
Solving Totally Unimodular LPs with the Shadow
Vertex Algorithm∗

Tobias Brunsch, Anna Großwendt, and Heiko Röglin

Department of Computer Science
University of Bonn, Germany
{brunsch,grosswen,roeglin}@cs.uni-bonn.de

Abstract
We show that the shadow vertex simplex algorithm can be used to solve linear programs in
strongly polynomial time with respect to the number n of variables, the number m of constraints,
and 1/δ, where δ is a parameter that measures the flatness of the vertices of the polyhedron.
This extends our recent result that the shadow vertex algorithm finds paths of polynomial length
(w.r.t. n, m, and 1/δ) between two given vertices of a polyhedron [4].

Our result also complements a recent result due to Eisenbrand and Vempala [6] who have
shown that a certain version of the random edge pivot rule solves linear programs with a running
time that is strongly polynomial in the number of variables n and 1/δ, but independent of the
number m of constraints. Even though the running time of our algorithm depends on m, it
is significantly faster for the important special case of totally unimodular linear programs, for
which 1/δ ≤ n and which have only O(n2) constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases linear optimization, simplex algorithm, shadow vertex method

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.171

1 Introduction

The shadow vertex algorithm is a well-known pivoting rule for the simplex method that has
gained attention in recent years because it was shown to have polynomial running time in
the model of smoothed analysis [8]. Recently we have observed that it can also be used
to find short paths between given vertices of a polyhedron [4]. Here short means that the
path length is O(mn

2

δ2), where n denotes the number of variables, m denotes the number of
constraints, and δ is a parameter of the polyhedron that we will define shortly.

Our result left open the question whether or not it is also possible to solve linear programs
in polynomial time with respect to n, m, and 1/δ by the shadow vertex simplex algorithm.
In this article we resolve this question and introduce a variant of the shadow vertex simplex
algorithm that solves linear programs in strongly polynomial time with respect to these
parameters.

For a given matrix A = [a1, . . . , am]T ∈ Rm×n and vectors b ∈ Rm and c0 ∈ Rn our goal
is to solve the linear program max{c0

Tx |Ax ≤ b}. We assume without loss of generality
that ‖c0‖ = 1 and ‖ai‖ = 1 for every row ai of the constraint matrix.

I Definition 1. The matrix A satisfies the δ-distance property if the following condi-
tion holds: For any I ⊆ {1, . . . ,m} and any j ∈ {1, . . . ,m}, if aj /∈ span{ai | i ∈ I}

∗ This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

© Tobias Brunsch, Anna Großwendt, and Heiko Röglin;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 171–183

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.171
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

then dist(aj , span{ai | i ∈ I}) ≥ δ. In other words, if aj does not lie in the subspace spanned
by the ai, i ∈ I, then its distance to this subspace is at least δ.

We present a variant of the shadow vertex simplex algorithm that solves linear programs
in strongly polynomial time with respect to n, m, and 1/δ, where δ denotes the largest δ′ for
which the constraint matrix of the linear program satisfies the δ′-distance property. (In the
following theorems, we assume m ≥ n. If this is not the case, we use a method described
in [3] to add irrelevant constraints so that A has rank n. Hence, for instances that have fewer
constraints than variables, the parameter m should be replaced by n in all bounds.)

I Theorem 2. There exists a randomized variant of the shadow vertex simplex algorithm
(described in Section 2) that solves linear programs with n variables and m constraints
satisfying the δ-distance property using O

(
mn3

δ2 · log
(1
δ

))
pivots in expectation if a basic

feasible solution is given. A basic feasible solution can be found using O
(
m5

δ2 · log
(1
δ

))
pivots

in expectation.

We stress that the algorithm can be implemented without knowing the parameter δ. From the
theorem it follows that the running time of the algorithm is strongly polynomial with respect
to the number n of variables, the number m of constraints, and 1/δ because every pivot can
be performed in time O(mn) in the arithmetic model of computation (see Section 2.2).1

Let A ∈ Zm×n be an integer matrix and let A′ ∈ Rm×n be the matrix that arises
from A by scaling each row such that its norm equals 1. If ∆ denotes an upper bound for
the absolute value of any sub-determinant of A, then A′ satisfies the δ-distance property
for δ = 1/(∆2n) [4]. For such matrices A Phase 1 of the simplex method can be implemented
more efficiently and we obtain the following result.

I Theorem 3. For integer matrices A ∈ Zm×n, there exists a randomized variant of the
shadow vertex simplex algorithm (described in Section 2) that solves linear programs with
n variables and m constraints using O

(
mn5∆4 log(∆ + 1)

)
pivots in expectation if a basic

feasible solution is given, where ∆ denotes an upper bound for the absolute value of any
sub-determinant of A. A basic feasible solution can be found using O

(
m6∆4 log(∆ + 1)

)
pivots in expectation.

Theorem 3 implies in particular that totally unimodular linear programs can be solved
by our algorithm with O

(
mn5) pivots in expectation if a basic feasible solution is given and

with O
(
m6) pivots in expectation otherwise.

Besides totally unimodular matrices there are also other classes of matrices for which 1/δ
is polynomially bounded in n. Eisenbrand and Vempala [6] observed, for example, that δ =
Ω(1/

√
n) for edge-node incidence matrices of undirected graphs with n vertices. One can

also argue that δ can be interpreted as a condition number of the matrix A in the following
sense: If 1/δ is large then there must be an (n× n)-submatrix of A of rank n that is almost
singular.

1.1 Related Work
Shadow vertex simplex algorithm

We will briefly explain the geometric intuition behind the shadow vertex simplex algorithm.
For a complete and more formal description, we refer the reader to [2] or [8]. Let us consider

1 By strongly polynomial with respect to n, m, and 1/δ we mean that the number of steps in the arithmetic
model of computation is bounded polynomially in n, m, and 1/δ and the size of the numbers occurring
during the algorithm is polynomially bounded in the encoding size of the input.

T. Brunsch, A. Großwendt, and H. Röglin 173

the linear program max{c0
Tx |Ax ≤ b} and let P = {x ∈ Rn |Ax ≤ b} denote the polyhedron

of feasible solutions. Assume that an initial vertex x1 of P is known and assume, for the
sake of simplicity, that there is a unique optimal vertex x? of P that maximizes the objective
function c0

Tx. The shadow vertex pivot rule first computes a vector w ∈ Rn such that the
vertex x1 minimizes the objective function wTx subject to x ∈ P . Again for the sake of
simplicity, let us assume that the vectors c0 and w are linearly independent.

In the second step, the polyhedron P is projected onto the plane spanned by the vectors c0
and w. The resulting projection is a (possibly open) polygon P ′ and one can show that
the projections of both the initial vertex x1 and the optimal vertex x? are vertices of this
polygon. Additionally, every edge between two vertices x and y of P ′ corresponds to an
edge of P between two vertices that are projected onto x and y, respectively. Due to these
properties a path from the projection of x1 to the projection of x? along the edges of P ′
corresponds to a path from x1 to x? along the edges of P .

This way, the problem of finding a path from x1 to x? on the polyhedron P is reduced to
finding a path between two vertices of a polygon. There are at most two such paths and the
shadow vertex pivot rule chooses the one along which the objective c0

Tx improves.

Finding short paths

In [4] we considered the problem of finding a short path between two given vertices x1 and x2
of the polyhedron P along the edges of P . Our algorithm is the following variant of the shadow
vertex algorithm: Choose two vectors w1, w2 ∈ Rn such that x1 uniquely minimizes w1

Tx

subject to x ∈ P and x2 uniquely maximizes w2
Tx subject to x ∈ P . Then project the

polyhedron P onto the plane spanned by w1 and w2 in order to obtain a polygon P ′. Let us
call the projection π. By the same arguments as above, it follows that π(x1) and π(x2) are
vertices of P ′ and that a path from π(x1) to π(x2) along the edges of P ′ can be translated
into a path from x1 to x2 along the edges of P . Hence, it suffices to compute such a path to
solve the problem. Again computing such a path is easy because P ′ is a two-dimensional
polygon.

The vectors w1 and w2 are not uniquely determined, but they can be chosen from cones
that are determined by the vertices x1 and x2 and the polyhedron P . We proved in [4] that
the expected path length is O(mn

2

δ2) if w1 and w2 are chosen randomly from these cones. For
totally unimodular matrices this implies that the diameter of the polyhedron is bounded
by O(mn4), which improved a previous result by Dyer and Frieze [5] who showed that for
this special case paths of length O(m3n16 log(mn)) can be computed efficiently.

Additionally, Bonifas et al. [1] proved that in a polyhedron defined by an integer matrix A
between any pair of vertices there exists a path of length O(∆2n4 log(n∆)) where ∆ is the
largest absolute value of any sub-determinant of A. For the special case that A is a totally
unimodular matrix, this bound simplifies to O(n4 logn). Their proof is non-constructive,
however.

Geometric random edge

Eisenbrand and Vempala [6] have presented an algorithm that solves a linear program
max{c0

Tx|Ax ≤ b} in strongly polynomial time with respect to the parameters n and 1/δ.
Remarkably the running time of their algorithm does not depend on the number m of
constraints. Their algorithm is based on a variant of the random edge pivoting rule. The
algorithm performs a random walk on the vertices of the polyhedron whose transition
probabilities are chosen such that it quickly attains a distribution close to its stationary
distribution.

STACS 2015

174 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

In the stationary distribution the random walk is likely at a vertex xc that optimizes an
objective function cTx with ‖c0 − c‖ < δ

2n . The δ-distance property guarantees that xc and
the optimal vertex x? with respect to the objective function c0

Tx lie on a common facet.
This facet is then identified and the algorithm is run again in one dimension lower. This
is repeated at most n times until all facets of the optimal vertex x? are identified. The
number of pivots to identify one facet of x? is proven to be O(n10/δ8). A single pivot can be
performed in polynomial time but determining the right transition probabilities is rather
sophisticated and requires to approximately integrate a certain function over a convex body.

Let us point out that the number of pivots of our algorithm depends on the number m of
constraints. However, Heller showed that for the important special case of totally unimodular
linear programs m = O(n2) [7]. Using this observation we also obtain a bound that depends
polynomially only on n for totally unimodular matrices.

Combinatorial linear programs

Éva Tardos has proved in 1986 that combinatorial linear programs can be solved in strongly
polynomial time [9]. Here combinatorial means that A is an integer matrix whose largest entry
is polynomially bounded in n. Her result implies in particular that totally unimodular linear
programs can be solved in strongly polynomial time, which is also implied by Theorem 3.
However, the proof and the techniques used to prove Theorem 3 are completely different
from those in [9].

1.2 Our Contribution
We replace the random walk in the algorithm of Eisenbrand and Vempala by the shadow
vertex algorithm. Given a vertex x0 of the polyhedron P we choose an objective function wTx

for which x0 is an optimal solution. As in [4] we choose w uniformly at random from the
cone determined by x0. Then we randomly perturb each coefficient in the given objective
function c0

Tx by a small amount. We denote by cTx the perturbed objective function. As
in [4] we prove that the projection of the polyhedron P onto the plane spanned by w and c
has O

(
mn2

δ2

)
edges in expectation. If the perturbation is so small that ‖c0 − c‖ < δ

2n , then
the shadow vertex algorithm yields with O

(
mn2

δ2

)
pivots a solution that has a common facet

with the optimal solution x?. We follow the same approach as Eisenbrand and Vempala and
identify the facets of x? one by one with at most n calls of the shadow vertex algorithm.

The analysis in [4] exploits that the two objective functions possess the same type of
randomness (both are chosen uniformly at random from some cones). This is not the case
anymore because every component of c is chosen independently uniformly at random from
some interval. This changes the analysis significantly and introduces technical difficulties
that we address in this article.

The problem when running the simplex method is that a feasible solution needs to be
given upfront. Usually, such a solution is determined in Phase 1 by solving a modified linear
program with a constraint matrix A′ for which a feasible solution is known and whose optimal
solution is feasible for the linear program one actually wants to solve. There are several
common constructions for this modified linear program, it is, however, not clear how the
parameter δ is affected by modifying the linear program. To solve this problem, Eisenbrand
and Vempala [6] have suggested a method for Phase 1 for which the modified constraint
matrix A′ satisfies the δ-distance property for the same δ as the matrix A. However, their
method is very different from usual textbook methods and needs to solve m different linear
programs to find an initial feasible solution for the given linear program. We show that also

T. Brunsch, A. Großwendt, and H. Röglin 175

one of the usual textbook methods can be applied. We argue that 1/δ increases by a factor
of at most

√
m and that ∆, the absolute value of any sub-determinant of A, does not change

at all in case one considers integer matrices. In this construction, the number of variables
increases from n to n+m.

1.3 Outline and Notation

In the following we assume that we are given a linear program max{c0
Tx |Ax ≤ b} with

vectors b ∈ Rm and c0 ∈ Rn and a matrix A = [a1, . . . , am]T ∈ Rm×n. Moreover, we assume
that ‖c0‖ = ‖ai‖ = 1 for all i ∈ [m], where [m] := {1, . . . ,m} and ‖ · ‖ denotes the Euclidean
norm. This entails no loss of generality since any linear program can be brought into this form
by scaling the objective function and the constraints appropriately. For a vector x ∈ Rn\{0n}
we denote by N (x) = 1

‖x‖ · x the normalization of vector x.
For a vertex v of the polyhedron P = {x ∈ Rn |Ax ≤ b} we call the set of row indices

Bv = {i ∈ {1, . . . ,m} | ai · v = bi} basis of v. Then the normal cone Cv of v is given by the
set

Cv =
{∑
i∈Bv

λiai |λi ≥ 0
}
.

We will describe our algorithm in Section 2.1 where we assume that the linear program
in non-degenerate, that A has full rank n, and that the polyhedron P is bounded. We have
already described in Section 3 of [4] that the linear program can be made non-degenerate by
slightly perturbing the vector b. This does not affect the parameter δ because δ depends
only on the matrix A. In Section 3 we analyze our algorithm and prove Theorem 2. In
the full version of this article [3] we discuss why we can assume that A has full rank and
why P is bounded. There are, of course, textbook methods to transform a linear program
into this form. However, we need to be careful that this transformation does not change δ.
Moreover in [3] we discuss how Phase 1 of the simplex method can be implemented and we
give an alternative definition of δ and discuss some properties of this parameter. Due to
space limitations most proofs are omitted. They can also be found in [3].

2 Algorithm

Given a linear program max{c0
Tx |Ax ≤ b} and a basic feasible solution x0, our algorithm

randomly perturbs each coefficient of the vector c0 by at most 1/φ for some parameter φ to be
determined later. Let us call the resulting vector c. The next step is then to use the shadow
vertex algorithm to compute a path from x0 to a vertex xc which maximizes the function
cTx for x ∈ P . For φ > 2n3/2

δ one can argue that the solution x has a facet in common with
the optimal solution x? of the given linear program with objective function c0

Tx. Then the
algorithm is run again on this facet one dimension lower until all facets that define x? are
identified.

Section 2.1 presents the shadow vertex algorithm, the main building block of our algorithm.
Details of the identification and reduction to an optimal facet are provided in the full version
of this paper. In Section 2.2 we discuss the running time of a single pivot step of the shadow
vertex algorithm.

STACS 2015

176 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

2.1 The Shadow Vertex Method
In this section we assume that we are given a linear program of the form max{c0

Tx |x ∈ P},
where P = {x ∈ Rn |Ax ≤ b} is a bounded polyhedron (i.e., a polytope), and a basic feasible
solution x0 ∈ P . We assume ‖c0‖ = ‖ai‖ = 1 for all rows ai of A. Furthermore, we assume
that the linear program is non-degenerate.

Due to the assumption ‖c0‖ = 1 it holds c0 ∈ [−1, 1]n. Our algorithm slightly perturbs
the given objective function c0

Tx at random. For each component (c0)i of c0 it chooses an
arbitrary interval Ii ⊆ [−1, 1] of length 1/φ with (c0)i ∈ Ii, where φ denotes a parameter
that will be given to the algorithm. Then a random vector c ∈ [−1, 1]n is drawn as follows:
Each component ci of c is chosen independently uniformly at random from the interval Ii.
We denote the resulting random vector by pert(c0, φ). Note that we can bound the norm of
the difference ‖c0 − c‖ between the vectors c0 and c from above by

√
n
φ .

The shadow vertex algorithm is given as Algorithm 1. It is assumed that φ is given to
the algorithm as a parameter. We will discuss later how we can run the algorithm without
knowing this parameter. Let us remark that the Steps 5 and 6 in Algorithm 1 are actually
not executed separately. Instead of computing the whole projection P ′ in advance, the edges
of P ′ are computed on the fly one after another.

Algorithm 1 Shadow Vertex Algorithm
1: Generate a random perturbation c = pert(c0, φ) of c0.
2: Determine n linearly independent rows ukT of A for which ukTx0 = bk.
3: Draw a vector λ ∈ (0, 1]n uniformly at random.
4: Set w = − [u1, . . . , un] · λ.
5: Use the function π : x 7→

(
cTx,wTx

)
to project P onto the Euclidean plane and obtain

the shadow vertex polygon P ′ = π(P).
6: Walk from π(x0) along the edges of P ′ in increasing direction of the first coordinate until

a rightmost vertex x̃c of P ′ is found.
7: Output the vertex xc of P that is projected onto x̃c.

Note that

‖w‖ ≤
n∑
k=1

λk · ‖uk‖ ≤
n∑
k=1

λk ≤ n,

where the second inequality follows because all rows of A are assumed to have norm 1.
The Shadow Vertex Algorithm yields a path from the vertex x0 to a vertex xc that

is optimal for the linear program max{cTx |x ∈ P} where P = {x ∈ Rn |Ax ≤ b}. The
following theorem (whose proof can be found in Section 3) bounds the expected length of
this path, i.e., the number of pivots.

I Theorem 4. For any φ ≥
√
n the expected number of edges on the path output by

Algorithm 1 is O
(
mn2

δ2 + m
√
nφ
δ

)
.

Since ‖c0 − c‖ ≤
√
n
φ choosing φ > 2n3/2

δ suffices to ensure ‖c0 − c‖ < δ
2n . This implies

(see [3]) that, for such a choice of φ, the vertex xc has a facet in common with the optimal
solution of the linear program max{c0

Tx |x ∈ P} and we can reduce the dimension of the
linear program as discussed in [3]. This step is repeated at most n times. It is important that
we can start each repetition with a known feasible solution because the transformation in [3]
maps the optimal solution of the linear program of repetition i onto a feasible solution with

T. Brunsch, A. Großwendt, and H. Röglin 177

which repetition i+1 can be initialized. Together with Theorem 4 this implies that an optimal
solution of the linear program can be found by performing in expectation O

(
mn3

δ2 + mn3/2φ
δ

)
pivots if a basic feasible solution x0 and the right choice of φ are given. We will refer to this
algorithm as repeated shadow vertex algorithm.

Since δ is not known to the algorithm, the right choice for φ cannot easily be computed.
Instead we will try values for φ until an optimal solution is found. For i ∈ N let φi = 2in3/2.
First we run the repeated shadow vertex algorithm with φ = φ0 and check whether the
returned solution is an optimal solution for the linear program max{c0

Tx |x ∈ P}. If this
is not the case, we run the repeated shadow vertex algorithm with φ = φ1, and so on. We
continue until an optimal solution is found. For φ = φi? with i? =

⌈
log2

(
1/δ
)⌉

+ 2 this is
the case because φi? > 2n3/2

δ .
Since φi? ≤ 8n3/2

δ , in accordance with Theorem 4, each of the at most i? = O(log(1/δ))
calls of the repeated shadow vertex algorithm uses in expectation

O

(
mn3

δ2 + mn3/2φi?

δ

)
= O

(
mn3

δ2

)
.

pivots. Together this proves the first part of Theorem 2. The second part follows from [3],
where it is proven that Phase 1 can be realized with increasing 1/δ by at most

√
m and

increasing the number of variables from n to n+m ≤ 2m. This implies that the expected
number of pivots of each call of the repeated shadow vertex algorithm in Phase 1 is O(m(n+
m)3√m2

/δ2) = O(m5/δ2). Since 1/δ can increase by a factor of
√
m, the argument above

yields that we need to run the repeated shadow vertex algorithm at most i? = O(log(
√
m/δ))

times in Phase 1 to find a basic feasible solution. By setting φi = 2i
√
m(n+m)3/2 instead

of φi = 2i(n+m)3/2 this number can be reduced to i? = O(log(1/δ)) again.
Theorem 3 follows from Theorem 2 using the following fact from [4]: Let A ∈ Zm×n be

an integer matrix and let A′ ∈ Rm×n be the matrix that arises from A by scaling each row
such that its norm equals 1. If ∆ denotes an upper bound for the absolute value of any
sub-determinant of A, then A′ satisfies the δ-distance property for δ = 1/(∆2n). Additionally
in [3] it is proven that Phase 1 can be realized without increasing ∆ but with increasing the
number of variables from n to n+m ≤ 2m. Substituting 1/δ = ∆2n in Theorem 2 almost
yields Theorem 3 except for a factor O(log(∆2n)) instead of O(log(∆ + 1)). This factor
results from the number i? of calls of the repeated shadow vertex algorithm. The desired
factor of O(log(∆ + 1)) can be achieved by setting φi = 2in5/2 if a basic feasible solution is
known and φi = 2i(n+m)5/2 in Phase 1.

2.2 Running Time of the Repeated Shadow Vertex Algorithm
So far we have only discussed the number of pivots. Let us now calculate the actual running
time of our algorithm. For an initial basic feasible solution x0 the repeated shadow vertex
algorithm repeats the following three steps until an optimal solution is found. Initially
let P ′ = P .

Step 1: Run the shadow vertex algorithm for the linear program max{cTx |x ∈ P ′}, where
c = pert(c0, φ). We will denote this linear program by LP ′.

Step 2: Let xc denote the returned vertex in Step 1, which is optimal for the objective
function cTx. Identify an element a′i of xc that is in common with the optimal basis.

Step 3: Calculate an orthogonal matrix Q ∈ Rn×n that rotates a′i into the first unit vector
e1 and set LP ′ to the projection of the current LP ′ onto the orthogonal complement.
Let P ′ denote the polyhedron of feasible solutions of LP ′.

STACS 2015

178 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

First note that the three steps are repeated at most n times during the algorithm. In
Step 1 the shadow vertex algorithm is run once. Step 1 to Step 4 of Algorithm 1 can be
performed in time O(m) as we assumed P to be non-degenerate (this implies P ′ to be
non-degenerate in each further step). Step 5 and Step 6 can be implemented with strongly
polynomial running time in a tableau form, described in [2]. The tableau can be set up
in time O((m − d)d3) = O(mn3) where d is the dimension of P ′. By Theorem 1 of [2] we
can identify for a vertex on a path the row which leaves the basis and the row which is
added to the basis in order to move to the next vertex in time O(m) using the tableau.
After that, the tableau has to be updated. This can be done in O((m − d)d) = O(mn)
steps. Using this and Theorem 4 we can compute the path from x0 to xc in expected time
O
(
mn3 + mn ·

(
mn2

δ2 + m
√
nφ
δ

))
= O

(
m2n3

δ2 + m2n3/2φ
δ

)
. Using that φ ≤ 8n3/2

δ , as discussed
above, yields a running time of O

(
m2n3

δ2

)
.

Once we have calculated the basis of xc we can easily compute the element ai that is also
an element of the optimal basis. Assume the rows a′1, . . . , a′n are the basis of xc. Eisenbrand
and Vempala discuss in [6] that we can solve the system of linear equations [a′1, . . . , a′n]µ = c

and choose the row for which the coefficient µi is maximal. Then a′i is part of the optimal
basis. As a consequence, Step 2 can be performed in time O(n3). Moreover solving a system
of linear equations is possible in strongly polynomial time using Gaussian elimination.

In Step 3, we compute an orthogonal matrix Q ∈ Rd×d such that e1Q = ai. Since Q
is orthogonal we obtain e1 = aiQ

T and thus, the first row of Q is given by ai. Hence,
it is sufficient to compute an orthonormal basis including ai. This is possible in strongly
polynomial time O(d3) = O(n3) using the Gram-Schmidt process.

Since all Steps are repeated in this order at most n times we obtain a running time
O(m

2n4

δ2) for the repeated shadow vertex algorithm.

I Theorem 5. The repeated shadow vertex algorithm has a running time of O(m
2n4

δ2).

The entries of both c and λ in Algorithm 1 are continuous random variables. In practice
it is, however, more realistic to assume that we can draw a finite number of random
bits. In the full version of this paper we show that our algorithm only needs to draw
poly(logm,n, log(1/δ)) random bits in order to obtain the expected running time stated in
Theorem 2 if δ (or a good lower bound for it) is known. However, if the parameter δ is not
known upfront and only discrete random variables with a finite precision can be drawn, we
have to modify the shadow vertex algorithm. This will give us an additional factor of O(n)
in the expected running time.

3 Analysis of the Shadow Vertex Algorithm

For given linear functions L1 : Rn → R and L2 : Rn → R we denote by π = πL1,L2 the
function π : Rn → R2, given by π(x) = (L1(x), L2(x)). Note that n-dimensional vectors
can be treated as linear functions. By P ′ = P ′L1,L2

we denote the projection π(P) of the
polytope P onto the Euclidean plane, and by R = RL1,L2 we denote the path from the
bottommost vertex of P ′ to the rightmost vertex of P ′ along the edges of the lower envelope
of P ′.

Our goal is to bound the expected number of edges of the path R = Rc,w, which is
random since c and w are random. Each edge of R corresponds to a slope in (0,∞). These
slopes are pairwise distinct with probability one (see Lemma 7). Hence, the number of edges
of R equals the number of distinct slopes of R.

T. Brunsch, A. Großwendt, and H. Röglin 179

π(x0)

P ′

pr

≤ t
≤ t

> t

> t

> t

p?

p̂

c

w

Figure 1 Slopes of the vertices of R.

I Definition 6. For a real ε > 0 let Fε denote the event that there are three pairwise distinct
vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2 and such that∣∣∣∣wT · (z2 − z1)

cT · (z2 − z1) −
wT · (z3 − z2)
cT · (z3 − z2)

∣∣∣∣ ≤ ε .
Note that if event Fε does not occur, then all slopes of R differ by more than ε. Particularly,

all slopes are pairwise distinct. First of all we show that event Fε is very unlikely to occur
if ε is chosen sufficiently small. The proof of the following lemma is almost identical to the
corresponding proof in [4] except that we need to adapt it to the different random model of c.

I Lemma 7. The probability of event Fε tends to 0 for ε→ 0.

Let p be a vertex of R, but not the bottommost vertex π(x0). We call the slope s of the
edge incident to p to the left of p the slope of p. As a convention, we set the slope of π(x0)
to 0 which is smaller than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p? be the rightmost vertex of R whose slope is at most t,
and let p̂ be the right neighbor of p?, i.e., p̂ is the leftmost vertex of R whose slope exceeds t
(see Figure 1). Let x? and x̂ be the neighboring vertices of P with π(x?) = p? and π(x̂) = p̂.
Now let i = i(x?, x̂) ∈ [m] be the index for which aiTx? = bi and for which x̂ is the (unique)
neighbor x of x? for which aiTx < bi. This index is unique due to the non-degeneracy of the
polytope P . For an arbitrary real γ ≥ 0 we consider the vector w̃ := w − γ · ai.

I Lemma 8 (Lemma 9 of [4]). Let π̃ = πc,w̃ and let R̃ = Rc,w̃ be the path from π̃(x0) to the
rightmost vertex p̃r of the projection π̃(P) of polytope P . Furthermore, let p̃? be the rightmost
vertex of R̃ whose slope does not exceed t. Then p̃? = π̃(x?).

Let us reformulate the statement of Lemma 8 as follows: The vertex p̃? is defined for the
path R̃ of polygon π̃(R) with the same rules as used to define the vertex p? of the original
path R of polygon π(P). Even though R and R̃ can be very different in shape, both vertices,
p? and p̃?, correspond to the same solution x? in the polytope P , that is, p? = π(x?) and
p̃? = π̃(x?).

Lemma 8 holds for any vector w̃ on the ray ~r = {w − γ · ai | γ ≥ 0}. As ‖w‖ ≤ n (see
Section 2.1), we have w ∈ [−n, n]n. Hence, ray ~r intersects the boundary of [−n, n]n in a
unique point z. We choose w̃ = w̃(w, i) := z and obtain the following result.

STACS 2015

180 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

I Corollary 9. Let π̃ = πc,w̃(w,i) and let p̃? be the rightmost vertex of path R̃ = Rc,w̃(w,i)
whose slope does not exceed t. Then p̃? = π̃(x?).

Note that Corollary 9 only holds for the right choice of index i = i(x?, x̂). However, the
vector w̃(w, i) can be defined for any vector w ∈ [−n, n]n and any index i ∈ [m]. In the
remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real ε > 0 and
that depends on c and w.

I Definition 10. For an index i ∈ [m] and a real t ≥ 0 let p̃? be the rightmost vertex of
R̃ = Rc,w̃(w,i) whose slope does not exceed t and let y? be the corresponding vertex of P .
For a real ε > 0 we denote by Ei,t,ε the event that the conditions

ai
Ty? = bi and

wT(ŷ−y?)
cT(ŷ−y?) ∈ (t, t+ ε], where ŷ is the neighbor y of y? for which aiTy < bi,

are met. Note that the vertex ŷ always exists and that it is unique since the polytope P is
non-degenerate.

Let us remark that the vertices y? and ŷ, which depend on the index i, equal x? and x̂ if
we choose i = i(x?, x̂). For other choices of i, this is, in general, not the case.

Observe that all possible realizations of w from the line L := {w + x · ai |x ∈ R} are
mapped to the same vector w̃(w, i). Consequently, if c is fixed and if we only consider
realizations of λ for which w ∈ L, then vertex p̃? and, hence, vertex y? from Definition 10 are
already determined. However, since w is not completely specified, we have some randomness
left for event Ei,t,ε to occur. This allows us to bound the probability of event Ei,t,ε from
above (see proof of Lemma 12). The next lemma shows why this probability matters.

I Lemma 11 (Lemma 12 from [4]). For any t ≥ 0 and ε > 0 let At,ε denote the event that
the path R = Rc,w has a slope in (t, t+ ε]. Then, At,ε ⊆

⋃m
i=1 Ei,t,ε.

With Lemma 11 we can now bound the probability of event At,ε. The proof of the
next lemma is almost identical to the proof of Lemma 13 from [4]. The only differences to
Lemma 13 from [4] are that we can now use the stronger upper bound ‖c‖ ≤ 2 instead of
‖c‖ ≤ n and that we have more carefully analyzed the case of large t.

I Lemma 12. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event At,ε is

bounded by

Pr [At,ε] ≤
2mn2ε

max
{
n
2 , t
}
· δ2 ≤

4mnε
δ2 .

I Lemma 13. For any interval I let XI denote the number of slopes of R = Rc,w that lie in
the interval I. Then, for any φ ≥

√
n,

E
[
X(0,n]

]
≤ 4mn2

δ2

Proof. For a real ε > 0 let Fε denote the event from Definition 6. Recall that all slopes
of R differ by more than ε if Fε does not occur. For t ∈ R and ε > 0 let Zt,ε be the random
variable that indicates whether R has a slope in the interval (t, t+ ε] or not, i.e., Zt,ε = 1
if X(t,t+ε] > 0 and Zt,ε = 0 if X(t,t+ε] = 0.

Let k ≥ 1 be an arbitrary integer. We subdivide the interval (0, n] into k subintervals.
If none of them contains more than one slope then the number X(0,n] of slopes in the

T. Brunsch, A. Großwendt, and H. Röglin 181

interval (0, n] equals the number of subintervals for which the corresponding Z-variable
equals 1. Formally

X(0,n] ≤

{∑k−1
i=0 Zi·nk ,

n
k

if Fn
k
does not occur ,

mn otherwise .

This is true because
(
m
n−1
)
≤ mn is a worst-case bound on the number of edges of P and,

hence, of the number of slopes of R. Consequently,

E
[
X(0,n]

]
≤
k−1∑
i=0

E
[
Zi·nk ,

n
k

]
+ Pr

[
Fn

k

]
·mn =

k−1∑
i=0

Pr
[
Ai·nk ,

n
k

]
+ Pr

[
Fn

k

]
·mn

≤
k−1∑
i=0

2mn2 · nk
n
2 δ

2 + Pr
[
Fn

k

]
·mn = 4mn2

δ2 + Pr
[
Fn

k

]
·mn .

The second inequality stems from Lemma 12. Now the lemma follows because the bound on
E
[
X(0,n]

]
holds for any integer k ≥ 1 and since Pr [Fε]→ 0 for ε→ 0 in accordance with

Lemma 7. J

In [4] we only computed an upper bound for the expected value of X(0,1]. Then we argued
that the same upper bound also holds for the expected value of X(1,∞). In order to see this,
we simply exchanged the order of the objective functions in the projection π. Then any
edge with a slope of s > 1 becomes an edge with slope 1

s < 1. Hence the number of slopes
in [1,∞) equals the number of slopes in (0, 1] in the scenario in which the objective functions
are exchanged. Due to the symmetry in the choice of the objective functions in [4] the same
analysis as before applies also to that scenario.

We will now also exchange the order of the objective functions wTx and cTx in the
projection. Since these objective functions are not anymore generated by the same random
experiment, a simple argument as in [4] is not possible anymore. Instead we have to go
through the whole analysis again. We will use the superscript −1 to indicate that we are
referring to the scenario in which the order of the objective functions is exchanged. In
particular, we consider the events F−1

ε , A−1
t,ε , and E−1

i,t,ε that are defined analogously to
their counterparts without superscript except that the order of the objective functions is
exchanged. The proof of the following lemma is analogous to the proof of Lemma 7.

I Lemma 14. The probability of event F−1
ε tends to 0 for ε→ 0.

I Lemma 15. For any φ ≥
√
n, any t ≥ 0, and any ε > 0 the probability of event A−1

t,ε is
bounded by

Pr
[
A−1
t,ε

]
≤ 2mn3/2εφ

max
{

1, nt2
}
· δ
≤ 2mn3/2εφ

δ
.

I Lemma 16. For any interval I let X−1
I denote the number of slopes of Rw,c that lie in

the interval I. Then

E
[
X−1

(0,1/n]

]
≤ 2m

√
nφ

δ
.

Proof. As in the proof of Lemma 13 we define for t ∈ R and ε > 0 the random variable Z−1
t,ε

that indicates whether Rw,c has a slope in the interval (t, t+ ε] or not. For any integer k ≥ 1

STACS 2015

182 Solving Totally Unimodular LPs with the Shadow Vertex Algorithm

we obtain

E
[
X−1(

0, 1
n

]] ≤ k−1∑
i=0

E
[
Z−1
i· 1

kn ,
1

kn

]
+ Pr

[
F−1

1
kn

]
·mn

=
k−1∑
i=0

Pr
[
A−1
i· 1

kn ,
1

kn

]
+ Pr

[
F−1

1
kn

]
·mn

≤
k−1∑
i=0

2mn3/2φ

knδ
+ Pr

[
F−1

1
k2`√

n

]
·mn = 2m

√
nφ

δ
+ Pr

[
F−1

1
k2`√

n

]
·mn .

The second inequality stems from Lemma 15. Now the lemma follows because the bound
holds for any integer k ≥ 1 and Pr

[
F−1
ε

]
→ 0 for ε→ 0 in accordance with Lemma 14. J

The following corollary directly implies Theorem 4.

I Corollary 17. The expected number of slopes of R = Rc,w is

E
[
X(0,∞)

]
= 4mn2

δ2 + 2m
√
nφ

δ
.

Proof. We divide the interval (0,∞) into the subintervals (0, n] and (n,∞). Using Lemma 13,
Lemma 16, and linearity of expectation we obtain

E
[
X(0,∞)

]
= E

[
X(0,n]

]
+ E

[
X(n,∞)

]
= E

[
X(0,n]

]
+ E

[
X−1(

0, 1
n

]]
≤ 4mn2

δ2 + 2m
√
nφ

δ
.

In the second step we have exploited that by definition X(a,b) = X−1
(1/b,1/a) for any inter-

val (a, b). J

4 Conclusions

We have shown that the shadow vertex algorithm can be used to solve linear programs
possessing the δ-distance property in strongly polynomial time with respect to n, m, and 1/δ.
The bound we obtained in Theorem 2 depends quadratically on 1/δ. Roughly speaking, one
term 1/δ is due to the fact that the smaller δ the less random is the objective function wTx.
This term could in fact be replaced by 1/δ(B) where B is the matrix that contains only the
rows that are tight for x. The other term 1/δ is due to our application of the principle of
deferred decisions in the proof of Lemma 12. The smaller δ the less random is w(Z).

For packing linear programs, in which all coefficients of A and b are non-negative and
one has x ≥ 0 as additional constraint, it is, for example, clear that x = 0n is a basic feasible
solution. That is, one does not need to run Phase 1. Furthermore as in this solution without
loss of generality exactly the constraints x ≥ 0 are tight, δ(B) = 1 and one occurrence of 1/δ
in Theorem 2 can be removed.

Acknowledgments The authors would like to thank Friedrich Eisenbrand and Santosh
Vempala for providing detailed explanations of their paper and the anonymous reviewers for
valuable suggestions how to improve the presentation.

T. Brunsch, A. Großwendt, and H. Röglin 183

References
1 Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle, and Martin

Niemeier. On sub-determinants and the diameter of polyhedra. In Proceedings of the
28th ACM Symposium on Computational Geometry (SoCG), pages 357–362, 2012.

2 Karl Heinz Borgwardt. A probabilistic analysis of the simplex method. Springer-Verlag New
York, Inc., New York, NY, USA, 1986.

3 Tobias Brunsch, Anna Großwendt, and Heiko Röglin. Solving totally unimodular LPs with
the shadow vertex algorithm. CoRR, abs/1412.5381, 2014.

4 Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the shadow vertex
algorithm. In Proceedings of the 40th International Colloquium on Automata, Languages
and Programming (ICALP), pages 279–290, 2013.

5 Martin E. Dyer and Alan M. Frieze. Random walks, totally unimodular matrices, and a
randomised dual simplex algorithm. Mathematical Programming, 64:1–16, 1994.

6 Friedrich Eisenbrand and Santosh Vempala. Geometric random edge. CoRR, abs/1404.1568,
2014.

7 I. Heller. On linear systems with integral valued solutions. Pacific Journal of Mathematics,
7(3):1351–1364, 1957.

8 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004.

9 Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Op-
erations Research, 34(2):250–256, 1986.

STACS 2015

	Introduction
	Related Work
	Our Contribution
	Outline and Notation

	Algorithm
	The Shadow Vertex Method
	Running Time of the Repeated Shadow Vertex Algorithm

	Analysis of the Shadow Vertex Algorithm
	Conclusions

