
Advice Complexity for a Class of Online Problems∗

Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W.
Mikkelsen

University of Southern Denmark
{joan,lenem,kudahl,jesperwm}@imada.sdu.dk

Abstract
The advice complexity of an online problem is a measure of how much knowledge of the future
an online algorithm needs in order to achieve a certain competitive ratio. We determine the
advice complexity of a number of hard online problems including independent set, vertex cover,
dominating set and several others. These problems are hard, since a single wrong answer by the
online algorithm can have devastating consequences. For each of these problems, we show that
log
(

1 + (c−1)c−1

cc

)
n = Θ(n/c) bits of advice are necessary and sufficient (up to an additive term

of O(logn)) to achieve a competitive ratio of c. This is done by introducing a new string guessing
problem related to those of Emek et al. (TCS 2011) and Böckenhauer et al. (TCS 2014). It turns
out that this gives a powerful but easy-to-use method for providing both upper and lower bounds
on the advice complexity of an entire class of online problems.

Previous results of Halldórsson et al. (TCS 2002) on online independent set, in a related
model, imply that the advice complexity of the problem is Θ(n/c). Our results improve on this
by providing an exact formula for the higher-order term. Böckenhauer et al. (ISAAC 2009) gave
a lower bound of Ω(n/c) and an upper bound of O((n log c)/c) on the advice complexity of online
disjoint path allocation. We improve on the upper bound by a factor of log c. For the remaining
problems, no bounds on their advice complexity were previously known.

1998 ACM Subject Classification F.1.2 Models of Computation (online computation)

Keywords and phrases online algorithms, advice complexity, asymmetric string guessing, advice
complexity class AOC, covering designs

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.116

1 Introduction

An online problem is an optimization problem in which the input is divided into small pieces,
usually called requests, arriving sequentially. Throughout the paper, we let n denote the
number of requests. An online algorithm must serve each request without any knowledge of
future requests, and the decisions made by the online algorithm are irrevocable. The goal
is to minimize or maximize some objective function. Traditionally, competitive analysis is
used to measure the quality of an online algorithm: The solution produced by the algorithm
is compared to the solution produced by an optimal offline algorithm, OPT, which knows the
entire request sequence in advance. While competitive analysis has been very successful and
led to the design of many interesting online algorithms, it sometimes gives overly pessimistic
results. Comparing an online algorithm, which knows nothing about the future, to an
optimal offline algorithm, which knows the entire input, can be rather crude.

∗ This work was partially supported by the Villum Foundation and the Danish Council for Independent
Research, Natural Sciences. Most proofs have been omitted due to space restrictions. These can be
found in the full version of the paper [9].

© Joan Boyar, Lene M. Favrholdt,
Christian Kudahl, and Jesper W. Mikkelsen;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 116–129

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.116
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 117

As an example, consider the classical problem of finding a maximum independent set in
a graph. Suppose that, at some point, an online algorithm decides to include a vertex v in
its solution. It then turns out that all forthcoming vertices in the graph are connected to
v and no other vertices. Thus, the online algorithm cannot include any of these vertices.
On the other hand, OPT knows the entire graph, and so it rejects v and instead takes all
forthcoming vertices. In fact, one can easily show that no online algorithm, even if we allow
randomization, can obtain a competitive ratio better than Ω(n) for this problem.

This paper studies the maximum independent set problem and other similarly hard online
problems. Many papers have studied special cases or relaxed versions of such problems, see
e.g., [12, 20–22, 25, 33]. Often it is the online constraint that is relaxed, resulting in various
semi-online models. The notion of advice complexity offers a quantitative and standardized,
i.e., problem independent, way of relaxing the online constraint.

Advice complexity. The main idea of advice complexity is to provide an online algorithm,
ALG, with some advice bits. These bits are provided by a trusted oracle, O, which has
unlimited computational power and knows the entire request sequence. In the first model
proposed [15], the advice bits were given as answers (of varying lengths) to questions posed
by ALG. One difficulty with this model is that using at most 1 bit, three different options
can be encoded (giving no bits, a 0, or a 1). This problem was addressed by the model
proposed in [16], where the oracle is required to send a fixed number of advice bits per
request. However, for the problems we consider, one bit per request is enough to guarantee
an optimal solution, and so this model is not applicable. Instead, we will use the “advice-
on-tape” model [7], which allows for a sublinear number of advice bits while avoiding the
problem of encoding information in the length of each answer. Before the first request
arrives, the oracle prepares an advice tape, an infinite binary string. The algorithm ALG
may, at any point, read some bits from the advice tape. The advice complexity of ALG is
the maximum number of bits read by ALG for any input sequence of at most a given length.
When advice complexity is combined with competitive analysis, the central question is: How
many bits of advice are necessary and sufficient to achieve a given competitive ratio c?

I Definition 1 (Advice complexity [7, 24] and competitive ratio [26, 32]). The input to an
online problem, P, is a request sequence σ = (r1, . . . , rn). An online algorithm with advice,
ALG, computes the output y = (y1, . . . , yn), under the constraint that yi is computed from
ϕ, r1, . . . , ri, where ϕ is the content of the advice tape. The advice complexity, b(n), of ALG
is the largest number of bits of ϕ read by ALG over all possible inputs of length at most n.

Each possible output for P is associated with a score. For a request sequence σ, ALG(σ)
(OPT(σ)) denotes the score of the output computed by ALG (OPT) when serving σ. If P
is a maximization problem, then ALG is c(n)-competitive if there exists a constant α such
that OPT(σ) ≤ c(n) · ALG(σ) + α for all request sequences σ of length at most n. If P is a
minimization problem, then ALG is c(n)-competitive if there exists a constant α such that
ALG(σ) ≤ c(n) · OPT(σ) + α for all request sequences σ of length at most n. In both cases,
if the inequality holds with α = 0, we say that ALG is strictly c(n)-competitive. For c ≥ 1,
the advice complexity, f(n, c), of a problem P is the smallest possible advice complexity of
a c-competitive online algorithm for P.

We only consider deterministic online algorithms (with advice). Note that both the
advice read and the competitive ratio may depend on n, but, for ease of notation, we often
write b and c instead of b(n) and c(n). Also, by this definition, c ≥ 1, for both minimization
and maximization problems. Lower and upper bounds on the advice complexity have been
obtained for many problems, see e.g., [2, 4–8,10,11,14–16,18,19,24,27,28,30,31].

STACS 2015

118 Advice Complexity for a Class of Online Problems

Online string guessing. In [5, 16], the advice complexity of the following string guessing
problem, SG, is studied: For each request, which is simply empty and contains no infor-
mation, the algorithm tries to guess a single bit (or more generally, a character from some
finite alphabet). The correct answer is either revealed as soon as the algorithm has made
its guess (known history), or all of the correct answers are revealed together at the very end
of the request sequence (unknown history). The goal is to guess correctly as many bits as
possible. This problem was first introduced (under the name generalized matching pennies)
in [16], where a lower bound for randomized algorithms with advice was given. In [5], the
lower bound was improved for the case of deterministic algorithms. In fact, the lower bound
given in [5] is tight up to lower-order terms. While SG is rather uninteresting in the view
of traditional competitive analysis, it is very useful in an advice complexity setting. Indeed,
it has been shown that the string guessing problem can be reduced to many classical online
problems, thereby giving lower bounds on the advice complexity for these problems. This in-
cludes bin packing [11], the k-server problem [19], list update [10], metrical task system [16],
set cover [5] and a certain version of maximum clique [5].

Our contribution. In this paper, we introduce a new asymmetric string guessing problem,
ASG, formally defined in Section 2. The rules are similar to those of the original string
guessing problem with an alphabet of size two, but the score function is asymmetric: If
the algorithm answers 1 and the correct answer is 0, then this counts as a single wrong
answer (as in the original problem). On the other hand, if the algorithm answers 0 and the
correct answer is 1, the solution is infeasible and has an infinite penalty. This asymmetry
in the score function forces the algorithm to be very cautious when making its guesses. It
turns out that ASG captures, in a very precise way, the hardness of problems such as online
independent set and online vertex cover.

We give lower and upper bounds on the advice complexity of the new asymmetric string
guessing problem, ASG. The bounds are tight up to an additive term of O(logn). More
precisely, if b is the number of advice bits necessary and sufficient to achieve a (strict)1
competitive ratio of c > 1, then we show that2

1
e ln 2

n

c
−Θ(logn) ≤ b = log

(
1 + (c− 1)c−1

cc

)
n±Θ(logn) ≤ n

c
+ Θ (logn) .

This holds for all variants of the asymmetric string guessing problem (minimization/-
maximization and known/unknown history). See Figure 1 on page 122 for a graphical plot.

We introduce a class, AOC, of online problems. The class AOC essentially consists of
those problems which can be reduced to ASG. In particular, for any problem in AOC, our
upper bound on the advice complexity for ASG applies. This is one of the few known
examples of a general technique for constructing online algorithms with advice, which works
for an entire class of problems.

On the hardness side, we show that several online problems, including vertex cover, cycle
finding, dominating set, independent set, set cover and disjoint path allocation (described
in Section 5) are AOC-complete, that is, they have the same advice complexity as ASG. We

1 The upper bound holds for being strictly c-competitive, while the lower bound also holds for being
c-competitive. For the lower bound, the constant hidden in Θ(logn) depends on the additive constant
α of the c-competitive algorithm.

2 We only consider c > 1 since in order to be strictly 1-competitive, an algorithm needs to correctly guess
every single bit. It is easy to show that this requires n bits of advice (see e.g. [5]). By Remark 9, this
also gives a lower bound for being 1-competitive.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 119

prove this by providing reductions from ASG to each of these problems. The reductions
preserve the competitive ratio and only increase the advice read by an additive term of
O(logn). Thus, we obtain bounds on the advice complexity of each of these problems which
are essentially tight.

As a key step in obtaining our results, we establish a connection between the advice
complexity of ASG and the size of covering designs (a well-studied object from the field of
combinatorial designs).

Comparison with previous results. The original string guessing problem, SG, can be
viewed as a maximization problem, the goal being to correctly guess as many of the n
bits as possible. Clearly, OPT always obtains a profit of n. With a single bit of advice,
an algorithm can achieve a strict competitive ratio of 2: The advice bit simply indicates
whether the algorithm should always guess 0 or always guess 1. This is in stark contrast to
ASG, where linear advice is needed to achieve any constant competitive ratio. On the other
hand, for both SG and ASG, achieving a constant competitive ratio c < 2 requires linear
advice. However, the exact amount of advice required to achieve a particular competitive
ratio c < 2 is larger for ASG than for SG. See Figure 1 for a graphical comparison.

The problems online independent set and online disjoint path allocation, which we show
to be AOC-complete, have previously been studied in the context of advice complexity or
similar models. In [7], the advice complexity of online disjoint path allocation is considered.
It is shown that a strictly c-competitive algorithm must read at least n+2

2c − 2 bits of advice.
On the other hand, the authors show that for any c ≥ 2, there exists a strictly c-competitive
online algorithm reading at most min

{
n log

(
c

(c−1)(c−1)/c

)
, n logn

c

}
+ 3 logn + O(1) bits of

advice. We remark that (n log c)/c < n log
(
c/(c− 1)(c−1)/c) < 2(n log c)/c, for c ≥ 2. Thus,

this older upper bound is Θ((n log c)/c) and at least a factor of 2 log c away from the lower
bound. We improve on these bounds, removing the gap between the upper and lower bound.

In [21], the online independent set problem is considered in a multi-solution model. In
this model, an online algorithm is allowed to maintain multiple solutions. The algorithm
knows (a priori) the number n of vertices in the input graph, and the model is parametrized
by a function r(n). Whenever a vertex v is revealed, the algorithm can include v in at most
r(n) different solutions (some of which might be new solutions with v as the first vertex).
At the end, the algorithm outputs the solution containing the most vertices. The multi-
solution model is closely related to the advice complexity model. Simple conversions allow
one to translate both upper and lower bounds between the two models almost exactly, up
to an additive term of O(logn). Doing so, the results of [21] can be summarized as follows:
For any c ≥ 1, there is a strictly c-competitive independent set algorithm reading at most
dn/ce + O(logn) bits of advice. On the other hand, any strictly c-competitive algorithm
for independent set must read at least n

2c − logn bits of advice. Our improvement for this
problem consists of determining the exact coefficient of the higher-order term.

One important feature of the framework that we introduce in this paper is that obtaining
tight bounds on the advice complexity for problems like online independent set and online
disjoint path allocation becomes very easy. We remark that the reductions we use to show the
hardness of these two problems reduce instances of ASG to instances of online independent
set (resp. disjoint path allocation) that are identical to the hard instances used in [21]
(resp. [7]). What enables us to improve the previous bounds, even though we use the same
hard instances, is that we have a detailed analysis of the advice complexity of ASG at our
disposal.

STACS 2015

120 Advice Complexity for a Class of Online Problems

Related work. The advice complexity of online disjoint path allocation has also been stud-
ied as a function of the length of the path (as opposed to the number of requests), see [3,7].
The advice complexity of online independent set on bipartite graphs and on sparse graphs
has been determined in [14]. The advice complexity of an online set cover problem [1] has
been studied in [27]. However, the version of online set cover that we consider is different
and so our results and those of [27] are incomparable.

Preliminaries. Let log denote the binary logarithm log2 and ln the natural logarithm loge.
By a string we always mean a bit string. For a string x ∈ {0, 1}n, we denote by |x|1 the
Hamming weight of x (that is, the number of 1s in x) and we define |x|0 = n−|x|1. Also, we
denote the i’th bit of x by xi, so that x = x1x2 . . . xn. For n ∈ N, define [n] = {1, 2, . . . , n}.
For a subset Y ⊆ [n], the characteristic vector of Y is the string y = y1, . . . , yn ∈ {0, 1}n
such that, for all i ∈ [n], yi = 1 if and only if i ∈ Y . For x, y ∈ {0, 1}n, we write x v y if
xi = 1⇒ yi = 1 for all 1 ≤ i ≤ n.

If the oracle needs to communicate some integer m to the algorithm, and if the algorithm
does not know of any upper bound on m, the oracle needs to use a self-delimiting encoding.
For instance, the oracle can write dlogme in unary (a string of 1’s followed by a 0) before
writing m itself in binary. In total, this encoding uses O(logm) bits. Slightly more efficient
encodings exist, see e.g. [6].

2 Asymmetric String Guessing

In this section, we formally define the asymmetric string guessing problem. There are
four variants of the problem, one for each combination of minimization/maximization and
known/unknown history. Collectively, these four problems will be referred to as ASG. We
have deliberately tried to mimic the definition of the string guessing problem SG from [5].

I Definition 2. The minimum asymmetric string guessing problem with unknown history,
minASGu, has input (?1, . . . , ?n, x), where x ∈ {0, 1}n, for some n ∈ N. For 1 ≤ i ≤ n,
round i proceeds as follows:

1. The algorithm receives request ?i which contains no information.
2. The algorithm answers yi, where yi ∈ {0, 1}.
The output y = y1 . . . yn computed by the algorithm is feasible, if x v y. Otherwise, y is
infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output is ∞.

I Definition 3. The minimum asymmetric string guessing problem with known history,
minASGk, has input x = (?, x1, . . . , xn), where x ∈ {0, 1}n, for some n ∈ N. For 1 ≤ i ≤ n,
round i proceeds as follows:

1. If i > 1, the algorithm learns the correct answer, xi−1, to the request in the previous
round.

2. The algorithm answers yi = f(x1, . . . , xi−1) ∈ {0, 1}, where f is a function defined by
the algorithm.

The output y = y1 . . . yn computed by the algorithm is feasible, if x v y. Otherwise, y is
infeasible. The cost of a feasible output is |y|1, and the cost of an infeasible output is ∞.

We collectively refer to minASGk and minASGu as minASG. The string x in either
version of minASG will be referred to as the input string or the correct string. Note that
the number of requests in both versions of minASG is n + 1, since there is a final request
that does not require any response from the algorithm. This final request ensures that the

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 121

entire string x is eventually known. For simplicity, we will measure the advice complexity
of minASG as a function of n (this choice is not important as it changes the complexity by
at most one bit).

Without advice the situation is the following. For any deterministic minASG algorithm
which sometimes answers 0, there exists an input string on which the algorithm gets a cost
of ∞. However, if an algorithm always answers 1, the input string could consist solely of
0s. Thus, no deterministic algorithm can achieve a finite competitive ratio. One can easily
show that the same holds for any randomized algorithm.

We now give a simple algorithm for minASG which reads O(n/c) bits of advice and
achieves a strict competitive ratio of dce.

I Theorem 4. For any c ≥ 1, there is a strictly dce-competitive algorithm for minASGu
which reads dnc e+O(log(n/c)) bits of advice.

Proof. Let x = x1 . . . xn be the input string. The oracle encodes p = dn/ce in a self-
delimiting way, which requires O(log(n/c)) bits of advice. For 0 ≤ j < p, define Cj = {xi :
i ≡ j (mod p)}. These p sets partition the input string, and the size of each Cj is at most
dn/pe ≤ dce. The oracle writes one bit, bj , for each set Cj . If Cj contains only 0s, bj is set
to 0. Otherwise, bj is set to 1.

The algorithm learns p and the bits b0, . . . , bp−1 from the advice tape. In round i, the
algorithm answers with the bit bimod p. Clearly, this algorithm is strictly dce-competitive. J

The definition of the maximization version of ASG is similar to the definition of minASG:

I Definition 5. The maximum asymmetric string guessing problem with unknown history,
maxASGu, is identical to the minASGu problem with unknown history, except that the
score function is different. In the maxASGu problem, the score of a feasible output y is |y|0.
The score of an infeasible output is −∞. The goal is to maximize the score. The maximum
asymmetric string guessing problem with known history, maxASGk, is defined similarly.

We collectively refer to the two maximization problems as maxASG.
An algorithm for maxASG without advice cannot attain a finite competitive ratio. If

such an algorithm would ever answer 0 in some round, an adversary would let the correct
answer be 1 and the algorithm’s output would be infeasible. On the other hand, answering
1 in every round gives an output with a profit of zero.

I Theorem 6. For any c ≥ 1, there is a strictly dce-competitive algorithm for maxASGu
which reads dn/ce+O(logn) bits of advice.

Proof. The oracle partitions the input string x = x1 . . . xn into dce disjoint blocks, each
containing (at most) dnc e consecutive bits. Note that there must exist a block where the
number of 0s is at least |x|0 /dce. The oracle uses O(logn) bits to encode the index i at
which this block starts and the index i′ at which it ends. Furthermore, the oracle writes the
string xi . . . xi′ onto the advice tape, which requires at most dnc e bits, since this is the largest
possible size of a block. The algorithm learns the string xi . . . xi′ and answers accordingly
in rounds i to i′. In all other rounds, the algorithm answers 1. J

In the following sections, we determine the amount of advice necessary and sufficient
to achieve some (strict) competitive ratio c > 1. It turns out that the algorithms from
Theorems 4 and 6 use the asymptotically smallest possible number of advice bits, but the
coefficient in front of the term n/c can be improved.

STACS 2015

122 Advice Complexity for a Class of Online Problems

0.0

0.2

0.4

0.6

0.8

1.0

A
d
v
ic
e
b
it
s
p
er

re
q
u
es
t

1 2 3 4 5
Competitive ratio c

ASG SG
1

c

1

e ln(2)c

Figure 1 The upper solid line (green) shows the number of advice bits per request which are
necessary and sufficient for obtaining a (strict) competitive ratio of c for ASG (ignoring lower-order
terms). The lower solid line (brown) shows the same number for the original string guessing problem
SG [5]. The dashed lines are the functions 1/c and 1/(e ln(2)c).

3 Advice Complexity of ASG

In order to determine the advice complexity of ASG, we will use some basic results from
the theory of combinatorial designs. Let v ≥ k ≥ t be integers. A (v,k,t)-covering design is
a family of k-subsets (called blocks) of a v-set, X, such that any t-subset of X is contained
in at least one block. The size of a covering design, D, is the number of blocks in D. The
covering number, C(v, k, t), is the smallest possible size of a (v, k, t)-covering design. The
connection to ASG is that for inputs to minASG where the number of 1s is t, an (n, ct, t)-
covering design can be used to obtain a strictly c-competitive algorithm. Many papers have
been devoted to the study of covering numbers. See [13] for a survey. We make use of the
following bounds on the size of a covering design:

I Lemma 7 (Erdős, Spencer [17]). For all natural numbers v ≥ k ≥ t,(
v
t

)(
k
t

) ≤ C(v, k, t) ≤
(
v
t

)(
k
t

) (1 + ln
(
k

t

))
(1)

We will state the obtained advice complexity bounds in terms of the following function:

B(n, c) = log
(

1 + (c− 1)c−1

cc

)
n (2)

For c > 1, we show that B(n, c) ± O(logn) bits of advice are necessary and sufficient to
achieve a (strict) competitive ratio of c, for any version of ASG. See Figure 1 for a graphical
view. It can be shown that n/(a · c) ≤ B(n, c) ≤ n/c, where a = e ln(2). In particular, if
c = o(n/ logn), we see that O(logn) becomes a lower-order term. Thus, for this range of c,
we determine exactly the higher-order term in the advice complexity of ASG. Since this is
the main focus of our paper, we will consider O(logn) a lower-order term. The case where
c = Ω(n/ logn) is treated in the full version of the paper [9].

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 123

3.1 Advice Complexity of minASG
The following theorems show that covering numbers are closely related to the amount of
advice needed for an algorithm, ALG, to achieve a strict competitive ratio of c for minASG.

I Theorem 8. For any c > 1, there exists a strictly c-competitive algorithm for minASGu
and minASGk reading b bits of advice, where

b = log
(

max
t:bctc<n

C(n, bctc, t)
)

+O(logn) = B(n, c) +O(logn).

Proof (sketch). Let x = x1 . . . xn be an input string to minASG and set t = |x|1. The oracle
encodes n and t in a self-delimiting way. If t = 0 or ct ≥ n, it is trivial to output a solution of
the desired quality. In all other cases, ALG computes an optimal (n, bctc, t)-covering design
by making a systematic enumeration of all possible solutions (using lexicographic order, say).
Note there must exist a bctc-block Y from this covering design such that the characteristic
vector y of Y satisfies x v y. Using dlogC(n, bctc, t)e bits of advice, the oracle can encode
the index of Y . A lengthy calculation using (1) allows us to express this upper bound in
terms of the function B(n, c) defined in (2). J

Note that an algorithm for minASGu reading b(n) bits of advice can only produce 2b(n)

different outputs, one for each possible advice string. Consider the set of input strings In,t =
{x ∈ {0, 1}n : |x|1 = t}, and let Yn,t be the corresponding set of output strings produced by
the algorithm. If the algorithm is strictly c-competitive, then Yn,t can be converted into an
(n, bctc, t)-covering design. This gives a lower bound of log

(
maxt:bctc<n C(n, bctc, t)

)
on the

advice needed to achieve a strict competitive ratio of c for minASGu.
Recall that for minASGk, the output produced by an algorithm can depend on both the

advice read and the correct answer to requests in previous rounds. In particular, the proof
of the lower bound for minASGu sketched above breaks down for minASGk. However, by
using a more complicated argument, Theorem 10 gives a lower bound of B(n, c)−O(logn)
on the advice needed to achieve a strict competitive ratio of c for minASGk. Note that this
matches the upper bound from Theorem 8 up to an additive term of O(logn).

Before proving Theorem 10, we remark that there is a close connection between results
on the competitive ratio and the strict competitive ratio:
I Remark 9. Suppose that a minASG algorithm, ALG, is c-competitive. By definition,
there exists a constant, α, such that ALG(σ) ≤ c · OPT(σ) + α. Then, one can construct
a new algorithm, ALG′, which is strictly c-competitive and uses O(logn) additional advice
bits as follows: Use O(logn) bits of advice to encode the length n of the input and use
α · dlogne = O(logn) bits of advice to encode the index of (at most) α rounds in which ALG
guesses 1 but where the correct answer is 0. Clearly, ALG′ can use this additional advice to
achieve a strict competitive ratio of c. This also means that a lower bound of b on the number
of advice bits required to be strictly c-competitive implies a lower bound of b−O(logn) advice
bits for being c-competitive (where the constant hidden in O(logn) depends on the additive
constant α of the c-competitive algorithm). We will use this observation in Theorem 10.
Note that the same technique can be used for maxASG.

I Theorem 10. For any c > 1, a c-competitive algorithm for minASGk or minASGu must
read at least b bits of advice, where

b ≥ log
(

max
t:bctc<n

(
n
t

)(bctc
t

))−O(logn) = B(n, c)−O(logn) (3)

STACS 2015

124 Advice Complexity for a Class of Online Problems

Proof (sketch). Fix n, c and let b be the maximum number of advice bits read by the strictly
c-competitive algorithm, ALG, over all inputs of length n. Suppose, by way of contradiction,
that there exists some t such that bctc < n and b < log(

(
n
t

)
/
(bctc
t

)
). Let In,t be the set of

input strings of length n and Hamming weight t. We achieve the desired contradiction by
showing that there is some input string in In,t on which the algorithm incurs a cost of at
least bctc+ 1.

Note that |In,t| =
(
n
t

)
. By the pigeonhole principle, there must exist some advice string,

ϕ, such that the set of input strings, Iϕn,t ⊆ In,t, of length n and Hamming weight t for which
ALG reads the advice ϕ has size

∣∣Iϕn,t∣∣ > (bctct).
We consider the computation of ALG, when reading the advice ϕ, as a game between ALG

and an adversary, ADV. From the advice, ALG learns that the input string belongs to Iϕn,t.
Because of the known history, at the beginning of round i, ALG also knows the first i − 1
bits of the input string. We say that a string s ∈ Iϕn,t is alive in round i if the first i − 1
bits of s are identical to those revealed in the first i− 1 rounds. If, in round i, there exists
some string s such that s is still alive and si = 1, then ALG must answer 1. If not, ADV could
pick s as the input string and hence ALG would incur a cost of ∞. On the other hand, if
no such s exists in round i, we may assume (without loss of generality) that ALG answers 0.
Intuitively, ADV wants to maximize the number of rounds where ALG is forced to answer 1
but where ADV can still give 0 as the correct answer.

Suppose that in some round, there are m strings from Iϕn,t which are alive. Let h be the
number of 1s that have yet to be revealed in each of these strings (this is well-defined since
all strings from Iϕn,t have the same number of 1s). We let L1(m,h) denote the minimum
cost that the adversary can force ALG to incur in the remaining rounds when starting from
this situation. The proof is finished by showing that for any m,h ≥ 1,

L1(m,h) ≥ min
{
d : m ≤

(
d

h

)}
. (4)

Indeed, it follows from (4) that L1
(∣∣Iϕn,t∣∣ , t) ≥ bctc+ 1. By induction on m and h, one can

show that (4) is true by using the following adversary strategy: Let m the number of strings
alive in the current round, i. Furthermore, let m0 be the number of the m alive strings for
which the ith bit is 0, and let m1 = m −m0. If m0 = m, then ADV has to choose 0 as the
correct bit in round i. If m0 < m, let d1 be the smallest integer such that m1 ≤

(
d1
h−1
)
and

let d be the smallest integer such that m ≤
(
d
h

)
. If d1 ≤ d + 1, the adversary chooses 1 as

the correct bit in round i and otherwise it chooses 0.
By Remark 9, the first inequality of (3) follows. The last equality follows from a simple

but lengthy calculation showing that log
(

maxt:bctc<n
(
n
t

)
/
(bctc
t

))
= B(n, c)−O(logn). J

3.2 Advice Complexity of maxASG
The advice complexity of maxASG is the same as that of minASG, up to an additive
O(logn) term. This is not immediately obvious, but one can show that computing a c-
competitive solution for maxASG, on input strings where the number of 0s is u, requires
roughly the same amount of advice as computing a c-competitive solution for minASG, on
input strings where the number of 1s is du/ce.

I Theorem 11. For maxASGu and maxASGk and for any c > 1,

b = B(n, c)±O(logn) (5)

bits of advice are necessary and sufficient to achieve a (strict) competitive ratio of c.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 125

4 The Complexity Class AOC

In this section, we define a class of problems, AOC, and show that for each problem, P, in
AOC, the advice complexity of P is at most that of ASG.

I Definition 12. A problem P is in AOC (Asymmetric Online Covering) if it can be defined
as follows: The input to an instance of P consists of a sequence of n requests σ = (r1, . . . , rn)
and possibly one final dummy request. An algorithm for P computes a binary output string
y = y1 . . . yn ∈ {0, 1}n, where yi = f(r1, . . . , ri) for some function f .

For minimization (maximization) problems, the score function s maps a pair (σ, y) of
input and output to a cost (profit) in N∪{∞} (N∪{−∞}). For an input σ and an output y,
y is feasible if s(σ, y) ∈ N. Otherwise, y is infeasible. There must exist at least one feasible
output. Let Smin(σ) (Smax(σ)) be the set of those outputs that minimize (maximize) s for
a given input σ.

If P is a minimization problem, then for every input σ, the following must hold:

1. For a feasible output y, s(σ, y) = |y|1.
2. An output y is feasible if there exists a y′ ∈ Smin(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

If P is a maximization problem, then for every input σ, the following must hold:

1. For a feasible output y, s(σ, y) = |y|0.
2. An output y is feasible if there exists a y′ ∈ Smax(σ) such that y′ v y.

If there is no such y′, the output may or may not be feasible.

The dummy request is a request that does not require an answer and is not counted
when we count the number of requests. Most of the problems that we consider will not have
such a dummy request, but it is necessary to make sure that ASG belongs to AOC.

The input σ to a problem P in AOC can contain any kind of information. However,
for each request, an algorithm for P only needs to make a binary decision. If the problem
is a minimization problem, it is useful to think of answering 1 as accepting the request
and answering 0 as rejecting the request (e.g., vertices in a vertex cover). The output is
guaranteed to be feasible if the accepted requests are a superset of the requests accepted in
some optimal solution. If the problem is a maximization problem, it is useful to think of
answering 0 as accepting the request and answering 1 as rejecting the request (e.g., vertices
in an independent set). The output is guaranteed to be feasible if the accepted requests are
a subset of the requests accepted in an optimal solution.

The key point of Definition 12 is that an ASGu algorithm works for every problem
in AOC. Thus, by Theorems 8 and 11, we get the following upper bound on the advice
complexity for problems in AOC.

I Theorem 13. Let P be a problem in AOC. There exists a strictly c-competitive online
algorithm for P reading b bits of advice, where

b = log
(

1 + (c− 1)c−1

cc

)
n+O(logn) = B(n, c) +O(logn).

For all variants of ASG, we know that this upper bound is tight up to an O(logn) term.
This leads us to the following definition of completeness.

STACS 2015

126 Advice Complexity for a Class of Online Problems

I Definition 14. A problem P is AOC-complete if P belongs to AOC and if, for all c > 1,
any c-competitive algorithm for P must read at least b bits of advice, where

b = log
(

1 + (c− 1)c−1

cc

)
n−O(logn) = B(n, c)−O(logn).

The constant hidden in O(logn) in Definition 14 is allowed to depend on the additive
constant α of the c-competitive algorithm.

Note that the advice complexity of an AOC-complete problem must be identical to the
upper bound from Theorem 13, up to a lower-order term of O(logn). By Theorems 10 and
11, all of minASGu, minASGk, maxASGu and maxASGk are AOC-complete. When we
show that some problem P is AOC-complete, we do this by giving a reduction from a known
AOC-complete problem to P, which preserves the competitive ratio and increases the number
of advice bits by at most O(logn). ASGk is especially well-suited as a starting point for such
reductions. We allow for an additional O(logn) bits of advice in Definition 14 in order to be
able to use the reduction between the strict and non-strict competitive ratios as explained
in Remark 9 and in order to encode some natural parameters of the problem, such as the
input length or the score of an optimal solution. For most values of c, it seems reasonable
to allow these additional advice bits. However, it does mean that for c = Ω(n/ logn), the
requirement in the definition of AOC-complete is vacuously true.

5 Applications

By definition, showing that a problem is AOC-complete gives (almost) tight bounds on its
advice complexity. We show that several natural online problems are AOC-complete.

Many of the problems that we consider are graph problems. Unless otherwise mentioned,
the problems are studied in the vertex-arrival model. In this model, the vertices of an
unknown graph are revealed one by one. That is, in each round, a vertex is revealed together
with all edges connecting it to previously revealed vertices. For the problems we study in
the vertex-arrival model, whenever a vertex, v, is revealed, an online algorithm ALG must
(irrevocably) decide if v should be included in its solution or not. The individual graph
problems are defined by specifying the set of feasible solutions. For all of the problems, the
cost (or profit) of a feasible solution is the number of vertices in that solution. The cost
(profit) of an infeasible solution is ∞ (−∞). The problems we consider in this model are:

Online Vertex Cover. A solution is feasible if all edges in the input graph have an
endpoint at some vertex in the solution. The problem is a minimization problem.
Online Cycle Finding. A solution is feasible if the subgraph induced by the vertices
in the solution contains a cycle. We assume that the presented graph always contains a
cycle. The problem is a minimization problem
Online Dominating Set. A solution is feasible if each vertex in the input graph is in
the solution or has a neighbor in the solution. The problem is a minimization problem.
Online Independent Set. A solution is feasible if no two vertices in the solution are
neighbors. The problem is a maximization problem.

We also consider the following online problems. Again, the cost (profit) of an infeasible
solution is ∞ (−∞).

Online Disjoint Path Allocation. A path, P , is given. Each request is a subpath
of P and must immediately be either accepted or rejected. A solution is feasible if the
accepted subpaths are edge disjoint. The profit of a feasible solution is the number of
accepted paths. The problem is a maximization problem.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 127

Online Set Cover (set-arrival version). A finite set U known as the universe is given.
The input is a sequence of finite subsets of U , (A1, . . . , An), where ∪1≤i≤nAi = U . On
arrival, a subset must either be accepted or rejected. Denote by S the set of indices of the
subsets in some solution. The solution is feasible if ∪i∈SAi = U . The cost of a feasible
solution is the number of accepted subsets. The problem is a minimization problem.

Note that the offline version of the problems we study have very different properties.
Finding the shortest cycle in a graph can be done in polynomial time. There is a 2-
approximation algorithm for finding a minimum vertex cover3. No o(logn)-approximation
algorithm exists for finding a minimum set cover (or a minimum dominating set), unless
P = NP [29]. For any ε > 0, no n1−ε-approximation algorithm exists for finding a maximum
independent set, unless ZPP = NP [23].

The following theorem shows that all of the problems defined above are AOC-complete.

I Theorem 15. For the problems Online Vertex Cover, Online Cycle Finding,
Online Dominating Set, Online Set Cover, Online Independent Set and Online
Disjoint Path Allocation and for any c > 1, possibly a function of the input length n,

b = log
(

1 + (c− 1)c−1

cc

)
n±O(logn)

bits of advice are necessary and sufficient to achieve a (strict) competitive ratio of c.

It is easy to check that each of these problems belongs to AOC. To show completeness,
we use reductions from ASG. Here, we sketch the reduction from minASGk to Online
Vertex Cover4. For an input string x = x1 . . . xn ∈ {0, 1}n, define Gx = (V,E) as follows:
V = {v1, . . . , vn} and E = {(vi, vj) : xi = 1 and i < j}. Furthermore, let V1 = {vi : xi = 1}.
The vertices will be revealed in the order (v1, . . . , vn). Note that V1 \ {vn} is a minimum
vertex cover of Gx. Also, if an algorithm rejects just a single vertex from V1, it must accept
all forthcoming vertices in order to produce a feasible solution. Using these observations, one
can show that Online Vertex Cover is AOC-complete. The details, and the reductions
for the remaining problems, can be found in the full version [9].

6 Conclusion and Open Problems

As with the original string guessing problem SG [5,16], we have shown that ASG is a useful
tool for determining the advice complexity of online problems. It seems plausible that one
could identify other variants of online string guessing and obtain classes similar to AOC.
This could lead to an entire hierarchy of string guessing problems and related classes.

More concretely, there are various possibilities of generalizing ASG. One could associate
some positive weight to each bit xi in the input string. The goal would then be to produce
a feasible output of minimum (or maximum) weight. Such a string guessing problem would
model minimum weight vertex cover (or maximum weight independent set). Note that for
maxASG, the algorithm from Theorem 6 works in the weighted version. However, the same
is not true for any of the algorithms we have given for minASG. Thus, it remains an open
problem if O(n/c) bits of advice suffice to achieve a competitive ratio of c for the weighted
version of minASG.

3 We emphasize that the 2-approximation algorithm which greedily covers the edges (by selecting both
endpoints) one by one cannot be used in the online vertex-arrival model.

4 The graph used in this reduction is identical to the graph used in [21] to show hardness of Online
Independent Set in the multi-solution model.

STACS 2015

128 Advice Complexity for a Class of Online Problems

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online

set cover problem. SIAM J. Comput., 39(2):361–370, 2009.
2 Kfir Barhum. Tight bounds for the advice complexity of the online minimum steiner tree

problem. In SOFSEM, pages 77–88, 2014.
3 Kfir Barhum, Hans-Joachim Böckenhauer, Michal Forišek, Heidi Gebauer, Juraj

Hromkovič, Sacha Krug, Jasmin Smula, and Björn Steffen. On the power of advice and
randomization for the disjoint path allocation problem. In SOFSEM, pages 89–101, 2014.

4 Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovič, and Lucia Keller. On-
line coloring of bipartite graphs with and without advice. Algorithmica, 70(1):92–111, 2014.

5 Hans-Joachim Böckenhauer, Juraj Hromkovič, Dennis Komm, Sacha Krug, Jasmin Smula,
and Andreas Sprock. The string guessing problem as a method to prove lower bounds on
the advice complexity. Theor. Comput. Sci., 2014.

6 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and Richard Královič. On
the advice complexity of the k-server problem. In ICALP (1), pages 207–218, 2011.

7 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. In ISAAC, pages 331–340,
2009.

8 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61–72,
2014.

9 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen. The Advice
Complexity of a Class of Hard Online Problems. arXiv, 1408.7033 (cs.DS), August 2014.

10 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. On the list update
problem with advice. In LATA, pages 210–221, 2014.

11 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin packing
with advice. In STACS, pages 174–186, 2014. Full paper to appear in Algorithmica.

12 Marc Demange and Vangelis Th. Paschos. On-line vertex-covering. Theor. Comput. Sci.,
332(1-3):83–108, 2005.

13 Jeffrey H. Dinitz and Douglas R. Stinson, editors. Contemporary Design Theory: a Collec-
tion of Surveys. Wiley-Interscience series in discrete mathematics and optimization. Wiley,
New York, 1992.

14 Stefan Dobrev, Rastislav Královič, and Richard Královič. Independent set with advice:
The impact of graph knowledge - (extended abstract). In WAOA, pages 2–15, 2012.

15 Stefan Dobrev, Rastislav Královič, and Dana Pardubská. Measuring the problem-relevant
information in input. RAIRO - Theor. Inf. Appl., 43(3):585–613, 2009.

16 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011.

17 Paul Erdős and Joel Spencer. Probabilistic Methods in Combinatorics. Academic Press,
1974.

18 Michal Forišek, Lucia Keller, and Monika Steinová. Advice complexity of online coloring
for paths. In LATA, pages 228–239, 2012.

19 Sushmita Gupta, Shahin Kamali, and Alejandro López-Ortiz. On advice complexity of the
k-server problem under sparse metrics. In SIROCCO, pages 55–67, 2013.

20 Magnús M. Halldórsson. Online coloring known graphs. Electronic J. of Combinatorics,
7(R7), 2000.

21 Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online
independent sets. Theor. Comput. Sci., 289(2):953–962, 2002.

22 Magnús M. Halldórsson and Hadas Shachnai. Return of the boss problem: Competing
online against a non-adaptive adversary. In FUN, pages 237–248, 2010.

J. Boyar, L.M. Favrholdt, C. Kudahl, and J.W. Mikkelsen 129

23 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Math., 182(1):105–142,
1999.

24 Juraj Hromkovič, Rastislav Královič, and Richard Královič. Information complexity of
online problems. In MFCS, pages 24–36, 2010.

25 Sandy Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994.
26 Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator. Competitive

snoopy caching. Algorithmica, 3:77–119, 1988.
27 Dennis Komm, Richard Královič, and Tobias Mömke. On the advice complexity of the set

cover problem. In CSR, pages 241–252, 2012.
28 Shuichi Miyazaki. On the advice complexity of online bipartite matching and online stable

marriage. Inf. Process. Lett., 114(12):714–717, 2014.
29 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In STOC, pages 475–484, 1997.
30 Marc P. Renault, Adi Rosén, and Rob van Stee. Online algorithms with advice for bin

packing and scheduling problems. CoRR, abs/1311.7589, 2013.
31 Sebastian Seibert, Andreas Sprock, and Walter Unger. Advice complexity of the online

coloring problem. In CIAC, pages 345–357, 2013.
32 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging

rules. Commun. ACM, 28(2):202–208, 1985.
33 Wen-Guey Tzeng. On-line dominating set problems for graphs. In D.-Z. Ding and Pardalos,

editors, Handbook of Combinatorial Optimization. Kluwer Academic Publishers, Boston,
1998.

STACS 2015

	Introduction
	Asymmetric String Guessing
	Advice Complexity of ASG
	Advice Complexity of minASG
	Advice Complexity of maxASG

	The Complexity Class AOC
	Applications
	Conclusion and Open Problems

