to ` = 1. Specifically for
m = Ω(n), we obtain that f : {0, 1}n → {0, 1}Ω(n) is ε-incomputable by size nc circuits,
with ε = n−c · 2−Ω(n), meaning that circuits of size nc, have probability at most 1+n−c

2m of
computing f(x). This should be compared to the probability of random guessing which is 1

2m .
Note that in the aforementioned theorems of [47, 11] the probability is larger than 2−(m/2)

which is large compared to 2−m.

Moreover, the function we get is not only ε-incomputable, but (`, ε)-incompressible for
large ` = Ω(n), and we will show that this holds even in the interactive setting. Getting back
to the memory leakage scenario, we will later see that (variants of) the theorem allows us to
achieve a constant rate scheme (an m bit key is encoded by n = O(m) bits) which resists an
nc-time virus that (interactively) leaks a constant fraction of the stored bits.
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1.7 Deterministic extractors with relative error
1.7.1 Previous work on extractors for samplable distributions
Trevisan and Vadhan constructed extractors for distributions samplable by size nc circuits.
The precise statement appears below.

I Theorem 1.17 (Extractors for samplable distributions [47]). If E is hard for exponential
size Σ4-circuits then there exists a constant α > 0 such that for every constant c > 1 and
sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-extractor E : {0, 1}n →
{0, 1}m for distributions samplable by size nc circuits. Furthermore, E is computable in time
poly(nc).13

As explained earlier, our limitations explain why Trevisan and Vadhan did not achieve
ε = n−ω(1). This may be a significant drawback in applications. In particular, if we use the
extractor to generate keys for cryptographic protocols (as explained in Section 1.2.3) then it
might be that an adversary that has a negligible probability of attacking the protocol under
the uniform distribution, has a noticeable probability of attacking under the distribution
output by the extractor.

1.7.2 Extractors with relative error
In order to circumvent this problem we suggest the following revised notion of statistical
distance, and extractors.

I Definition 1.18 (statistical distance with relative error). We say that a distribution Z

on {0, 1}m is ε-close to uniform with relative error if for every event A ⊆ {0, 1}m,
|Pr[Z ∈ A]− µ(A)| ≤ ε · µ(A) where µ(A) = |A|/2m.14

Note that if Z is ε-close to uniform with relative error, then it is also ε-close to uniform.
However, we now also get that for every event A, Pr[Z ∈ A] ≤ (1 + ε) · µ(A) and this implies
that events that are negligible under the uniform distributions cannot become noticeable
under Z.

We now introduce a revised definition of deterministic extractors by replacing the require-
ment that the output is ε-close to uniform by the requirement that the output is close to
uniform with relative error.

I Definition 1.19 (deterministic extractor with relative error). Let C be a class of distributions
over {0, 1}n. A function E : {0, 1}n → {0, 1}m is a (k, ε)-relative-error extractor for C if for
every distribution X in the class C such that H∞(X) ≥ k, E(X) is ε-close to uniform with
relative error.

To the best of our knowledge, this concept of “relative-error extractor” was not previously
considered in the literature. We first observe that a standard probabilistic argument shows
existence of such extractors for any small class of distributions. This follows by proving that
random functions satisfy this property with high probability (using the same calculation as in
the case of standard extractors). Moreover, this probabilistic argument works with random

13 In [47], this is stated with m = 0.5 · c · logn, but a more careful argument can give the stronger result
that we state here. Another result that appears in [47] allows m to be (1 − δ) · n for an arbitrary
constant δ > 0, and then Σ4 is replaced by Σ5, ε = 1/n and the running time is nbc,δ for a constant bc,δ
that depends only on c and δ.

14While we’ll use this definition mostly with ε < 1, note that it makes sense also for ε ≥ 1.
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t-wise independent functions. Specifically, the following theorem was implicitly proven by
Trevisan and Vadhan [47] (Proof of Proposition A.1):

I Theorem 1.20 (Existence of relative-error extractors). Let C be a class of at most N
distributions on {0, 1}n. Then there exists a (k, ε)-relative-error extractor E : {0, 1}n →
{0, 1}m for C with m = k − 2 log(1/ε) − O(log logN). Furthermore, with probability at
least 1− 2−n a random O(n+ logN)-wise independent function h : {0, 1}n → {0, 1}m is a
(k, ε)-relative-error extractor E : {0, 1}n → {0, 1}m for C.

1.7.3 New constructions of relative error extractors for samplable
distributions

We are able to extend Theorem 1.17 to hold with this new definition. Specifically:

I Theorem 1.21 (Extractors for samplable distributions with relative error). If E is hard for
exponential size Σ4-circuits then there exists a constant α > 0 such that for every constant
c > 1 and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-relative-error
extractor E : {0, 1}n → {0, 1}m for distributions samplable by size nc circuits. Furthermore,
E is computable in time poly(nc).

As previously explained this means that events that receive negligible probability under the
uniform distribution also receive negligible probability under the output distribution of the
extractor. We believe that this makes extractors for samplable distributions more suitable
for cryptographic applications.

1.7.4 Relative error extractors for recognizable distributions
Shaltiel [41] introduced a notion of “recognizable distributions”.

I Definition 1.22 (Recognizable distributions [41]). We say that a distribution X on n bits
is recognizable by a class C of functions C : {0, 1}n → {0, 1} if there exists a function C in
the class such that X is uniform over {x : C(x) = 1}.

It is easy to see that extractors for distributions recognizable by small circuits translate
into incompressible functions. Furthermore, relative-error extractors with large error translate
into non-boolean incompressible functions with very small error.

I Lemma 1.23.
An (n− (`+ log(1/ε) + 1), ε/2)-extractor for distributions recognizable by size nc circuits,
is an (`, ε)-incompressible function for size nc circuits.
An (n − (` + log(1/ε) + m + 1), ε/2) relative-error extractor f : {0, 1}n → {0, 1}m for
distributions recognizable by size nc circuits, is an (`, ε · 2−m)-incompressible function for
size nc circuits.

This argument demonstrates (once again) the power of extractors with relative error.
More precisely, note that even if ε is noticeable, we get guarantees on probabilities that are
negligible! This lemma shows that in order to construct nonboolean incompressible functions
with very low error, it is sufficient to construct extractors for recognizable distributions with
relative error that is noticeable.

This lemma follows because if we choose X ← Un and consider the distribution of
(X|C(X) = a) for some compressed value a ∈ {0, 1}` that was computed by the compressor
C, then this distribution is recognizable, and for most a, it has sufficiently large min-entropy
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for the extractor f . It follows that f(X) is close to uniform with relative error even after
seeing C(X). However, in a distribution that is ε-close to uniform with relative error, no
string has probability larger than (1 + ε) · 2−m, and so even an unbounded adversary that
sees C(X) cannot predict f(X) with advantage better than ε · 2−m over random guessing.
We give a full proof in a more general setup in the formal section.
Our next result is a construction of a relative-error extractor for recognizable distributions.

I Theorem 1.24 (Extractors for recognizable distributions with relative error). If E is hard for
exponential size Σ3-circuits then there exists a constant α > 0 such that for every constant
c > 1 and sufficiently large n, and every m ≤ αn there is a ((1 − α) · n, 1

nc )-relative error
extractor E : {0, 1}n → {0, 1}m for distributions recognizable by size nc circuits. Furthermore,
E is computable in time poly(nc).

1.7.4.1 Application in the leakage resilient scenario

The same reasoning applies in the memory leakage scenario described in Section 1.2.1. Using
a relative error extractor for recognizable distributions f , we can achieve a constant rate
scheme (an m bit key is encoded by n = O(m) bits) which resists an nc-time virus who
(interactively) leaks a constant fraction of the stored bits in the following strong sense: Say
that the key K = f(x) is used as the key of some cryptographic scheme FK , and that the
scheme FK is secure in the sense that the probability that an adversary breaks the scheme is
negligible (under a uniform key), then the scheme remains secure even in the presence of the
additional information that was released by the virus.

2 Overview and Technique

In this section we present a high level overview of the techniques used to prove our results.

2.1 Boolean incompressible functions with error n−c

We start with an overview of the proof of Theorem 1.11. Our goal is to construct a boolean
incompressible function for size nc circuits. Consider a family of poly(nc)-wise independent
hash functions H = {hs : {0, 1}n → {0, 1}}. We can sample from such a family using
t = nO(c) random bits. An easy counting argument (see e.g. [47]) shows that for every
not too large class of distributions with min-entropy k (such as the class of distributions
recognizable by size nc circuits) a random hs ← H, is with high probability an extractor for
distributions in the class.

By Lemma 1.23, a random h ← H is w.h.p. an (`, ε)-incompressible function for
` = (1 − o(1)) · n and negligible ε. We are assuming that E is hard for exponential size
nondeterministic circuits, and by Theorem 1.10, there is a poly(nt)-time computable PRG
G : {0, 1}n → {0, 1}t for size nO(t) nondeterministic circuits. We construct an incompressible
function f : {0, 1}2n → {0, 1} as follows:

f(x, y) = hG(y)(x)

Note that f is computable in polynomial time. In order to show that f is (`, n−c)-
incompressible, it is sufficient to show that for (1 − n−c/2)-fraction of seeds y ∈ {0, 1}n,
f(y, ·) = hG(y)(·) is (`, n−c/2)-incompressible.

We will show that for ε = 1/poly(n), there exists a polynomial size nondeterministic
circuit P , that when given s ∈ {0, 1}t, accepts if hs is not (`, 2ε)-incompressible, and rejects
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if hs is (`, ε)-incompressible. A key observation is that as AM ⊆ NP/poly, it is sufficient to
design an Arthur-Merlin protocols P , and furthermore by [7, 19] we can allow this protocol
to be a private coin, constant round protocol, with small (but noticeable) gap between
completeness and soundness.

We now present the protocol P : Merlin (who is claiming that hs is not (`, 2ε)-
incompressible) sends a circuit C : {0, 1}n → {0, 1}` of size nc (which is supposed to
compress the function well). Arthur, chooses private coins x← Un, and sends C(x) to Merlin.
Merlin responds by guessing hs(x), and Arthur accepts if Merlin guessed correctly. It is
immediate that this protocol has completeness 1

2 + 2ε and soundness 1
2 + ε and the gap is

large enough to perform amplification.
It follows that for a uniform y, w.h.p. hG(y) is 2ε-incompressible, as otherwise the

nondeterministic circuit P distinguishes the output of G from uniform.15
We remark that this approach can be extended to yield nonboolean incompressible

functions. However, using this approach we cannot get ε = n−ω(1). This is because the error
of the final function f is at least the error of the PRG G, which cannot be negligible. We
later present our construction of nonboolean incompressible function with very low error (as
promised in Theorem 1.16), which works by giving a construction of relative error extractors
for recognizable distributions (using quite different techniques).

This approach of explicit construction by using PRGs to derandomize a probabilistic
construction was suggested in full generality by Klivans and van Melkebeek [29], and was
used in many relevant works such as [38, 5]. However, the use of AM protocols with private
coins enables us to come up with very simple proofs that improve upon previous work. An
example is our next result that improves a recent construction of [5].

2.2 PRGs for nonboolean distinguishers
We now give an overview of the proof of Theorem 1.12 and show how to construct PRGs against
nonboolean distinguishers. The argument is similar to that of the previous section. This time
we take a poly(nc)-wise independent family of hash functions H =

{
hs : {0, 1}2` → {0, 1}n

}
.

We show that w.h.p. a random hs ← H is an (`, ε)-PRG with very small ε. (This follows
because by a standard calculation, w.h.p, hs is a (ε · 2−`)-PRG for size nc, and this easily
implies that it is an (`, ε)-PRG [5]). Our final PRG is again G′(x, y) = hG(y)(x) for the same
PRG G as in the previous section.

Following our earlier strategy, it is sufficient to design a constant round, private coin
AM protocol P with noticeable gap ε between completeness and soundness, such that given
s ∈ {0, 1}t, P distinguishes the case that hs is not an (`, 2ε)-PRG from the case that hs is
an (`, ε)-PRG.

We now present such a protocol, that is similar in spirit to the graph non-isomorphism
protocol [18]. Merlin (who is claiming that hs is not a good PRG) sends a circuit C :
{0, 1}n → {0, 1}` (that is supposed to distinguish the output of hs from random). Arthur
tosses a private fair coin, and either sends C(y) for y ← Un, or C(hs(x)) for x ← U2`,

15Note that for this argument it is sufficient to have a PRG G : {0, 1}n → {0, 1}t=n
O(c)

that has polynomial
stretch. Therefore, any assumption that implies such a PRG suffices for our application, and we chose
the assumption that E is hard for exponential size nondeterministic circuits, for the ease of stating
it. Furthermore, it is sufficient for us that G fools uniform AM protocols, and we don’t need to fool
nonuniform nondeterministic circuits. There is a line of work on constructing PRGs against uniform
classed under uniform assumption [26, 46, 23, 39], but unfortunately, the relevant results only give
hitting set generators, and using these we can only get incompressible function with ε = 1− n−O(t).
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depending on the value of the coin. Merlin is supposed to guess Arthur’s coin. Note that if
hs is not an (`, 2ε)-PRG, then the two distributions C(Un) and C(hs(U2`)) are not 2ε-close
and Merlin can indeed guess Arthur’s coin with probability 1

2 + ε. If hs is an (`, ε)-PRG,
then the distributions are ε-close and Merlin cannot distinguish with probability larger than
1
2 + ε/2.

2.3 The power and limitations of nondeterministic reductions

The precise definitions of nondeterministic reductions and formal restatement of Theorem
1.15 appears in the full version [1]. Below, we try to intuitively explain what makes
nondeterministic reductions more powerful than deterministic reductions, and why this
additional power is more helpful when constructing nonboolean functions, and less helpful
when constructing boolean functions.

Recall that we observed that nondeterministic reductions can be used to achieve negligible
error ε = n−ω(1) when constructing incomputable functions f : {0, 1}n → {0, 1}m for large
m, and we want to show that they cannot achieve this for m = 1. A powerful tool used by
several nondeterministic reductions is approximate counting.

I Theorem 2.1 (approximate counting [43, 42, 27]). For every sufficiently large n, and every
ε′ > 0 there is a size poly(n/ε′) randomized NP-circuit that, given oracle access to a function
C : {0, 1}n → {0, 1}, outputs with probability 1− 2−n an integer p which ε′-approximates the
value q = | {x : C(x) = 1} | in the sense that (1− ε) · p ≤ q ≤ (1 + ε) · p.

We want the oracle circuit above to have size poly(n), and so we can only afford
ε′ = n−c. Suppose that we are using approximate counting with this ε′ on some function
C : {0, 1}n → {0, 1}, to try and distinguish the case that q = | {x : C(x) = 1} |/2−n satisfies
q ≤ 2−m from the case that q ≥ 2−m + ε, for negligible ε = n−ω(1). Note that an n−c-
approximation can indeed perform this task distinguish if m ≥ log(1/ε), but it cannot
distinguish if m = 1.

The reductions that we describe in the proofs of Theorems 1.16 and 1.21 construct
functions with m bit outputs, and critically rely on this property. We now observe that in
order to be useful for constructing functions with output length m, reductions must be able
to distinguish the two cases above.

Let us focus on the task of constructing incomputable functions f : {0, 1}n → {0, 1}m.
Such reductions receive oracle access to a circuit C : {0, 1}n → {0, 1}m, and if C computes
f too well on average, the reduction needs to contradict the hardness assumption. Loosely
speaking, we observe that the reduction must be able to distinguish the case that it is given
a useful circuit C, namely one such that Prx←Un [C(x) = f(x)] ≥ 2−m + ε (on which the
reduction must succeed) from the case that it is given a useless circuit C ′, which ignores
its input, and outputs a random value, so that Prx←Un [C ′(x) = f(x)] = 2−m (and as this
circuit is useless, the reduction receives no information on f , and cannot succeed).

This explains why approximate counting is in some sense necessary for reductions that
want to achieve negligible error. In the formal proof, we use an argument similar to that
of Furst, Saxe and Sipser [14], to show that even reductions that are Σi-circuits, cannot
approximately count with the precision needed for distinguishing the cases above if m = 1.
This is shown by relating the quality of such reductions to the quality of AC0-circuits that
need to perform some task (for which there are known lower bounds). This relationship uses
ideas from the previous lower bounds of Shaltiel and Viola [40].
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2.4 Constructing relative error extractors for recognizable distributions
By lemma 1.23 it is sufficient to construct relative-error extractors for recognizable distri-
butions in order to obtain non-boolean incompressible functions with negligible error. We
now explain how to construct such extractors and prove Theorem 1.24. We use tools and
techniques from Trevisan and Vadhan [47], together with some key ideas that allow us to get
relative error. The full proof appears in the full version [1].

It is complicated to explain the precise setting, and instead we attempt to explain what
enables us to obtain relative-error. For this purpose, let us restrict our attention to the
problem of constructing an ε-incomputable function g : {0, 1}n → {0, 1}m for ε = n−c · 2−m,
which means that the function cannot be computed with probability larger than (1+n−c)·2−m
on a random input.

We will start from a function that is already very hard on average, say f : {0, 1}n →
{0, 1}n′ that is ε-incomputable for ε = 2−n′/3 (and we indeed have such a function by Theorem
1.13 for n′ = Ω(n)). We want to reduce the output length of f from n′ to m ≈ log(1/ε) while
preserving ε. This will make ε small compared to 2−m.

A standard way to reduce the output length while preserving security is the Goldreich-
Levin theorem [17] or more generally, concatenating with a “good” inner code. More precisely,
it is standard to define g(x, i) = EC(f(x))i for some error correcting code EC : {0, 1}n′ →
({0, 1}m)t that has sufficiently efficient list-decoding. Typically, the inner code that we use
is binary (that is m = 1). However, we want to choose codes with large alphabet that
have extremely strong list deocdability. One way to get such behavior is to use “extractor
codes” (defined by Ta-Shma and Zuckerman [45]). More precisely, to set g(x, i) = T (f(x), i)
where T : {0, 1}n′ × [t] → {0, 1}m is a “seeded extractor”. This guarantees that for every
event A ⊆ {0, 1}m, there aren’t “too many” x’s for which T (x, ·) lands in A with “too large
probability” (this is the kind of “combinatorial list-decoding” guarantee that we are interested
in). It turns out that for our application we need to replace “seeded extractors” with “2-source
extractors”. A useful property of 2-source extractors is that they can achieve error � 2−m.
In particular, if applied with error ε� 2−m, such extractors can be thought of as achieving
“relative error” - the probability of every output string is between 2−m− ε = (1− ε · 2m) · 2−m
and 2−m + ε = (1 + ε · 2m) · 2−m. This can be seen as a relative approximation with error
ε′ = ε · 2m.

We observe that such extractors can be used as “inner codes” in the approach of [47]
(which can be viewed as a more specialized concatenation of codes). Precise details appear
in the formal proof.

As in the case of Goldreich-Levin, these “codes” need to have efficient “list-decoding
procedures”. In this setup “efficient” means: a list decoding procedure implementable by a
polynomial size NP-circuit. In order to obtain such a list decoding procedure (for very small
ε) we critically use that approximate counting can indeed distinguish 2−m from 2−m + ε for
negligible ε using a noticeable approximation precision ε′ = n−c, as explained in Section 2.3.

2.5 Relative error extractors for samplable distributions
We now explain how to construct relative error extractors for samplable distributions and
prove Theorem 1.21. In this high level overview, let us restrict our attention to samplable
distributions that are flat, that is uniform over some subset S ⊆ {0, 1}n. Let X be such a
distribution, and let C : {0, 1}t → {0, 1}n be a circuit that samples X (that is X = C(Ut)).
It immediately follows that X is recognizable by the NP-circuit that given x accepts iff there
exists y ∈ {0, 1}t such that C(y) = x. This means that it suffices to construct a relative-error
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extractor for distributions samplable by NP-circuits. This follows from Theorem 1.24 just the
same, if in the assumption we assume hardness for Σ4-circuits, instead of Σ3-circuits. This
follows by observing that the proof of Theorem 1.24 relativizes. The argument sketched above
gives an extractor for flat samplable distributions. In order to extend this to distributions that
are not flat, we generalize the notion of recognizable distributions to non-flat distributions
and then Theorem 1.21 follows from the (generalized version) of Theorem 1.24.
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