
Refined Criteria for Gradual Typing∗

Jeremy G. Siek1, Michael M. Vitousek1, Matteo Cimini1, and
John Tang Boyland2

1 Indiana University – Bloomington, School of Informatics and Computing
150 S. Woodlawn Ave. Bloomington, IN 47405, USA
jsiek@indiana.edu

2 University of Wisconsin – Milwaukee, Department of EECS
PO Box 784, Milwaukee WI 53201, USA
boyland@cs.uwm.edu

Abstract
Siek and Taha [2006] coined the term gradual typing to describe a theory for integrating static
and dynamic typing within a single language that 1) puts the programmer in control of which
regions of code are statically or dynamically typed and 2) enables the gradual evolution of code
between the two typing disciplines. Since 2006, the term gradual typing has become quite popular
but its meaning has become diluted to encompass anything related to the integration of static
and dynamic typing. This dilution is partly the fault of the original paper, which provided an
incomplete formal characterization of what it means to be gradually typed. In this paper we
draw a crisp line in the sand that includes a new formal property, named the gradual guarantee,
that relates the behavior of programs that differ only with respect to their type annotations. We
argue that the gradual guarantee provides important guidance for designers of gradually typed
languages. We survey the gradual typing literature, critiquing designs in light of the gradual
guarantee. We also report on a mechanized proof that the gradual guarantee holds for the
Gradually Typed Lambda Calculus.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs – Type structure

Keywords and phrases gradual typing, type systems, semantics, dynamic languages

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.274

1 Introduction

Statically and dynamically typed languages have complementary strengths. Static typing
guarantees the absence of type errors, facilitates the generation of efficient code, and provides
machine-checked documentation. On the other hand, dynamic typing enables rapid prototyp-
ing, flexible programming idioms, and fast adaptation to changing requirements. The theory
of gradual typing provides both of these typing disciplines within a single language, puts the
programmer in control of which discipline is used for each region of code, provides seamless
interoperability, and enables the convenient evolution of code between the two disciplines.
Gradual typing touches both the static type system and the dynamic semantics of a language.
The key innovation in the static type system is the consistency relation on types, which
allows implicit casts to and from the unknown type, here written ?, while still catching static
type errors [5, 50, 27].1 The dynamic semantics for gradual typing is based on the semantics

∗ This work was partially supported by NSF grant 1360694.
1 The consistency relation is also known as compatibility.

© Jeremy Siek, Michael Vitousek, Matteo Cimini, John Tang Boyland;
licensed under Creative Commons License CC-BY

1st Summit on Advances in Programming Languages (SNAPL’15).
Eds.: Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 274–293

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 275

of contracts [19, 24], coercions [33], and interlanguage migration [62, 40]. Because of the
shared mechanisms with these other lines of research, much of the ongoing research benefits
the theory of gradual typing, and vice versa [28, 39, 26, 16, 56, 15, 17, 25].

Gradual typing has a syntactic similarity to type inference [42], which also supports
optional type annotations. However, type inference differs from gradual typing in that it
requires static type checking for the whole program. However, there are many other lines of
research that seek to integrate static and dynamic typing, listed below.

1. Dynamic & Typecase extends statically typed languages with a type, often named Dynamic
or Any, together with explicit forms for injecting and projecting values into and out of
the Dynamic type [38, 1, 12].

2. Object-Oriented Languages extend statically typed languages with a type, often called
Object, with implicit conversions into Object and explicit conversions out of Object [23, 37].

3. Soft Typing applies static analysis to dynamically typed programs for the purposes of
optimization [13] and debugging [21].

4. Type Hints in dynamically typed languages enable type specialization in optimizing
compilers, such as in Lisp [55] and Dylan [47].

5. Types for Dynamic Languages design static type systems for dynamically typed languages,
such as StrongTalk [10] and Typed Racket [63].

While these lines of research share the broad goal of integrating statically and dynamically
typed languages, they address goals different from those associated with gradual typing.

To a large degree, the practice of gradual typing preceded the theory. A number of
languages provided a combination of static and dynamic type checking, with implicit casts
to and from the unknown type. These languages included Cecil [14], Visual Basic.NET [41],
Bigloo [46], and ProfessorJ [24]. The theory of gradual typing provides a foundation for
these languages. Thatte’s earlier theory of Quasi-static Typing [60] almost meets the goals
of gradual typing, but it does not statically catch all type errors in completely annotated
programs. (See Siek and Taha [50] for an in-depth discussion.)

Over the last decade there has been significant interest, both in academia and industry,
in the integration of static and dynamic typing. On the industry side, there is Dart [59],
TypeScript [32, 6], Hack [65], and the addition of Dynamic to C# [31]. On the academic side,
there is a growing body of research [34, 51, 30, 40, 49, 67, 8, 54, 69, 68, 2, 18, 36, 44, 58, 3,
66, 61, 57, 45, 4, 9, 6, 22, 53]. The term gradual typing is often used to describe language
designs that integrate static and dynamic typing. However, some of these designs do not
satisfy the original intent of gradual typing because they do not support the convenient
evolution of code between the two typing disciplines. This goal was implicit in the original
paper; it did not include a formal property that captures convenient evolution. To this end,
we offer a new criterion in this paper, the gradual guarantee, that relates the behavior of
programs that differ only with respect to the precision of their type annotations.

In Section 2 we discuss several example programs that demonstrate gradual typing and
motivate the need for the gradual guarantee. We review the semantics of the Gradually
Typed Lambda Calculus (GTLC) (Section 3) and then state the formal criteria for gradually
typed languages, including the gradual guarantee (Section 4). In Section 5 we survey some
of the gradual typing literature, critiquing designs in light of the gradual guarantee. The
last section before the conclusion reports on a mechanized proof that the GTLC satisfies the
gradual guarantee (Section 6).

SNAPL 2015

276 Refined Criteria for Gradual Typing

2 Examples of Gradual Typing

In this section, we highlight the goals of gradual typing by way of several examples and
motivate the need for the gradual guarantee. The examples are written in Reticulated Python,
a gradually typed variant of Python [66] using the syntax for type annotations specified in
PEP 484 [29]. For example, a function type T1 → T2 is written Callable[[T1],T2].

2.1 Gradual Typing Includes Both Fully Static and Fully Dynamic
The first goal of gradual typing is to provide both fully static type checking and fully dynamic
type checking. In other words, a gradually typed language can be thought of being a superset
of two other languages, a fully static one and a fully dynamic one. For example, the GTLC
is, roughly speaking, a superset of both the Simply Typed Lambda Calculus (STLC) and the
(Dynamically Typed) Lambda Calculus (DTLC). We say that a program is fully annotated
if all variables have type annotations and if the type ? does not occur in any of the type
annotations. A fully annotated program of the GTLC should behave the same as in the
STLC, and a program without type annotations should behave the same as in the DTLC.
An important aspect of a program’s behavior that we take into account is the error cases, of
which there are several varieties: 1) a program may fail to type check, 2) a program may
encounter a runtime error and the language definition requires that the program halt or raise
an exception, i.e., a trapped error [11]) and 3) a program may encounter a runtime error that
the language definition says nothing about, i.e., an untrapped error. The STLC, GTLC, and
even DTLC are all strongly typed so they are free of untrapped errors. Furthermore, the
STLC is free of trapped errors and so is the GTLC on fully annotated programs.

Consider the examples in Figure 1. The gcd1a and gcd1b functions at the top have
no type annotations whereas gcd3a and gcd3b at the bottom are fully annotated. The
un-annotated versions should behave just like they would in Python. Indeed, with gcd1a,
the call gcd(15, 9) returns (3,-1,2). Can you spot the error in gcd1b? The second return
statement is returning a pair instead of a 3-tuple. But that error is not caught statically
because the programmer has asked for dynamic checking. Turning to the fully annotated
versions gcd3a and gcd3b, they should behave just as they would in some hypothetical
statically typed variant of Python. Indeed, with gcd3a, the call gcd(15, 9) returns (3,-1,2)
and furthermore, the gradual type system guarantees that gcd3a is free of runtime type
errors. On the other hand, with gcd3b, a static error is reported to indicate that returning a
pair conflicts with the return type Tuple[int,int,int].

2.2 Gradual Typing Provides Sound Interoperability
With gradual typing, fully static programs behave the same as if they were written in a
statically typed programming language. As a result, they are guaranteed not to encounter
type errors at runtime. But what about partially typed programs?

Consider the following algorithm for computing the modular inverse. We have not
annotated the parameters of modinv, so it is dynamically typed, but suppose it calls the
statically typed gcd3b. What happens if someone forgets a conversion and passes a string as
parameter m of modinv?

def modinv(a, m):
(g, x, y) = gcd(a, m)
if g != 1: raise Exception()
else: return x % m

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 277

gcd1a

def gcd(a, b):
if a == 0:

return (b, 0, 1)
else:

(g, y, x) = gcd(b % a, a)
return (g, x - (b // a) * y, y)

gcd3a

def gcd(a:int, b:int)
-> Tuple[int,int,int]:

if a == 0:
return (b, 0, 1)

else:
(g, y, x) = gcd(b % a, a)
return (g, x - (b // a) * y, y)

gcd1b

def gcd(a, b):
if a == 0:

return (b, 0, 1)
else:

(g, y, x) = gcd(b % a, a)
return (g, x - (b // a) * y)

gcd3b

def gcd(a:int, b:int)
-> Tuple[int,int,int]:

if a == 0:
return (b, 0, 1)

else:
(g, y, x) = gcd(b % a, a)
return (g, x - (b // a) * y)

Figure 1 Static and dynamic variants of the extended greatest-common divisor algorithm.

Does the string flow into the gcd function and trigger a runtime error in the expression b % a?
That would be unfortunate, because gcd is statically typed and one would hope that gcd is
guaranteed to be free of runtime errors, of both the trapped and untrapped variety. Further,
there would be a string masquerading as an integer and programmers would not be able to
trust their type annotations. With gradual typing, the runtime system protects the static
typing assumptions by casting values as they flow between statically and dynamically typed
code. So in this example, there is a cast error in modinv just before the call to gcd. In fact,
gradual typing ensures that statically typed regions of code are free of runtime type errors.

Next let us consider the following fully annotated version of modinv with a call to the
dynamically typed gcd1a. Because this function refers to a variable (gcd) that is dynamic,
this function is only partially typed.

def modinv(a : int, m : int):
(g, x, y) = gcd(a, m)
if g != 1: raise Exception()
else: return x % m

However, one would like to understand which parts of modinv are safe versus which parts
might result in a runtime type error. We accomplish this by analyzing the implicit casts in
modinv. In the call gcd(a,m), the arguments are cast from int to Any. In general, gradual
typing guarantees that upcasts like these are safe. (We define upcast in terms of subtyping
in Section 4.2.) On the other hand, the return type of gcd1a is unspecified, so it defaults to
Any. Thus, the assignment to the tuple (g, x, y) requires a downcast, which is unsafe. One
thing worth noting is that some partially typed code can be completely safe. For example, if
we changed gcd1a to have return type Tuple[int,int,int] (but leave the parameter types
unspecified), then the modinv function would be safe because the only implicit casts would be
the upcasts on the arguments in the call to gcd. We envision that IDE’s for gradually typed
languages will provide feedback to programmers, identifying the locations of unsafe casts.

SNAPL 2015

278 Refined Criteria for Gradual Typing

Next we consider the situation in which a dynamically typed function is used as a callback
inside a statically typed function. In the following we compute the derivative of a function
fun at two different points. However, there is an error during the second call to deriv because
fun returns the None value when the input is not positive.

def deriv(d: float, f: Callable[[float],float], x: float) -> float:
return (f(x + d) - f(x - d)) / (2.0 * d)

def fun(y):
if y > 0: return y ** 3 - y - 1

deriv(0.01, fun, 3.0)
deriv(0.01, fun, -3.0)

As described above, gradual typing performs runtime casts to ensure that values are consistent
with their static types. Here the cast needs to check that fun has type Callable[[float],
float]. However, determining the return type of an arbitrary dynamically typed function is
undecidable. (The halting problem reduces to this problem.) Instead, gradual typing draws
on research for contracts [19] and delays the checking until the function is called. Thus, a
cast error occurs inside deriv when parameter f is applied to a negative number.

If this were the end of the story, it would be unfortunate; as we stated above, statically
typed code should be free of runtime type errors. In this example, the code that called
deriv is at fault but the error occurs inside deriv. However, thanks to the blame tracking
technique of Findler and Felleisen [19], the cast error can point back to the call to deriv
and explain that fun violated the expected type of Callable[[float],float] returning None.
Thus, in general, the soundness guarantee for gradual typing is stated in terms of blame:
upcasts never result in blame, only downcasts or cross-casts.

2.3 Gradual Typing Enables Gradual Evolution
So far we demonstrated how gradual typing subsumes static and dynamic typing and provides
sound interoperability between the two, but we have not demonstrated the gradual part of
gradual typing. That is, programmers should be able to add or remove type annotations
without any unexpected impacts on their program, such as whether it still typechecks and
whether its runtime behavior remains the same. In Figure 2 we show several points in the
evolution of the gcd function with respect to dynamic versus static typing. These versions of
the gcd function have bodies identical to gcd3a; they only differ in their type annotations.

One might naively want all of the versions in Figure 2 to have exactly the same behavior
with respect to type checking and execution. However, gcd3c has the wrong annotation,
with a return type of Tuple[int,int]. To ensure type soundness, a gradual type system
must reject this program as ill typed. Thus, when a programmer adds annotations, they can
sometimes trigger a static type error. Similarly, adding the wrong annotation can sometimes
trigger a runtime error, which is good because it make sure that annotations stay consistent
with the code. For example, when using gcd2a (whose second parameter has unknown type),
adding str as the annotation for the m parameter of modinv, as shown below, does not trigger
a static error, but it does trigger a cast error at the recursive call to gcd.

def modinv(a, m : str):
(g, x, y) = gcd(a, m)
...

modinv(3, ’hi %s’)

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 279

gcd1a

def gcd(a, b): ...

gcd2a

def gcd(a:int, b): ...

gcd3a

def gcd(a:int, b:int)
-> Tuple[int,int,int]:

if a == 0: return (b, 0, 1)
else:

(g, y, x) = gcd(b % a, a)
return (g, x - (b // a) * y, y)

gcd2b

def gcd(a, b:int): ...

gcd3c

def gcd(a:int, b:int)->Tuple[int,int]:
...

Figure 2 Evolutions of the extended greatest-common divisor algorithm.

What about the reverse? What does removing type annotations do to the behavior of a
gradually typed program? The gradual guarantee says that if a gradually typed program is
well typed, then removing type annotations always produces a program that is still well typed.
Further, if a gradually typed program evaluates to a value, then removing type annotations
always produces a program that evaluates to an equivalent value.

One of the primary use cases for gradual typing is to enable the evolution of programs
from untyped to typed. Thus, one might be disappointed that the graduate guarantee is not
as strong when moving in that direction. However, the gradual guarantee has more to say
about this direction: a program remains well typed so long as only correct type annotations
are added. We take correct to mean that the annotation agrees with the corresponding
annotation in some fully annotated and well-typed version of the program. With this
definition, one can apply the gradual guarantee to show that the program of interest remains
well typed with the addition of correct type annotations.

3 The Gradually Typed Lambda Calculus

Here we review the GTLC [50] (Figure 3), which extends the STLC with the unknown type
? and un-annotated functions. The blame labels ` represent source position information
from the parser, so blame labels are unique. The typing rules for constants, variables, and
functions are the same as in the STLC. The two key aspects of the GTLC type system
can be seen in the rule for application. First, the consistency relation, written T1 ∼ T2, is
used in GTLC where the STLC would check for type equality. The consistency relation
is more liberal when it comes to the unknown type: it relates any type to the unknown
type. For example, consistency is responsible for the the call gcd(15, 9), with version gcd1a,
being well typed. The argument types are int, the parameter types are ?, and int ∼ ?.
The consistency relation is responsible for rejecting gcd(32, true), with gcd3a, because
bool 6∼ int. In contrast to subtyping, consistency is symmetric but not transitive. Gradual
typing can be added to object-oriented languages by combining subtyping and consistency in
a principled fashion [51, 6]. Another important aspect of the GTLC is the metafunction fun.
The GTLC allows a term in function position to be of type T1 → T2 or of type ?. The fun
metafunction extracts the domain and codomain type, treating ? as if it were ?→ ? [22].

SNAPL 2015

280 Refined Criteria for Gradual Typing

Blame labels `

Base types B ::= int | bool
Types T ::= B | T → T | ?

Constants k ::= true | 0 | inc | · · ·
Expressions e ::= k | x | λx:T. e | (e e)`

λx. e ≡ λx: ? . e

Consistency T ∼ T

? ∼ T T ∼ ? B ∼ B
T1 ∼ T3 T2 ∼ T4
T1 → T2 ∼ T3 → T4

Expression Typing Γ ` e : T

. . .

Γ ` e1 : T1 Γ ` e2 : T2
fun(T1) = T11→T12 T2 ∼ T11

Γ ` (e1 e2)` : T12

Function Matching fun(T) = T → T

fun(T11 → T12) = T11 → T12

fun(?) = ?→ ?

Dynamic Semantics: e ⇓ r ≡ ∅ ` e f : T and f 7−→∗ r for some f and T.

Figure 3 The Gradually Typed Lambda Calculus (GTLC).

The dynamic semantics of the GTLC is defined by translation into an internal cast
calculus much like the Blame Calculus [67]. The internal cast calculus extends the STLC
with the unknown type ? but it replaces the implicit casts of the GTLC with explicit casts.
The cast calculus and translation is defined in Figure 4. The cast expression has the form
f : T ⇒` T , which enables a left-to-right reading. We abbreviate a sequence of two casts
(e : T1 ⇒`1 T2) : T2 ⇒`2 T3 as follows to avoid repetition: e : T1 ⇒`1 T2 ⇒`2 T3. The
translation from the GTLC to the cast calculus is defined by the judgment Γ ` e f : T .
Again, application is the interesting case. We insert a cast on the expression in function
position to make sure it has type T1 → T2 and we insert a cast around the argument to make
sure it has type T1. Each inserted cast corresponds to the use of fun or ∼ in the type system.

The dynamic semantics of the cast calculus is given in Figure 4. The first things to note
are the two value forms specific to casts. A value enclosed in a cast between two function
types is itself a value, which we call a wrapped function. A value that is cast from a ground
type G to ? is also a value, which we call an injection. Ground types include only base types
and the function type ?→ ?.2

Now we turn to the reduction rules for casts. Identity casts on base types and ? are
discarded (rule IdBase and IdStar). When an injection (a cast from a ground type to ?)
meets a projection (a cast from ? to a ground type) then either the ground types are equal
and the casts are discarded (rule Succeed) or the ground types differ and the program
halts and assigns blame (rule Fail). A cast to or from ? that involves a non-ground type is
decomposed into two casts with a ground type in the middle (rules Ground and Expand).
The Ground rule is necessary to ensure that injections are restricted to ground types. The
Expand rule is not strictly necessary but allows Succeed and Fail to focus on ground type.

Perhaps the most interesting rule concerns casts between function types (rule AppCast).
Recall the example in Section 2.2 in which the function fun of type ?→ ? is passed to deriv
at type float→ float and applied to 3.01. The cast from ?→ ? to float→ float applied
to fun is a value. The application of a wrapped function breaks the cast into two parts: a

2 Restricting injections to ground types gives the UD semantics [49, 67]. To instead obtain the D semantics,
this restriction can be lifted [49].

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 281

Ground Types G ::= B | ?→?
Expressions f ::= k | x | λx:T. f | f f | f : T ⇒` T | blameT `

Values v ::= k | λx:T. f | v : T1→T2 ⇒` T3→T4 | v : G⇒` ?

Results r ::= v | blameT `

Frames F ::= � f | v � | � : T1 ⇒` T2

Expression Typing Γ `C f : T

. . .
Γ `C f : T1 T1 ∼ T2

Γ `C (f : T1⇒`T2) : T2 Γ `C blameT ` : T

Cast Insertion Γ ` e f : T

. . .

Γ ` e1 f1 : T1 Γ ` e2 f2 : T2
fun(T1) = T11 → T12 T2 ∼ T11

Γ ` (e1 e2)` (f1 : T1 ⇒` T11→T12) (f2 : T2 ⇒` T11) : T12

Dynamic Semantics f 7−→ f

(λx:T. f) v 7−→ [x := v]f (Beta)
v : B ⇒` B 7−→ v (IdBase)
v : ?⇒` ? 7−→ v (IdStar)

v : G⇒`1 ?⇒`2 G 7−→ v (Succeed)
v : G1 ⇒`2 ?⇒`2 G2 7−→ blameG2 `2 if G1 6= G2 (Fail)

(v1 : T1→T2 ⇒` T3→T4) v2 7−→ v1 (v2 : T3 ⇒` T1) : T2 ⇒` T4 (AppCast)
v : T ⇒` ? 7−→ v : T ⇒` G⇒` ? if T 6= ?, T 6= G,T ∼ G (Ground)
v : ?⇒` T 7−→ v : ?⇒` G⇒` T if T 6= ?, T 6= G,T ∼ G (Expand)

F [f] 7−→ F [f ′] if f 7−→ f ′ (Cong)
F [blameT1 `] 7−→ blameT2 ` if ` F : T1 ⇒ T2 (Blame)

Figure 4 Cast insertion and the internal cast calculus.

cast on the argument and on the return value. The following shows the important steps.

(fun : ?→ ?⇒` float→ float) 3.01
7−→ (fun (3.01 : float⇒` ?)) : ?⇒` float

7−→∗ 5.02 : float⇒` ?⇒` float 7−→ 5.02

Recall that the second call to deriv resulted in a cast error. In that case fun is applied to
−2.99. The result of the function is a None value, which cannot be cast to float. Thanks to
the blame tracking, the error blamefloat ` includes the source information for the cast that
arose from passing fun into deriv.

(fun : ?→ ?⇒` float→ float) −2.99
7−→ (fun (−2.99 : float⇒ ?)) : ?⇒` float

7−→∗ None : NoneType⇒` ?⇒` float 7−→ blamefloat `

SNAPL 2015

282 Refined Criteria for Gradual Typing

4 Criteria for Gradual Typing

We begin by reviewing the formal criteria for gradually typed languages that appear in the
literature. These criteria cover the first three subsections of Section 2. We then develop a
formal statement of our new criterion, the gradual guarantee. For the sake of precision, we
state each criterion as a theorem about the GTLC. Our intent is that one would adapt these
theorems to other gradually typed languages.

4.1 Gradual as a Superset of Static and Dynamic
As discussed in Section 2.1, a gradually typed language is intended to include both an untyped
language and a typed language. For example, GTLC should encompasses both DTLC and
the STLC. Siek and Taha [50] prove that the GTLC type system is equivalent to the STLC
on fully annotated programs. We extend this criterion to require the dynamic semantics of
the GTLC to coincide with the STLC on fully annotated programs in the theorem below.
Let `S and ⇓S denote the typing judgment and evaluation function of STLC, respectively.
We say that a type is static if the unknown type does not occur in it.

I Theorem 1 (Equivalence to the STLC for fully annotated terms).
Suppose e is fully annotated and T is static.
1. `S e : T if and only if ` e : T . (Siek and Taha [50]).
2. e ⇓S v if and only if e ⇓ v.

The relationship between the GTLC and DTLC is more nuanced by necessity because
there exist terms that are both fully annotated and un-annotated. Suppose the constant inc
has type int→int and the constant true has type bool. Then the application of inc to
true is ill-typed in the GTLC even though it is a well-typed program in the DTLC (trivially,
because programs are). Similar issues arise when extending the GTLC with other constructs,
such as conditionals, where one must choose to lean towards either static typing or dynamic
typing. Nevertheless, there is a simple encoding of the DTLC into the GTLC, here written
as d·e, that casts constants to the unknown type. Let ⇓D denote evaluation of DTLC.

I Theorem 2 (Embedding of DTLC). Suppose that e is a term of DTLC.
1. ` dee : ? (Siek and Taha [50]).
2. e ⇓D r if and only if dee ⇓ r.

The two theorems of this section characterize programs at the two extremes: fully static
and fully dynamic. However, these theorems say nothing about partially typed programs
which is the norm for gradually typed languages. The next section describes notions of
soundness that make sense for partially typed programs.

4.2 Soundness for Gradually Typed Languages
Siek and Taha [50] prove that the GTLC is sound in the same way that many dynamically
typed languages are sound: execution never encounters untrapped errors (but trapped errors
could be ubiquitous). Let e ⇑ indicate that e diverges.

I Theorem 3 (Type Safety of GTLC, Siek and Taha [50]). If ` e : T , then either e ⇓ v and
` v : T for some v, or e ⇓ blameT ` for some `, or e ⇑.

This theorem is unsatisfying because it does not tell us that statically typed regions are
not to blame for trapped errors. Thankfully, blame tracking provides the right mechanism

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 283

(λy: ? . y) ((λx: ? . x) 42)

(λy:int. y) ((λx: ? . x) 42) (λy: ? . y) ((λx:int. x) 42) (λy:bool. y) ((λx: ? . x) 42)

(λy:int. y) ((λx:int. x) 42) (λy:bool. y) ((λx:bool. x) 42)

Figure 5 A lattice of differently annotated versions of a gradually typed program.

for formulating type soundness for gradually typed programs. The Blame Theorem [62, 67]
characterizes the safe versus possibly unsafe casts. Adapting these results to gradual typing,
we arrive at the Blame-Subtyping Theorem, which states that if the cast insertion procedure
inserts a cast from a type to another and the former is a subtype of the latter, then the cast
is guaranteed not to fail. To state this theorem, we give the following definition of subtyping.

T <: T

B <: B ? <: ? T <: G
T <: ?

S1 <: T1 T2 <: S2
T1 → T2 <: S1 → S2

I Theorem 4 (Blame-Subtyping Theorem). If ∅ ` e f : T , f contains a cast f ′ : T1 ⇒` T2,
T1 <: T2, and e ⇓ blameT l

′ then l 6= l′.

The practical implication of this theorem is that a programmer (or automated tool) can
easily analyze a region of code to tell whether they region is safe or whether it might trigger
a cast error. Furthermore, the Blame-Subtyping Theorem guarantees that fully-static regions
of code are never to blame for cast errors.

4.3 The Gradual Guarantee
So far we have four theorems to characterize gradually typed languages, but none of them
address the requirement of Section 2.3. Roughly speaking, changes to the annotations of a
gradually typed program should not change the static or dynamic behavior of the program.

For example, suppose we start with the un-annotated program at the top of the lattice in
Figure 5. One would hope that adding type annotations would yield a program that still
evaluates to 42. Indeed, in the GTLC, adding the type annotation int for parameters x and
y does not change the outcome of the program. On the other hand, the programmer might
insert the wrong annotation, say bool for parameter y, and trigger a trapped error. Even
worse, the programmer might add bool for x and cause a static type error. So we cannot
claim full contextual equivalence when going down in the lattice, but we can make a strong
claim when going up in the lattice: the less precise program behaves the same as the more
precise one except that it might have fewer trapped errors.

The partial order at work in Figure 5 is the precision relation on types and terms, defined
in Figure 6. Type precision [52] is also known as naive subtyping [67]. Term precision is the
natural extension of type precision to terms. Here we write T v T ′ when type T is more
precise than T ′ and e v e′ when term e is more precisely annotated than e′.3 We give the
definition of these relations in Section 6. We characterize the expected static and dynamic
behavior of programs as we move up and down in precision as follows.

3 We apologize that the direction of increase in precision is to the left instead of to the right. We settled
on this directionality to be consistent with subtyping.

SNAPL 2015

284 Refined Criteria for Gradual Typing

Type Precision T v T

T v ? B v B
T1 v T3 T2 v T4
T1 → T2 v T3 → T4

Term Precision for the GTLC e v e

k v k x v x
T1 v T2 e1 v e2
λx:T1. e1 v λx:T2. e2

e1 v e2 e′1 v e′2
(e1 e

′
1)` v (e2 e

′
2)`

Figure 6 Type and Term Precision.

I Theorem 5 (Gradual Guarantee). Suppose e v e′ and ` e : T .
1. ` e′ : T ′ and T v T ′.
2. If e ⇓ v, then e′ ⇓ v′ and v v v′.

If e ⇑ then e′ ⇑.
3. If e′ ⇓ v′, then e ⇓ v where v v v′, or e ⇓ blameT l.

If e′ ⇑, then e ⇑ or e ⇓ blameT l.

Now that we have stated the gradual guarantee, it is natural to wonder how important it is.
Of course, there are many pressures at play during the design of any particular programming
language, such as concerns for efficiency, safety, learning curve, and ease of implementation.
However, if a language is intended to support gradual typing, that means the programmer
should be able to conveniently evolve code from being statically typed to dynamically typed,
and vice versa. With the gradual guarantee, the programmer can be confident that when
removing type annotations, a well-typed program will continue to be well-typed (with no
need to insert explicit casts) and a correctly running program will continue to do so. When
adding type annotations, if the program remains well typed, the only possible change in
behavior is a trapped error due to a mistaken annotation. Furthermore, it is natural to
consider tool support (via static or dynamic analysis) for adding type annotations, and we
would not want the addition of types to cause programs to misbehave in unpredictable ways.

5 Critiques of Language Designs in Light of the Gradual Guarantee

Researchers have explored a large number of points in the design space for gradually typed
languages. A comprehensive survey is beyond the scope of this paper, but we have selected a
handful of them to discuss in light of the gradual guarantee.

5.1 GTLC
As discussed above, the Gradually Typed Lambda Calculus [50] satisfies the gradual guarantee
(the proof is in Section 6).

5.2 GTLC with Mutable References
Siek and Taha [50] treat mutable references as invariant in their type system, disallowing
implicit casts that change the pointed-to type. Consider that design in relation to the lattice
of programs in Figure 7. The program at the top is well-typed because Ref int may be
implicitly cast to ? (anything can). The program at the bottom is well-typed; it contains no

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 285

(λy: ? . y) ((λx: ? . x) ref 42)

(λy:Ref int. y) ((λx:Ref ? . x) ref 42)

(λy:Ref int. y) ((λx:Ref int. x) ref 42)

Figure 7 A lattice of varying-precision for
a program with mutable references.

(λf : ?. f true) (λx : ?. x)

(λf : bool→bool. f true) (λx : ?. x)

(λf : bool→bool. f true) (λx : bool. x)

Figure 8 A lattice of varying-precision for
a higher-order program.

implicit casts. However, the program in the middle is not well-typed because one cannot
cast between Ref int and Ref ?. These programs are related by precision and the bottom
program is well-typed, so part 1 of the gradual guarantee is violated.

Herman et al. [34, 35] remedy the situation with a design for mutable references that
allows implicit casts between reference types so long as the pointed-to types are consistent
(in the technical sense of Siek and Taha [50]). We conjecture that their design satisfies the
gradual guarantee. Likewise, we conjecture that the new monotonic approach [53] to mutable
references satisfies the gradual guarantee.

5.3 TS?

The TS? language [57] layers a static type system over JavaScript to provide protection
from security vulnerabilities. TS? is billed as a gradually typed language, but it does not
satisfy the gradual guarantee. For example, consider the program variations in Figure 8. The
function with parameter f is representative of a software framework and the function with
parameter x is representative of a client-provided callback.

A typical scenario of gradual evolution would start with the untyped program at the top,
proceed to the program in the middle, in which the framework interface has been statically
typed (parameter f) but not the client, then finally evolve to the program at the bottom
which is fully typed. The top-most and bottom-most versions evaluate to true in TS?.
However, the middle program produces a trapped error, as explained by the following quote.

“Coercions based on setTag can be overly conservative, particularly on higher-order
values. For example, trying to coerce the identity function id : ? → ? to the type
bool→ bool using setTag will fail, since ? 6<: bool.” [57]

The example in Figure 8 is a counterexample to part 2 of the gradual guarantee; the
bottom program evaluates to true, so the middle program should too, but it does not. The
significance of not satisfying the gradual guarantee, as we can see in this example, is that
programmers will encounter trapped errors in the process of refactoring type annotations, and
will be forced to make several coordinated changes to get back to a well-behaved program.

5.4 Thorn and Like Types
The Thorn language [69] is meant to support the evolution of (dynamically typed) scripts
to (statically typed) programs. The language provides a dynamic type dyn, nominal class
types, and like types.

We revisit parts of Figure 5 under several scenarios. First, suppose we treat ? as dyn
and int is a concrete type (i.e. a class type). Then we have the following counterexample to

SNAPL 2015

286 Refined Criteria for Gradual Typing

part 1 of the gradual guarantee; the bottom program is well-typed but not the top program.

(λy:int. y) ((λx:dyn. x) 42)

(λy:int. y) ((λx:int. x) 42)

Second, suppose again that ? is dyn but that we replace bool with like bool and int with
like int. Now every program in Figure 5 is well-typed, even the bottom-right program that
should not be:

(λy:like bool. y) ((λx:like bool. x) 42)

So in this scenario the gradual guarantee is satisfied, but not the correspondence with a fully
static language (Theorem 1). Finally, suppose we replace ? with like int and treat int as a
concrete type. Similar to the first scenario, we get the following counterexample to part 1
of the gradual guarantee; the bottom program is well-typed but not the top program. (It
would need an explicit cast to be well-typed.)

(λy:int. y) ((λx:like int. x) 42)

(λy:int. y) ((λx:int. x) 42)

We note that efficiency is an important design consideration for Thorn and that it is
challenging to satisfy the gradual guarantee and efficiency at the same time. For example,
only recently have we found a way to support mutable references without using wrappers [53].

5.5 Grace and Structural Type Tests
The Grace language [7] is gradually typed and includes a facility for pattern matching on
structural types. Boyland [9] observes that, depending on the semantics of the pattern
matching, the gradual guarantee may not hold for Grace. Here we consider an example in an
extension of the GTLC with a facility for testing the type of a value: the expression e is T
returns true if e evaluates to a value of type T and false otherwise. Boyland [9] considers
three possible interpretations what “a value of type T” means: an optimistic semantics that
checks whether the type of the value is consistent with the given type, a pessimistic semantics
that checks whether the type of the value is equal to the given type, and a semantics similar
in spirit to that of Ahmed et al. [2], which only checks the top-most type constructor.

Consider the following example where g is a function that tests whether its input is a
function of type int→int. On the right we show a lattice of several programs that apply g
to the identity function.

g ≡ (λf : ?. f is int→int) g (λx: ? . x)

g (λx:int. x)

g (λx: ? . x)

g (λx:bool. x)

Under the optimistic semantics, g (λx: ? . x) and g (λx:int. x) evaluate to true but
g (λx:bool. x) evaluates to false. So part 2 of the gradual guarantee is violated.
Under the pessimistic semantics, g (λx: ? . x) evaluates to false whereas g (λx:int. x)
program evaluates to true, so this is a counterexample to part 2 of the gradual guarantee.
Under the semantics of Ahmed et al. [2], this program is disallowed syntactically. We
could instead have g ≡ (λf : ?. f is ?→?) and then all three programs would evaluate to
true. We conjecture that this semantics does satisfy the gradual guarantee.

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 287

5.6 Typed Racket and the Polymorphic Blame Calculus
We continue our discussion of type tests, but expand the language under consideration to
include parametric polymorphism, as found in Typed Racket [28, 63] and the Polymorphic
Blame Calculus [2]. Consider the following programs in which a test-testing function is
passed to another function, either simply as ? or at the universal type ∀α. α→α.

(λf : ?. f [int] 5) (Λα. λx : ?. x is int)

(λf : ∀α. α→α. f [int] 5) (Λα. λx : ?. x is int)

In the bottom program, 5 is sealed when it is passed to the polymorphic function f . In Typed
Racket, a sealed value is never an integer, so the type test returns false. The program on
the top evaluates to true, so this is a counterexample to part 2 of the gradual guarantee.

In the Polymorphic Blame Calculus, applying a type test to a sealed value always produces
a trapped error, so this is not a counterexample under that design. We conjecture that
one could extend the GTLC with polymorphism and compile it to the Polymorphic Blame
Calculus to obtain a language that satisfies the gradual guarantee.

5.7 Reticulated Python and Object Identity
During the evaluation of Reticulated Python, a gradually typed variant of Python, Vitousek
et al. [66] encountered numerous problems when adding types to third-party Python libraries
and applications. The root of these problems was a classic one: proxies interfere with object
identity [20]. (The standard approach to ensuring soundness for gradually typed languages is
to create proxies when casting higher-order entities like functions and objects.) Consider the
GTLC extended with mutable references and an operator named alias? for testing whether
two references are aliased to the same heap cell. Then in the following examples, the bottom
program evaluates to true whereas the top program evaluates to false.

let r : ref int = ref 0 in (λx : ref int. λy : ref ? . alias?x y) r r

let r : ref int = ref 0 in (λx : ref int. λy : ref int. alias?x y) r r

There are several approaches to mitigate this problem, such as changing alias? to see
through proxies, use the membrane abstraction [64], or avoid proxies altogether [69, 66, 53].
One particularly thorny issue for Reticulated Python is that the use of the foreign-function
interface to C is common in Python programs and the foreign functions are privy to a rather
exposed view of Python objects.

6 The Proof of the Gradual Guarantee for the GTLC

Here we summarize the proof of the gradual guarantee for the GTLC. All of the definitions, the
proof of the main lemma (Lemma 7), and its dependencies, have been verified in Isabelle [43].
They are available at the following URL:
https://dl.dropboxusercontent.com/u/10275252/gradual-guarantee-proof.zip
Part 1 of the gradual guarantee is easy to prove by induction on e v e′. The proof of part 2
is interesting and will be the focus of our discussion. Part 3 is a corollary of part 2.

Because the semantics of the GTLC is defined by translation to the cast calculus, our
main lemma concerns a variant of part 2 that is adapted to the cast calculus. For this we

SNAPL 2015

https://dl.dropboxusercontent.com/u/10275252/gradual-guarantee-proof.zip

288 Refined Criteria for Gradual Typing

Term Precision for the Cast Calculus Γ,Γ′ ` f v f ′

. . .
Γ,Γ′ ` f v f ′ T1 v T ′1 T2 v T ′2

Γ,Γ′ ` (f : T1 ⇒`1 T2) v (f ′ : T ′1 ⇒`2 T ′2)
Γ′ ` f ′ : T ′ T v T ′

Γ,Γ′ ` blameT ` v f ′

Γ,Γ′ ` f v f ′ Γ′ ` f ′ : T ′
T1 v T ′ T2 v T ′

Γ,Γ′ ` (f : T1 ⇒` T2) v f ′

Γ,Γ′ ` f v f ′ Γ ` f : T
T v T ′1 T v T ′2

Γ,Γ′ ` f v (f ′ : T ′1 ⇒` T ′2)

Abbreviation: f v f ′ ≡ ∅, ∅ ` f v f ′

Figure 9 Term Precision for the Cast Calculus.

need a notion of precision for the cast calculus. Further, the translation to the cast calculus
needs to preserve precision. Figure 9 defines precision for the cast calculus in a way that
satisfies this need by adding rules that allow extra casts on both the left and right-hand side.

I Lemma 6 (Cast Insertion Preserves Precision). Suppose Γ ` e f : T , Γ′ ` e′ f ′ : T ′,
Γ v Γ′, and e v e′. Then Γ,Γ′ ` f v f ′ and T v T ′.

This lemma is interesting in that it was, in fact, not true for the original formulation of
the GTLC [50]. In that version, there were two cast insertion rules for function application,
one where the term in function position had an arrow type and one where it had type ?. The
latter case used the following rule.

Γ ` e1 f1 : ? Γ ` e2 f2 : T
Γ ` (e1 e2) ((f1 : ?⇒ T → ?) f2) : ?

Using this rule, if we take e1 = (((λg:?→ ?. g) (λx: ? . x)) 42) and e2 = (((λg: ? . g) (λx: ?
. x)) 42), we have that e1 v e2. However, when we obtain f1, f2 by ∅ ` e1 f1 : ? and
∅ ` e2 f2 : ?, we get

f1 = (((λg:?→ ?. g) (λx: ? . x)) (42 : Int⇒ ?))
f2 = ((((λg: ? . g)((λx: ? . x):?→ ?⇒ ?)):?⇒ Int→ ?) 42)

and f1 6v f2.
The following is the statement of the main lemma, which establishes that less-precise

programs simulate more precise programs.

I Lemma 7 (Simulation of More Precise Programs). Suppose f1 v f ′1, ` f1 : T , and ` f ′1 : T ′.
If f1 7−→ f2, then f ′1 7−→∗ f ′2 and f2 v f ′2 for some f ′2.

The proof of the Lemma 7 is by induction on the derivation of f1 v f ′1 followed by case
analysis on f1 7−→ f2. The proof required four major lemmas (and numerous minor lemmas).

Because the precision relation of the cast calculus allows extra casts on the right-hand
side, we prove the following lemma by case analysis on T ′1 and T ′2. The precision relation also
allows extra casts on the left, but we handled those cases in-line in the proof of Lemma 7.

I Lemma 8 (Extra Cast on the Right). Suppose `C v : T , `C v′ : T ′1, T v T ′1, and T v T ′2.
If v v v′, then v′ : T ′1 ⇒` T ′2 7−→∗ v′′ and v v v′′ for some v′′.

To handle cases where the more-precise program is already a value, we prove that the
less-precise program can reduce to a related value. This proof is by induction on the derivation
of v v f ′.

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 289

I Lemma 9 (Catchup to Value on the Left). Suppose `C v : T , `C f ′ : T ′, and v v f ′. Then
f ′ 7−→∗ v′ and v v v′.

The most complex part of the proof involved application, as functions may be wrapped
in a series of casts. We prove the following lemma by induction on the derivation of
(λx : T1. f) v v′1.

I Lemma 10 (Simulation of Function Application). Suppose `C (λx : T1. f) : T1→T2, `C v :
T1, `C v′ : T1, `C v′1 : T ′1→T ′2, `C v′2 : T ′1, and T1→T2 v T ′1→T ′2. If (λx : T1. f) v v′1 and
v v v′2, then v′1 v′2 7−→∗ f ′, [x := v]f v f ′, and `C f ′ : T ′2.

We prove the next lemma by induction on (v1 : T1→T2 ⇒` T3→T4) v v′1.

I Lemma 11 (Simulation of Unwrapping). Suppose `C v1 : T1→T2, `C v2 : T1, `C v′1 :
T ′1→T ′2, `C v′2 : T ′1, and T1→T2 v T ′1→T ′2. If (v1 : T1→T2 ⇒` T3→T4) v v′1 and v2 v v′2,
then v′1 v′2 7−→∗ f ′ and v1 (v2 : T3 ⇒` T1) : T2 ⇒` T4 v f ′.

With Lemma 7 in hand, we prove part 2 of the gradual guarantee by induction on the
number of reduction steps. Part 3 is a corollary of part 2, as follows. Assume that e′ evaluates
to v′. Because e is well typed, it may either evaluate to a value v, evaluate to a trapped error,
or diverge. If it evaluates to some v, then we have v v v′ by part 2 and because reduction is
deterministic. If e results in a trapped error, we are done. If e diverges, then so does e′ by
part 2, but that is a contradiction.

7 Conclusion

Gradual typing should allow programmers to straightforwardly evolve their programs between
the dynamic and static typing disciplines. However, this is only available to the programmer if
the language designer formulates their language in a specific way. In this paper, we emphasize
the need for formal criteria for gradually typed languages and offer a new criterion, the
gradual guarantee. This formal property captures essential aspects of the evolution of code
between typing disciplines. The current landscape of gradually typed languages reveals that
this aspect has been either silently included or unfortunately overlooked, but never explicitly
taken into consideration. That we could formally prove that GTLC obeys the gradual
guarantee is a promising step and indicates that it is a realistic goal for researchers designing
gradually typed systems. It remains to be investigated whether the gradual guarantee can
be proven for a full-blown language with modern features (such as polymorphism, recursive
types, type inference, etc.). We look forward to working with the research community to
address this challenge.

Acknowledgments. We thank Sam Tobin-Hochstadt, Philip Wadler, Andrew Kent, Am-
brose Bonnaire-Sergeant, Andre Kuhlenschmidt, and Ronald Garcia for their input. The
gradual guarantee was discovered independently by John Boyland and the Gradual Typ-
ing Group at Indiana University in 2014. The gradual guarantee is sketched in Boyland’s
paper at the FOOL workshop [9] and in Siek’s presentation at the NII Shonan meeting on
Contracts [48].

References
1 Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic typing in

a statically typed language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, April 1991.

SNAPL 2015

290 Refined Criteria for Gradual Typing

2 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for All.
In Symposium on Principles of Programming Languages, January 2011.

3 Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. Gradual
typing for Smalltalk. Science of Computer Programming, August 2013.

4 Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. Confined gradual typing.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA’14, pages 251–270, New York, NY, USA, 2014.
ACM.

5 Christopher Anderson and Sophia Drossopoulou. BabyJ – From Object Based to Class
Based Programming via Types. ENTCS, 82(8), 2003.

6 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In Richard
Jones, editor, ECOOP 2014 – Object-Oriented Programming, volume 8586 of Lecture Notes
in Computer Science, pages 257–281. Springer Berlin Heidelberg, 2014.

7 Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. Grace: The absence of
(inessential) difficulty. In Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2012, pages 85–
98, New York, NY, USA, 2012. ACM.

8 Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strniša,
Jan Vitek, and Tobias Wrigstad. Thorn: Robust, concurrent, extensible scripting on the
jvm. In ACM SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, pages 117–136, 2009.

9 John Tang Boyland. The problem of structural type tests in a gradual-typed language. In
Foundations of Object-Oriented Langauges, FOOL, 2014.

10 Gilad Bracha and David Griswold. Strongtalk: typechecking Smalltalk in a production en-
vironment. In OOPSLA’93: Proceedings of the eighth annual conference on Object-oriented
programming systems, languages, and applications, pages 215–230, New York, NY, USA,
1993. ACM Press.

11 Luca Cardelli. Handbook of Computer Science and Engineering, chapter Type Systems.
CRC Press, 1997.

12 Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. Modula-3 language definition. SIGPLAN Not., 27(8):15–42, August 1992.

13 Robert Cartwright and Mike Fagan. Soft typing. In PLDI’91: Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation, pages
278–292, New York, NY, USA, 1991. ACM Press.

14 Craig Chambers and the Cecil Group. The Cecil language: Specification and rationale.
Technical report, Department of Computer Science and Engineering, University of Wash-
ington, Seattle, Washington, 2004.

15 Olaf Chitil. Practical typed lazy contracts. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP’12, pages 67–76, New York,
NY, USA, 2012. ACM.

16 Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. Cor-
rect blame for contracts: no more scapegoating. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL’11, pages
215–226, New York, NY, USA, 2011. ACM.

17 Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete monitors for
behavioral contracts. In ESOP, 2012.

18 Tim Disney and Cormac Flanagan. Gradual information flow typing. In Workshop on
Script to Program Evolution, 2011.

19 R. B. Findler and M. Felleisen. Contracts for higher-order functions. In International
Conference on Functional Programming, ICFP, pages 48–59, October 2002.

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 291

20 R. B. Findler, M. Flatt, and M. Felleisen. Semantic casts: Contracts and structural subtyp-
ing in a nominal world. In European Conference on Object-Oriented Programming, 2004.

21 Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. ACM Trans.
Program. Lang. Syst., 21(2):370–416, 1999.

22 Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. In
Symposium on Principles of Programming Languages, POPL, pages 303–315, 2015.

23 James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Sun Developer
Network, 1996.

24 Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability
through mirrors and contracts. In OOPSLA’05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming systems languages and applications,
pages 231–245, New York, NY, USA, 2005. ACM Press.

25 Michael Greenberg. Space-efficient manifest contracts. In POPL, 2015.
26 Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest.

In Principles of Programming Languages (POPL) 2010, 2010.
27 Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan.

Sage: Hybrid checking for flexible specifications. In Scheme and Functional Programming
Workshop, pages 93–104, 2006.

28 Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi.
Relationally-parametric polymorphic contracts. In Dynamic Languages Symposium, 2007.

29 Łukasz Langa Guido van Rossum, Jukka Lehtosalo. Type hints. https://www.python.
org/dev/peps/pep-0484/, September 2014. draft.

30 Lars T. Hansen. Evolutionary programming and gradual typing in ECMAScript 4 (tutorial).
Technical report, ECMA TG1 working group, November 2007.

31 Anders Hejlsberg. C# 4.0 and beyond by anders hejlsberg. Microsoft Channel 9 Blog,
April 2010.

32 Anders Hejlsberg. Introducing TypeScript. Microsoft Channel 9 Blog, 2012.
33 Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Computer Program-

ming, 22(3):197–230, June 1994.
34 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. In

Trends in Functional Prog. (TFP), page XXVIII, April 2007.
35 David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. Higher-

Order and Symbolic Computation, 23(2):167–189, 2010.
36 Lintaro Ina and Atsushi Igarashi. Gradual typing for generics. In Proceedings of the

2011 ACM international conference on Object oriented programming systems languages
and applications, OOPSLA’11, 2011.

37 International Organization for Standardization. ISO/IEC 14882:1998: Programming lan-
guages — C++, September 1998.

38 Barbara Liskov, Russ Atkinson, Toby Bloom, Eliot Moss, Craig Schaffert, Bob Scheifler,
and Alan Snyder. CLU reference manual. Technical Report LCS-TR-225, MIT, October
1979.

39 Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing,
or, theorems for low, low prices! In Proceedings of the 17th European Symposium on
Programming (ESOP’08), March 2008.

40 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language
programs. In The 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, January 2007.

41 Erik Meijer and Peter Drayton. Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages. In OOPSLA’04 Workshop on
Revival of Dynamic Languages, 2004.

SNAPL 2015

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/

292 Refined Criteria for Gradual Typing

42 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978.

43 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, November 2007.

44 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs of gradual type
inference. In Symposium on Principles of Programming Languages, POPL, pages 481–494,
January 2012.

45 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe
& efficient gradual typing for TypeScript. Technical Report MSR-TR-2014-99, Microsoft
Research, 2014.

46 Manuel Serrano. Bigloo: a practical Scheme compiler. Inria-Rocquencourt, April 2002.
47 Andrew Shalit. The Dylan reference manual: the definitive guide to the new object-oriented

dynamic language. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1996.

48 Jeremy G. Siek. Design and evaluation of gradual typing for Python. https://dl.
dropboxusercontent.com/u/10275252/shonan-slides-2014.pdf, May 2014.

49 Jeremy G. Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In European Symposium on Programming, ESOP, pages 17–31, March 2009.

50 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, September 2006.

51 Jeremy G. Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming, volume 4609 of LCNS, pages 2–27, August 2007.

52 Jeremy G. Siek and Manish Vachharajani. Gradual typing and unification-based inference.
In DLS, 2008.

53 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald
Garcia. Monotonic references for efficient gradual typing. In European Symposium on
Programming, ESOP, April 2015.

54 Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In Symposium
on Principles of Programming Languages, POPL, pages 365–376, January 2010.

55 Guy L. Steele, Jr. Common LISP: the language (2nd ed.). Digital Press, Newton, MA,
USA, 1990.

56 T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
Chaperones and impersonators: run-time support for reasonable interposition. In Confer-
ence on Object Oriented Programming Systems Languages and Applications, OOPSLA’12,
2012.

57 Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin Bierman. Gradual typing embedded securely in javascript. In ACM
Conference on Principles of Programming Languages (POPL), January 2014.

58 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’12, pages 793–810, 2012.

59 The Dart Team. Dart Programming Language Specification. Google, 1.2 edition, March
2014.

60 Satish Thatte. Quasi-static typing. In POPL 1990, pages 367–381, New York, NY, USA,
1990. ACM Press.

61 Peter Thiemann and Luminous Fennell. Gradual typing for annotated type systems. In
Zhong Shao, editor, Programming Languages and Systems, volume 8410 of Lecture Notes
in Computer Science, pages 47–66. Springer Berlin Heidelberg, 2014.

62 Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration: From scripts to
programs. In Dynamic Languages Symposium, 2006.

https://dl.dropboxusercontent.com/u/10275252/shonan-slides-2014.pdf
https://dl.dropboxusercontent.com/u/10275252/shonan-slides-2014.pdf

J. G. Siek, M.M. Vitousek, M. Cimini, and J. T. Boyland 293

63 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed
Scheme. In Symposium on Principles of Programming Languages, January 2008.

64 Tom Van Cutsem and Mark S. Miller. Proxies: Design principles for robust object-oriented
intercession apis. In Proceedings of the 6th Symposium on Dynamic Languages, DLS’10,
pages 59–72, New York, NY, USA, 2010. ACM.

65 Julien Verlaguet. Facebook: Analyzing PHP statically. In Commercial Users of Functional
Programming (CUFP), 2013.

66 Michael M. Vitousek, Jeremy G. Siek, Andrew Kent, and Jim Baker. Design and evaluation
of gradual typing for Python. In Dynamic Languages Symposium, 2014.

67 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Euro-
pean Symposium on Programming, ESOP, pages 1–16, March 2009.

68 Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. Gradual typestate. In
European Conference on Object-Oriented Programming, ECOOP’11. Springer-Verlag, 2011.

69 Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan
Vitek. Integrating typed and untyped code in a scripting language. In Symposium on
Principles of Programming Languages, POPL, pages 377–388, 2010.

SNAPL 2015

	Introduction
	Examples of Gradual Typing
	Gradual Typing Includes Both Fully Static and Fully Dynamic
	Gradual Typing Provides Sound Interoperability
	Gradual Typing Enables Gradual Evolution

	The Gradually Typed Lambda Calculus
	Criteria for Gradual Typing
	Gradual as a Superset of Static and Dynamic
	Soundness for Gradually Typed Languages
	The Gradual Guarantee

	Critiques of Language Designs in Light of the Gradual Guarantee
	GTLC
	GTLC with Mutable References
	TS
	Thorn and Like Types
	Grace and Structural Type Tests
	Typed Racket and the Polymorphic Blame Calculus
	Reticulated Python and Object Identity

	The Proof of the Gradual Guarantee for the GTLC
	Conclusion

