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Abstract
We consider finite Markov decision processes (MDPs) with undiscounted total effective payoff.
We show that there exist uniformly optimal pure stationary strategies that can be computed by
solving a polynomial number of linear programs. We apply this result to two-player zero-sum
stochastic games with perfect information and undiscounted total effective payoff, and derive the
existence of a saddle point in uniformly optimal pure stationary strategies.
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1 Introduction

1.1 Basic concepts

1.1.1 Markov decision proccesses
We will consider Markov decision processes (MDPs) with total effective payoff. Let G = (V,E)
be a finite directed graph (digraph) in which loops and multiple arcs are allowed. The vertices
v ∈ V are called positions (or states) and the arcs e ∈ E are called moves (or transitions).
The vertex-set V is partitioned into two subsets V = VW ∪ VR that correspond to white
and random positions, controlled respectively, by a player (decision maker), who will be
called Max, and by nature. Let us denote by E(u) the set of arcs leaving u and assume that
E(u) 6= ∅ in every position u ∈ V .

For all random positions u ∈ VR we are given probabilities p(u, v) > 0 for all random
moves (u, v) ∈ E(u) such that

∑
(u,v)∈E(u) p(u, v) = 1. There is also a local reward function

r : E → Z given. The the triplet Γ = (G, p, r) will be called an MDP.
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1.1.2 Strategies
The vertices represent the states of a finite state dynamical system. If at time t the system
is in state vt = u ∈ VW then the controller (Max) chooses (as an action) one of the outgoing
arcs (u, v) ∈ E(u) with some probability and the system moves with this probability to
vt+1 = v. If vt = u ∈ VR, then the system moves to vt+1 = v with probability p(u, v)
(Max has no influence over this move.)

A strategy (policy) of Max is a mapping s that for every possible vt = u ∈ VW provides
a probability distribution over E(u). These probabilities may depend, in general, not only
on u and t but also on the entire history of the system up to time t. If these probabilities
take only values 0 and 1, then the strategy s is called pure; if these probabilities depend only
on the current state u, then s is called stationary. A pure stationary strategy is also called
positional. We shall denote by S the set of all possible strategies and by Ŝ the set of all
positional strategies.

Once Max chooses a strategy s ∈ S, and we fix an initial state v0, the above process
produces a series of states vt(s) ∈ V , t = 0, 1, . . ., which generally are random variables for
t > 0. We associate to such a process the sequence of expected local rewards

at(s) = Es[r(vt(s), vt+1(s)] for t = 0, 1, . . . ,

and set a(s) = 〈a0(s), a1(s), . . .〉. For simplicity we will omit in the sequel the argument s
and write vt and Es(r(vt, vt+1) rather than vt(s) and Es[r(vt(s), vt+1(s))] for t = 0, 1 . . .

1.1.3 Effective payoffs
We consider an effective payoff function π : R∗ → R, where R = R ∪ {−∞,+∞} and R∗
standardly denotes the set of all real sequences. The objective of Max is to find a strategy
s ∈ S such that π(a(s)) = πs(v0) is as large as possible. A strategy s is called uniformly
optimal if πs(v0) ≥ πs′(v0) for any strategy s′ ∈ S and any initial position v0 ∈ V .

In this paper we consider the following two effective payoff functions:

φs(v0) = lim inf
T→∞

1
T + 1

T∑
t=0

Es[r(vt, vt+1)], (1)

ψs(v0) = lim inf
T→∞

1
T + 1

T∑
t=0

t∑
j=0

Es[r(vj , vj+1)]. (2)

The first one, called mean payoff, is classic [12, 4]. The second one, called total payoff or
total reward, was introduced by Thuijsman and Vrieze [27], as a “refinement" of the mean
payoff. Let us note however that in fact total payoff MDPs can be shown to include mean
payoff MDPs as a special case.

We note that in many earlier works the effective payoff of a play was defined as the sum
of all local rewards assigned to the moves of this play. Yet, evaluation of the infinite plays
may constitute a problem. For that reason, in most of the papers an assumption has to be
made such as termination with probability one [7, 9, 25, 3, 31, 30]; in fact definition (2) is
a generalization of the sum of local rewards, taking properly into account how to handle
cycling in an infinite (non-terminating) play; see Section 1.3.

For an MDP Γ, payoff function π, and a node u, let us define

πΓ(u) = sup
s∈S

πs(u),

as the value of the MDP at node u.
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1.1.4 Stochastic games with perfect information: The BWR model
We also consider the following natural and standard generalization. Assume that the finite
vertex set V of a given finite directed graph G = (V,E) is partitioned into three (rather
than two) subsets V = VB ∪ VW ∪ VR that correspond to black, white, and random positions,
controlled respectively, by two players, Min and Max, and nature.

Analogously to MDPs, we can define strategies for the players, and denote by SB and SW

the sets of strategies of Min and Max, respectively. Given a pair of strategies s = (sB , sW )
of the players and an initial vertex v0 ∈ V , we can associate a sequence of expected rewards
Es[r(vt(s), vt+1(s))] to these, just like we did for MDPs. The objectives of Min and Max are
to minimize and respectively maximize the expected effective payoff πsB ,sW (v0) = πs(v0).

Given a stochastic game with a fixed initial position v0, a saddle point is defined as a
pair of strategies s∗B ∈ SB and s∗W ∈ SW such that

πs∗
B
,sW (v0) ≤ πs∗

B
,s∗
W

(v0) ≤ πsB ,s∗W (v0) for all sB ∈ SB and sW ∈ SW . (3)

If such a pair exists, the quantity πs∗
B
,s∗
W

(v0) is called the value of the game at node v0. The
saddle point (s∗B , s∗W ) is called uniform (subgame perfect) if the above inequalities hold for
all initial positions v0 ∈ V .

For π = φ, such a model was first mentioned in [13], and it was shown in [6] that it is
polynomially equivalent with stochastic games with perfect information [12]. For π = ψ, this
model is the same as the one introduced in [27] in case of perfect information. The concept
was further developed in [8, 28].

1.2 Main results
We first consider total-payoff MDPs and prove the following result.

I Theorem 1. In every MDP with total effective payoff, π = ψ, Max possesses a uniformly
optimal positional strategy. Moreover, such a strategy, together with the optimal value can be
found in polynomial time.

For mean payoff MDPs, the analogous result is well-known, see, e.g. [16, 4, 7, 23]. In
fact there are several known approaches to construct the optimal stationary strategies. For
instance, a polynomial-time algorithm to solve mean payoff MDPs is based on solving two
associated linear programs, see, e.g., [7].

Our approach for proving Theorem 1 is inspired by a result of [28]. We extend this result
to characterize the existence of pure and stationary optima within all possible strategies
by the feasibility of an associated linear system. Next, we show that this system is always
feasible and a solution can be obtained by solving a polynomial number of linear programming
problems.
I Remark. If there are no random nodes in the MDP, then a uniformly optimal stationary
strategy can be found by a combinatorial algorithm that solves a polynomial number of
minimum mean-cycle problems [18]; we omit the details from this version.

I Theorem 2. Every BWR-game with total effective payoff, π = ψ, has a saddle point in
uniformly optimal positional strategies.

For the mean payoff games with perfect information the above result is well-known
[12, 22].

Let us note that there may be no stationary best response against a non-stationary
strategy of the opponent. However, for the case of total payoff BWR-games, Theorem 1
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106 MDPs and Stochastic Games with Total Effective Payoff

implies that for any stationary strategy of a player there is a pure stationary best response
(among all strategies) of the opponent. This fact implies that it is enough to construct a
saddle point within the family of positional strategies. This latter can be shown by using the
discounted formulation of the game.

1.3 Applications of the total payoff

1.3.1 Total payoff MDPs/games with a terminating condition
This is the special case of MDPs/ stochastic games with one special terminal state, which is
absorbing (that is, p(t, t) = 1) and cost free (that is, r(t, t) = 0). The payoff function, which
is also sometimes called “Total Payoff’ is defined as the sum

θs(v0) = lim inf
T→∞

T∑
t=0

Es[r(vt, vt+1)].

This type of MDPs/games have been considered under different names, such as stochastic
shortest path problems/games, first passage problems and transient programming problems
[1, 2, 3, 7, 14, 25, 29, 31, 30]. This can be thought of as a generalization of the classical
(deterministic) shortest path problem on graphs, with the difference that, at each node, one
should select a probability distribution over successor nodes, out of a given set of probability
distributions. The objective is that the chosen random path leads to the terminal node with
probability one and with the smallest expected cost. In order to establish the existence of
optimal stationary strategies that can derived by the solutions of Bellman-type equations,
several assumptions have been made in earlier works, most notably, the existence of a proper
stationary strategy, i.e., one that guarantees termination from every state with probability
1. Note that for such a proper strategy s, the resulting Markov chain contains exactly one
absorbing class, namely the terminal node, and this case, it is not hard to see that the
values obtained from sum payoff θs and the total payoff ψs are the same. Thus total payoff
MDPs/games considered in this paper can be thought of as a generalization of shortest path
problems/games, when we do not assume that there is a single terminal.

1.3.2 The shortest path interdiction problem (SPIP)
This is the special case of shortest path games when there are no random nodes. More
precisely, in this problem, edges have positive lengths and there is a dedicated terminal
vertex to which the minimizer tries to find a short path, while the opponent tries to block
such paths. It is easy to see that if we add a loop with zero length on the terminal vertex
then the total payoff ψ will be exactly the length of the path for every terminating path,
and will be +∞ otherwise.

The problem was introduced by Fulkerson and Harding [10]; see a short survey by Israely
and Wood [17]. The simplest version is as follows: Given a digraph G = (V,E), with weighted
arcs r : E → Z+, and two vertices s, t ∈ V , eliminate (at most) k arcs of E to maximize
the length of a shortest (s, t)-path. While this problem is APX-hard [20], the following
vertex-wise budget SPIP is tractable [21, 20]: we are given a budget allowing to eliminate (at
most) k(v) arcs going from each state v ∈ V . This version was considered in [21], where an
efficient interdiction algorithm was obtained. Given a digraph G = (V,E), an integer-valued
local cost function r : E → Z+, a constraint k(v) in every vertex v ∈ V , and an initial vertex
s, this algorithm finds in quadratic time an interdiction that maximizes simultaneously the



E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 107

lengths of all shortest paths from s to each vertex v ∈ V . The execution time is just slightly
larger than for the classic Dijkstra shortest path algorithm.

Waving the non-negativity condition from the latter version, we obtain another interesting
relation: In this case, the SPIP becomes equivalent [21] with solving mean payoff BW-games
(no random nodes). Although the latter problem is known to be in the intersection of NP
and co-NP [19, 32], yet, it is not known to be polynomial.

1.3.3 Scheduling with and/or precedence constraints
[24] is another application of the total payoff with r ≥ 0. Given a digraph G = (V,E), whose
states are interpreted as jobs, the and/or precedence constraints require that some jobs u ∈ V
cannot be started before all immediate predecessors (v such that (v, u) ∈ E) are completed,
while some other jobs w ∈ V cannot be started before at least one immediate predecessor is
complete. It is easy to see that this model is equivalent with a total reward BW-game which
has nonnegative local rewards. For this problem [24] provides a polynomial time algorithm.

2 Characterization of pure stationary optima in total MDPs

Our proof of Theorem 1 is based on strengthening a result of Thuijsman and Vrieze (The-
orem 5.3 in [28]) which gives a sufficient and necessary condition for a general total reward
stochastic game to have a saddle point when both players are restricted to stationary strategies.
In case of MDPs, this amounts to the feasibility of a linear program of the form that will
be described in Section 3. In this section, we show that the existence of a solution for this
LP implies in fact the existence of an optimal solution in positional strategies, even if each
player is allowed to choose from the space of all, possibly history-dependent, strategies. Our
proof relies heavily on the concept of a potential transformation and relating the total and
mean effective payoffs of a transformed game to those in the original game.

2.1 Potential transformation
Let us consider a mapping x : V → R, whose values x(v) will be called potentials, and define
the transformed reward local function r[x] : E → R as:

r[x](u, v) = r(u, v)− x(u) + x(v), where (u, v) ∈ E. (4)

Potential transforms were first introduced in 1958 by Gallai [11], then applied to stochastic
games in 1966 by Hoffman and Karp [15] and to B-games (that is, min mean-cycles) in 1978
by Karp [18].

Given a potential transformation x, and an MDP Γ = (G, p, r), let us denote by φ[x]
(similarly, ψ[x]) the optimal effective payoff vectors in the transformed MDP Γ[x] = (G, p, r[x]).
Let us further associate to such a potential vector the quantityM(x) = 2 maxv∈V |x(v)|.

Let us also introduce

φ̂s[x](v0) = lim sup
T→∞

1
T + 1

T∑
t=0

Es[r[x](vt, vt+1)], and

ψ̂s[x](v0) = lim sup
T→∞

1
T + 1

T∑
t=0

t∑
i=0

Es[r[x](vi, vi+1)],

and for x = 0 write φ̂s[0](v0) = φ̂s(v0), and analogously ψ̂s[0](v0) = ψ̂s(v0).

STACS 2015
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I Fact 1 (see, e.g., [6]). For any MDP Γ, there exists a potential y such that, if v0 = v ∈ V
is the initial vertex and t ∈ Z+, then
(i) Es[r[y](vt, vt+1)] ≤ φΓ(v) for any arbitrary strategy s;
(ii) Es∗ [r[y](vt, vt+1)] = φΓ(v) for some positional strategy s∗.

2.2 Characterization of pure and stationary optima
Let us start with a few useful properties connecting mean payoff and total payoff values.

I Lemma 3. If for a strategy s ∈ S and initial vertex v0 ∈ V we have φs(v0) > 0, then
ψs(v0) = +∞. Analogously, if we have φ̂s(v0) < 0, then ψ̂s(v0) = −∞.

I Lemma 4. Assume that sups φs(v) ≤ 0 for all v ∈ V , and denote by y a corresponding
potential transformation as in Fact 1. Then we have the following relations hold for all
strategies s ∈ S and initial vertices v0 ∈ V :

φs(v0) = φs[y](v0) ≤ 0, (5a)

φ̂s(v0) = φ̂s[y](v0) ≤ 0, (5b)

and

ψs(v0) ≤ ψ̂s(v0) ≤ M(y) < ∞. (5c)

I Lemma 5. Assume that sups φs(v) ≤ 0 for all v0 ∈ V . Then if φs(v0) < 0 for a strategy
s ∈ S, then ψ̂s(v0) = −∞.

The following corollary of Lemma 3 and Fact 1 states that the total payoff in an MDP is
not finite if the mean payoff is not zero.

I Corollary 6. For an MDP and a node u, we have

φΓ(u) > 0 =⇒ ψΓ(u) = ψ̂Γ(u) = +∞,
φΓ(u) < 0 =⇒ ψΓ(u) = ψ̂Γ(u) = −∞.

I Lemma 7. Assume that sups φs(v) ≤ 0 for all v ∈ V , and that s ∈ S is a strategy with
initial vertex v0 such that ψs(v0) is finite. Then we have

φs(v0) = φ̂s(v0) = 0.

For brevity, we will use the following notation throughout the rest of this section: Given
a mapping f : E(u)→ R and a subset F ⊆ E(u) we write

M(u,v)∈F [f ] =
{

max(u,v)∈F f(u, v), for u ∈ VW ,
avg (u,v)∈F f(u, v), for u ∈ VR,

where avg (u,v)∈F (f(v, u)) :=
∑

(u,v)∈F p(u, v) f(u, v).

I Theorem 8. For a total reward MDP Γ = (G,P, r), the following two statements are
equivalent:
(i) the value vector ψΓ exists, is finite, and Max possesses a uniformly optimal positional

strategy (optimal among all strategies);
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(ii) the following set of equations has a (finite) solution for variables µ, x ∈ RV , α ∈ R+:

µ(u) = M(u,v)∈E(u)[r(u, v) + µ(v)] for all u ∈ V, (6a)
µ(u) = M(u,v)∈E(u)[αr(u, v) + x(v)− x(u)] for all u ∈ V, (6b)
µ(u) = M(u,v)∈EXT(u)[αr(u, v) + x(v)− x(u)] for all u ∈ VW , (6c)

where, for a vertex u ∈ VW , EXT(u) denotes the set of arcs in E(u) attaining equality in
(6a).

Let us remark that the series of Lemmas we used to prove the above theorem remain true
if we replace in the definitions of φ and ψ the operator lim inf with lim sup. Thus, Theorem
8 also holds with this modified definition, too. Consequently, switching the controller to a
“minimizer" an analogous theorem will hold, since we can obtain this situation by changing
the sign of all local rewards, switching to lim sup in the definitions of φ and ψ, and then
applying the above theorem with a “maximizer." This observation will be useful for using
the “symmetry" between the players in proving Theorem 2.

3 LP formulation

Our purpose in this section is to show that in a total reward MDP, the optimal solution can
always be realized by a positional strategy that can be obtained in polynomial time. One of
the main ingredients in this proof is the treatment of the case when

φΓ(u) = 0 ∀u ∈ V. (A)

In this section we shall assume that the above condition holds, and show that in this case
the optimal solution can be obtained via solving a small series of linear programs. To arrive
to the proof of this statement, we need a series of technical lemmas.

Based on the idea of [28] let us associate to Γ the following linear programming problem
LP(α), where α ∈ R is a real parameter. Recall that E(u) = {(u, v) ∈ E | v ∈ N+(u)},
where N+(u) is the set of out-neighbors of vertex u.

min
∑
u∈V

y(u)

s.t. (7a)
y(u) ≥ r(u, v) + y(v) ∀ u ∈ VW , (u, v) ∈ E(u) (7b)

y(u) ≥ avg
v∈N+(u)

(r(u, v) + y(v)) ∀ u ∈ VR (7c)

y(u) ≥ αr(u, v)− x(u) + x(v) ∀ u ∈ VW , (u, v) ∈ E(u) (7d)

y(u) ≥ avg
v∈N+(u)

(αr(u, v)− x(u) + x(v)) ∀ u ∈ VR. (7e)

The main idea is to show that this LP has an optimal solution satisfying conditions (6a)-
(6c) of Theorem 8 (with y(u) = µ(u)). For this we need to show that, starting from an
arbitrary optimal solution (x, y), we can construct another optimal solution (x∗, y∗) such
that for all u ∈ VW , there is an arc (u, v) ∈ E such that the inequalities (7b) and (7d),
corresponding to this arc, are tight at (x∗, y∗).

Given a feasible solution (x, y) of LP(α), let us denote by Iu(y) the set of arcs (u, v) ∈ E(u)
for which (7b) holds with equality, and let Juα(x, y) denote the set of arcs (u, v) ∈ E(u) for
which (7d) is an equality. Furthermore, let us denote by IR(y) the set of vertices u ∈ VR for
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110 MDPs and Stochastic Games with Total Effective Payoff

which (7c) holds with equality, and let JRα (x, y) denote the set of vertices u ∈ VR for which
(7e) holds with equality.

In view of Theorem 8, it will be enough to show the following:

I Theorem 9. Under Assumption (A), if α > 0 is large enough then LP (α) has an optimal
solution (x∗, y∗) such that

∅ 6= Juα(x∗, y∗) ⊆ Iu(y∗) and JRα (x∗, y∗) = IR(y∗) = VR.

To arrive to the proof of this claim, we need several technical lemmas. Let us first show
that this linear program has a finite optimum whenever α is nonnegative. We break this
claim into two lemmas:

I Lemma 10. Problem LP(α) is feasible, if α ≥ 0.

I Lemma 11. Problem LP(α) is bounded.

Let us then denote by Z(α) the optimum value of LP(α).

I Corollary 12. The value Z(α) exists and is finite for all α ≥ 0.

Strengthening Lemma 11, we can get an explicit lower bound on Z(α), of polynomial
bit-length in terms of the input size (assuming rational input), as follows.

I Lemma 13. For any feasible solution (x, y) in LP (α), α ≥ 0, and for any vertex u ∈ V
and any strategy s ∈ S, we have y(u) ≥ ψs(u).

I Corollary 14. There exists a real L ∈ R such that we have L ≤ Z(α) for all α ≥ 0.

Proof. By Lemma 13 we have
∑
u∈V y(u) ≥

∑
u∈V ψs(u), for all feasible solutions (x, y) of

LP (α), α ≥ 0 and for any strategy s ∈ S. Let us now fix a uniformly optimal stationary
strategy s of the mean-payoff MDP (which we know to exist, see, e.g., [23]). It was shown
in [28] that under the assumption (A) we have ψs(u) finite for all vertices u ∈ V (see
Proposition 1 in Section 5.2 for an explicit formula). Consequently, L =

∑
u∈V ψs(u) is a

finite lower bound (of polynomial bit-length) on the objective function value of any feasible
solution of LP (α) for any α ≥ 0. J

I Lemma 15. There exists a finite real α0 (of polynomial bit-length in terms of the input
size), such that Z(α) = Z(α0) for all α > α0.

I Lemma 16. Let us consider α ≥ α0 and denote by (x∗, y∗) an arbitrary optimal solution
of LP(α). Then, we have IR(y∗) = VR and Iu(y∗) 6= ∅ for all u ∈ VW .

To arrive to a proof of Theorem 9, which is the main aim of this section, it will not be
enough simply to take an optimal solution of LP (α) for a large enough value of α, e.g., for
α ≥ α0. While the optimal values in y∗ will be indeed optimal in the MDP, the additional
conditions of Theorem 9 call for a careful selection of an optimal x∗. In fact LP (α) typically
has many optimal solutions, even if we fix the values in y∗, and the rest of the proof will
focus on showing how can we find efficiently an appropriate x∗ satisfying all conditions of
Theorem 9.

To this end let us fix an optimal solution (x∗, y∗) of LP (α) for some α ≥ α0, and consider
the polyhedron Xα(y∗) defined as the set of feasible x ∈ RV vectors in the following system
of inequalities:

0 ≥ αr(u, v)− y∗(u)− x(u) + x(v) ∀ u ∈ VW , (u, v) ∈ Iu(y∗)
0 ≥ avg

v∈N+(u)
(αr(u, v)− y∗(u)− x(u) + x(v)) ∀ u ∈ VR.
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Note that out of the inequalities of (7d) we have included only those to which the
corresponding inequalities in (7b)-(7c) are tight at y∗. Since x∗ ∈ Xα(y∗), this set is a
nonempty, closed convex set.

I Lemma 17. For all x ∈ Xα(y∗) there exists a finite ∆(x) ≥ 0 such that (x+ ∆y∗, y∗) is
feasible in LP (α+ ∆) for all ∆ ≥ ∆(x).

Given a vector x ∈ Xα(y∗) let us call a vertex u ∈ VR tight if u ∈ JRα (x, y∗). Analogously,
we call a vertex u ∈ VW tight if 0 = αr(u, v)−y∗(u)−x(u)+x(v) for some arc (u, v) ∈ Iu(y∗).
Let us finally denote by T (x) the set of tight vertices. We will be done if we show that there
is a potential vector x ∈ Xα(y∗) such that T (x) = V , and which can be found by linear
programming.

Let us define the set of vertices which belong to all tight sets:

U =
⋂

x∈Xα(y∗)

T (x).

I Lemma 18. If α ≥ α0, then U 6= ∅.

I Lemma 19. For all vertices w ∈ V we can test if w ∈ U , and if not, find xw ∈ Xα(y∗)
such that w 6∈ T (xw) in polynomial time.

I Corollary 20. For each α ≥ 0 we can find the set U ⊆ V , and a vector x ∈ Xα(y∗) such
that U = T (x) in polynomial time.

I Lemma 21. For all x ∈ Xα(y∗) and for all v 6∈ T (x) there exists a small ε > 0 such that
for the vector

x′(u) =
{
x(u) if u 6= v,

x(u)− ε if u = v

we have x′ ∈ Xα(y∗).

We shall prove next, with the above lemma in mind, that there exists a vector in Xα(y∗),
if α ≥ α0, at which all vertices are tight. To this end let us consider the set U and the vector
x, as in Corollary 20, and the following linear programming problem:

max
∑
u∈V

z(u) s.t. (x− z) ∈ Xα(y∗), z ≥ 0, z(u) = 0 ∀ u ∈ U. (LPZ)

Let us note that in this linear program α, r, y∗, and x are all constants, just like the
z(u) = 0 values for u ∈ U , and hence z(v) for v ∈ V \ U are the only variables.

I Lemma 22. If α ≥ α0 then problem (LPZ) has a finite optimum.

I Corollary 23. If α ≥ α0, and z is an optimum solution of (LPZ), then T (x− z) = V .

Proof of Theorem 9. For an α′ ≥ α0, let y∗ be optimal in LP (α′), let x be as in Corollary
20 and z as in Corollary 23, and define x∗ = x− z + ∆(x− z)y∗ and α = α′ + ∆(x− z).
Then, by Lemma 17 and Corollary 23 it follows that (x∗, y∗) is an optimal solution in LP (α),
satisfying all conditions of the theorem. J
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4 General MDPs

In this section we extend the result of the previous section to the more general case when
φΓ(u) 6= 0 for some u ∈ V .

I Lemma 24. Let u denote a vertex with φΓ(u) ≤ 0, and let s denote a strategy in S. If,
starting from initial vertex v0 = u strategy s uses with positive probability an arc (v, w) such
that v ∈ VW and 0 ≥ φΓ(v) > φΓ(w), then we have ψs(v0) = −∞.

Let us introduce a new MDP Γ′ = (G′ = (V,E′), p, r′) obtained from Γ = (G, p, r) as
follows:
1. Delete all the arcs (u, v) from G such that u ∈ VW and φΓ(u) > φΓ(v)
2. Define r′(u, v) = r(u, v)− φΓ(u) for all the remaining arcs (u, v).
Let us denote by E′ the set of arcs of G′, and by E′(u) the set of arcs in G′ leaving vertex
u ∈ V . Clearly, E′(u) = E(u) for u ∈ VR.

Let us note that we have φΓ(u) = φΓ(v) for all (u, v) ∈ E′(u), u ∈ VW , since Max could
not have an arc (u, v) ∈ E(u), u ∈ VW such that φΓ(u) < φΓ(v), and all arcs going down in
value are removed in Γ′. Let us also note that φΓ′(u) = 0 for all vertices u.

It is easy to see that an optimal strategy with respect to the mean payoff function φ in
Γ′ is also optimal in Γ. We shall prove below in two lemmas that the same essentially holds
in positional strategies with respect to the total payoff function ψ.

I Lemma 25. Fix an initial vertex v0 = u such that φΓ(u) = 0. Then any strategy s in Γ′
satisfies Es[r′(vj , vj+1)] = Es[r(vj , vj+1)].

Since φΓ′(u) = 0 for all u ∈ V , Theorems 8 and 9 imply that Γ′ possesses a uniformly
optimal positional strategy s∗ with respect to the total payoff function ψ.

I Lemma 26. s∗ is also optimal in Γ.

Proof. Let u be an initial vertex. By Lemmas 24 and 25, s∗ is optimal in Γ, if u satisfies
φΓ(u) = 0. On the other hand, if φΓ(u) > 0 (resp., < 0), let us note that φΓ(v) = φΓ(w) if
v ∈ VW and (v, w) ∈ E′(v), and φΓ(v) = avg (v,w)∈E′(v) φΓ(w) if v ∈ VR. This implies that
Es[φΓ(vt)] = φΓ(v0) for all t. Since by our construction we have, for any strategy s ∈ S,

Es[r(vt, vt+1)] = Es[r′(vt, vt+1)] + Es[φΓ(vt)] = Es[r′(vt, vt+1)] + φΓ(v0) (8)

and ψs(v) is finite for all v ∈ V , the equality ψΓ(v0) = +∞ (resp., −∞) follows. Indeed, if
φΓ′(v0) > 0, then (8) implies for s = s∗ that ψs∗(v0) = +∞; on the other hand, if φΓ′(v0) < 0,
then (8) together with Lemma 24 imply for any s ∈ S that ψs(v0) = −∞. J

5 Two-player zero-sum games with perfect information
(BWR-games)

We now turn our attention to two-person zero-sum stochastic games with perfect information
and total effective payoff.



E. Boros, K. Elbassioni, V. Gurvich, and K. Makino 113

5.1 Discounted BWR-games
Let β be a number in ∈ (0, 1] called the discount factor. Discounted mean payoff stochastic
games were introduced by Shapley [26] and have payoff function:

φβs (v0) = (1− β)
∞∑
j=0

βjEs[rs(vt, vt+1)], (9)

where a(s) = 〈Es[rs(v0, v1)],Es[rs(v1, v2)], . . .〉 is the sequence of expected rewards incurred
at steps 0, 1, . . . of the play, according to the pair of strategies s = (sB , sW ).

Discounted games, in general, are easier to solve, due to the fact that a standard value
iteration is in fact a fast converging contraction. Hence, they are widely used in the literature
of stochastic games together with the above limit equality. In fact, for mean payoff BW-games
with n vertices and integral rewards of maximum absolute value R it is known [32] that for two
pairs of stationary strategies s, s′ ∈ Ŝ we have φβs (u) < φβs′(u) if and only if φs(u) < φs′(u)
whenever 1− β ≤ 1

4n3R .
If the discount factor β is strictly less than 1, we obtain the following result, which follows

essentially from [26].
I Fact 2 ([26]). A BWR-game with the discounted mean payoff function φβ has a saddle
point in uniformly optimal positional strategies, for all 0 < β < 1.

We show in the next subsection that the same pair of stationary strategies form a uniform
Nash equilibrium with respect to the total payoff ψ, if β is sufficiently close enough to 1.

5.2 Existence of a saddle point in positional strategies
When the mean payoff values are zero, there is an explicit formula for computing the total
reward values, corresponding to a stationary strategy, as a function of the limiting probability
matrix. To write this formula, we need first to introduce some notation. Given a BWR-game
Γ = (G, p, r) and a pair of positional strategies s = (sB , sW ), we obtain a weighted Markov
chain Γs = (Ps, r) with transition matrix Ps in the obvious way:

ps(u, v) =


1 if u ∈ VW ∪ VB and (u, v) is chosen by s;
0 if u ∈ VW ∪ VB and (u, v) is not chosen by s;
p(v, u) if v ∈ VR.

We define the expected local reward rs : V → R, corresponding to the pair s as

rs(u) =
{

r(u, v) if u ∈ VW ∪ VB and (u, v) is chosen by s;∑
(u,v)∈E(u) p(u, v)r(u, v) if v ∈ VR.

Finally, we will denote by Qs the (unique) limiting average probability matrix satisfying
QsPs = PsQs = Qs. Note that φs = Qsrs and φβs = (1− β)(I − βPs)−1rs.
I Proposition 1 ([28]). If s is stationary strategy such that φs = 0, then ψs = (I−Ps+Qs)−1rs,
where I is the |V | × |V | identity matrix.

To prove our main result for BWR-games (Theorem 2), it will be enough to consider
games in which φΓ(u) = 0 for all u ∈ V .

I Theorem 27. Consider an undiscounted BWR-game Γ such that φΓ = 0. Then there is a
uniformly optimal pair of positional strategies (sB , sW ) satisfying:

πs∗
B
,sW (v0) ≤ πs∗

B
,s∗
W

(v0) ≤ πsB ,s∗W (v0) for all sB ∈ ŜB , sW ∈ ŜW and for all v0 ∈ V.
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If |V | = n, all rewards are integral with maximum absolute value R, and all transition
probabilities are rational with maximum common denominator D > 0, then such a saddle
point can be found by solving a discounted game with β = 1− 1

(nD)O(n2)R
.

Proof. We start with the following claim.
I Claim 1. Let s = (sB , sW ) be a pair of positional strategies such that φs(v) = 0 for all
v ∈ V . Then, we have

lim
β→1−

ψs − (I − βPs)−1rs
1− β = Ps(I − Ps +Qs)−2rs.

Let γ = min
u∈V

min
s,s′∈Ŝ

ψs(u)6=ψs′ (u)

|ψs(u)− ψs′(u)| and κ = max
u∈V

max
s∈Ŝ
|Ps(I − Ps +Qs)−2rs|.

Standard estimation arguments (see, e.g., [5]) give γ ≥ 1
(nD)O(n2) and κ ≤ (nD)O(n2)R.

Claim 1 implies that, for any sufficiently small ε > 0, there exists a β(ε) ∈ (0, 1) such
that, for all pairs of positional strategies s ∈ Ŝ, we have

‖(1− β(ε))ψs − φβ(ε)
s ‖∞ < (1− β(ε))2(ε+ κ) ≤ 2(1− β(ε))2κ. (10)

Let us choose ε such that β(ε) > 1 − γ
4κ . Then for any two pairs of positional strategies

s, s′ ∈ Ŝ, such that ψs(u) > ψs′(u), we have ψs(u) − ψs′(u) ≥ γ. On the other hand, by
(10), we get∣∣∣(1 − β(ε))ψs(u) − φ

β(ε)
s (u)

∣∣∣ < 2(1−β(ε))2κ and
∣∣∣(1 − β(ε))ψs′(u) − φ

β(ε)
s′ (u)

∣∣∣ < 2(1−β(ε))2κ.

Consequently, by our choice of ε, φβ(ε)
s > φ

β(ε)
s′ follows, proving the claim of the theorem. J

Proof of Theorem 2. First assume that φΓ(u) = 0 for all u ∈ V . Then Theorem 27 implies
the existence of saddle point s∗ = (s∗B , s∗W ), among uniformly optimal positional strategies.
Since, by Theorem 1, the best response in the MDP obtained by fixing Max’s strategy to
s∗W (resp., Min’s strategy to s∗B) is positional, it follows that s∗ is a saddle point among all
strategies of the two players. The case when φΓ(u) 6= 0 for some u ∈ V is handled using the
same approach used in Section 4. J
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