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Abstract
This paper presents a fast algorithm for finding the Adams consensus tree of a set of conflicting
phylogenetic trees with identical leaf labels, for the first time improving the time complexity of
a widely used algorithm invented by Adams in 1972 [1]. Our algorithm applies the centroid path
decomposition technique [9] in a new way to traverse the input trees’ centroid paths in unison,
and runs in O(kn logn) time, where k is the number of input trees and n is the size of the leaf
label set. (In comparison, the old algorithm from 1972 has a worst-case running time of O(kn2).)
For the special case of k = 2, an even faster algorithm running in O(n · logn

log logn ) time is provided,
which relies on an extension of the wavelet tree-based technique by Bose et al. [6] for orthogonal
range counting on a grid. Our extended wavelet tree data structure also supports truncated
range maximum queries efficiently and may be of independent interest to algorithm designers.
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1 Introduction

Scientists use phylogenetic trees to describe treelike evolutionary history [10, 17, 20, 22]. A
consensus tree is a phylogenetic tree that reconciles two or more given phylogenetic trees with
identical leaf labels but different branching patterns, e.g., obtained from alternative data
sets or obtained by resampling during phylogenetic reconstruction or phylogenetic analysis.

The concept of a consensus tree was introduced by Adams in 1972 [1], and the tree
constructed by the algorithm in [1] is nowadays referred to as the Adams consensus tree. Since
conflicting branching information can be resolved in various ways, a number of alternative
definitions of consensus trees have been proposed and analyzed in the literature since then;
see, e.g., the surveys in [8], Chapter 30 in [10], or Chapter 8.4 in [22]. However, the Adams
consensus tree was the only existing consensus tree of any kind for several years and thus
gained popularity among the research community early on. It has been implemented in
classic phylogenetics software packages such as PAUP* [23] and COMPONENT [18]. Over
the decades, many articles in biology have utilized the Adams consensus tree to reach their
conclusions; some examples of highly cited ones include [15, 19, 24].

Apart from its historical significance, two useful features of the Adams consensus tree
are that it preserves the nesting information common to all the input trees [2] and that it
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does not introduce any new rooted triplet information [8]. Another feature of the Adams
consensus tree is its robustness; adding extra copies of any of the input trees will not affect
the output [10], whereas the structure of the so-called majority rule consensus tree [16] or
the frequency difference consensus tree [12] may change completely. In addition, the Adams
consensus tree is insensitive to the order in which the input trees are provided [1], as opposed
to the greedy consensus tree [8, 11]. Finally, it may be much more informative than the
strict consensus tree [21] and the loose consensus tree [7] in cases where a few leaves are in
the wrong positions in some of the input trees due to noisy data (for an example, refer to
Figure 1 in reference [2]).

The original algorithm of [1] for building the Adams consensus tree has a worst-case
running time of O(kn2), where k is the number of input trees and n is the size of the leaf
label set [20]. Despite its practical usefulness, its running time has not been improved in
the last forty years. The purpose of this paper is to achieve a better time complexity. The
algorithm of [1] is reviewed in Section 1.2, and Section 2 shows that its expected running time
is in fact o(kn2) for trees generated by some realistic models of evolution. Next, Section 3
gives an improved algorithm whose worst-case running time is O(kn logn), based on a new
way of applying the centroid path decomposition technique [9]. Finally, Section 4 presents
an even faster method for the case k = 2 with a worst-case running time of O(n · logn

log logn ),
using an extension of the wavelet tree of Bose et al. [6] (described in Section 4.2).

1.1 Definitions and notation
We will use the following definitions. A phylogenetic tree is a rooted, unordered, leaf-labeled
tree such that all leaves have different labels and every internal node has at least two children.
Below, phylogenetic trees are called “trees” for short, and every leaf in a tree is identified
with its label. All edges in a tree are assumed to be directed from the root to the leaves.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are denoted by
V (T ) and Λ(T ), respectively. For any u, v ∈ V (T ), u is called a descendant of v and v is
called an ancestor of u if there exists a (possibly empty) directed path in T from v to u;
if this path is nonempty then we write u ≺ v and call u a proper descendant of v and v a
proper ancestor of u. For any u ∈ V (T ), Tu is the subtree of T rooted at u, i.e., the subgraph
of T induced by the node u and all of its proper descendants in T . For any u ∈ V (T ), let
ChildT (u) be the set of all children of u in T . The depth of any u ∈ V (T ), denoted by
depthT (u), is the number of edges on the unique path from the root of T to u. For any
nonempty X ⊆ V (T ), lcaT (X) is the lowest common ancestor in T of the nodes in X.

For any nonempty B ⊆ Λ(T ), define the restriction of T to B, denoted by T |B, as the
tree T ′ with leaf label set B and node set {lcaT ({u, v}) : u, v ∈ B} that preserves the ancestor
relations from T , i.e., that satisfies lcaT (B′) = lcaT

′
(B′) for all nonempty B′ ⊆ B.

Next, let S = {T1, T2, . . . , Tk} be any set of trees satisfying Λ(T1) = Λ(T2) = · · · =
Λ(Tk) = L for some leaf label set L. The Adams consensus tree of S [1, 2] is the unique
tree T with Λ(T ) = L for which the following two properties hold:

For any A,B ⊆ L, if lcaTj (A) ≺ lcaTj (B) in every Tj ∈ S then lcaT (A) ≺ lcaT (B).
For any u, v ∈ V (T ), if u ≺ v in T then lcaTj (Λ(Tu)) ≺ lcaTj (Λ(T v)) in every Tj ∈ S.

See Figure 1 for an example. Importantly, it was proved in [2] that these two properties are
satisfied by the output of the algorithm in [1] (reviewed in Section 1.2 below). This means
that to prove the correctness of a new algorithm for building the Adams consensus tree, one
just needs to show that its output is equal to the output of the algorithm in [1].
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Figure 1 An example. Let S = {T1, T2, T3} as above with Λ(T1) = Λ(T2) = Λ(T3) =
{a, b, c, d, e, f}. The Adams consensus tree of S is shown on the right. Also note that in this
particular example, the Adams consensus tree of S does not equal the Adams consensus tree
of {A, T3}, where A is the Adams consensus tree of {T1, T2}.

For any input set S of trees with identical leaf label sets, we write S = {T1, T2, . . . , Tk}
and define L = Λ(T1) = Λ(T2) = · · · = Λ(Tk). To express the time complexity of any
algorithm computing the Adams consensus tree of S, we define k = |S| and n = |L|.

1.2 Previous work
The Adams consensus tree can be computed by the algorithm from [1], which we will now
describe. From here on, it will be referred to as Old_Adams_consensus. The pseudocode is
given in Algorithm 1.

For any tree T , define π(T ) = {Λ(T c) : c ∈ ChildT (r), where r is the root of T}. Observe
that π(T ) is a partition of Λ(T ). Next, for any set of trees S = {T1, T2, . . . , Tk} with Λ(T1) =
Λ(T2) = · · · = Λ(Tk) = L for a leaf label set L, define π(S) to be the partition of L in which,
for every part B ∈ π(S), it holds that B = ∩kj=1Λ(T cjj ) for some child cj of the root of Tj for
each j ∈ {1, 2, . . . , k}. Thus, π(S) is the product of the partitions π(T1), π(T2), . . . , π(Tk). As
an example, in Figure 1, we have π(T1) =

{
{a, b, c, d, e}, {f}

}
, π(T2) =

{
{a}, {b, c, d, e, f}

}
,

π(T3) =
{
{a, b, c, d}, {e, f}

}
, and π(S) =

{
{a}, {b, c, d}, {e}, {f}

}
.

To compute π(S), one can apply Procedure Compute_partition in Algorithm 2. It
encodes each ` ∈ L by a vector of length k whose jth entry mj(`) (for j ∈ {1, 2, . . . , k})
indicates which child of the root of Tj is an ancestor of `. In this way, any two leaf labels

Algorithm 1 Algorithm Old_Adams_consensus, adapted from [1].
Algorithm Old_Adams_consensus
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk).
Output: The Adams consensus tree of S.

1: if T1 has only one leaf then let T := T1; /* Base case of the recursion */
2: else /* General case of the recursion */
3: π := Compute_partition(S);
4: for every B ∈ π do TB := Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B});
5: Create a tree T whose root is the parent of the root of TB for every B ∈ π;
6: end if
7: return T ;
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Algorithm 2 Procedure Compute_partition.
Procedure Compute_partition
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L′.
Output: A list of all parts in the partition π(S) of L′.

1: Fix an arbitrary left-to-right ordering of the children of the root of every Tj ∈ S and
denote the ith child (according to this ordering) of the root of Tj by cij ;

2: for every ` ∈ L′ do compute the vector (m1(`),m2(`), . . . ,mk(`)), where for j ∈
{1, 2, . . . , k}, mj(`) = i if and only if ` is a descendant of cij in Tj ;

3: Put the vectors (m1(`),m2(`), . . . ,mk(`)) for all ` ∈ L′ in a list W and sort W;
4: Do a single scan of W to identify the parts in π(S) and return them;

in L belong to the same part in π(S) if and only if their vectors are identical. By sorting the
list W of all vectors and scanning W to find vectors that are identical, the parts in π(S) are
obtained.

Old_Adams_consensus first computes π(S). It then recursively constructs the Adams
consensus tree of {T1|B, T2|B, . . . , Tk|B} for each B in π(S) and attaches all of them to a
newly created common root node. By Theorem 3 in [2], this yields the Adams consensus
tree of S. According to [20], the time complexity of Old_Adams_consensus is O(kn2).

2 Preliminaries

This section reanalyzes the time complexity of Old_Adams_consensus. For any B ⊆ L,
say that B is a relevant block if at any point of the algorithm’s execution, Step 4 makes
a recursive call with {T1|B, T2|B, . . . , Tk|B} as the argument. Define B = {B : B is a
relevant block}. For every ` ∈ L, define B(`) = {B ∈ B : ` ∈ B}.

I Lemma 1. For every ` ∈ L, it holds that |B(`)| ≤ minkj=1 depth
Tj (`).

Proof. Step 3 of Old_Adams_consensus initially generates a partition π1 of L, and there
exists exactly one relevant block B1 in π1 such that ` ∈ B1. Then, during the recursive
call Old_Adams_consensus ({T1|B1, T2|B1, . . . , Tk|B1}), a partition π2 of B1 is generated
in the same way, and there exists exactly one relevant block B2 in π2 such that ` ∈ B2. This
process is repeated until a relevant block of the form Bm = {`} is reached and the recursion
stops. At any recursion level i, when Old_Adams_consensus({T1|Bi, T2|Bi, . . . , Tk|Bi})
makes a call to Old_Adams_consensus ({T1|Bi+1, T2|Bi+1, . . . , Tk|Bi+1}), it always holds
that depthTj |Bi+1(`) ≤ depthTj |Bi(`)− 1 for all trees Tj ∈ S. Hence, the number of recursive
calls that involve ` is upper-bounded by minkj=1 depth

Tj (`). J

I Theorem 2. Old_Adams_consensus runs in O(k ·
∑
`∈L minkj=1 depth

Tj (`)) time.

Proof. We first explain how to implement the procedure Compute_partition to run in
O(k|L′|) time, where L′ is the leaf label set of its input S. In Step 2, use the level ancestor
data structure from [4] as follows: Spend O(|L′|) time to preprocess each Tj ∈ S so that the
ancestor of any ` ∈ L′ at depth 1 in Tj can be retrieved in O(1) time. This preprocessing takes
O(k|L′|) time, and finding the vectors (m1(`),m2(`), . . . ,mk(`)) for all ` ∈ L′ subsequently
takes a total of O(k|L′|) time. In Step 3, sort the list W in O(k|L′|) time by radix sort.

Next, we consider Old_Adams_consensus. Before running the algorithm, use the method
in Section 8 of [9] to preprocess each Tj ∈ S in O(n) time so that Tj |B for any B ⊆ L

can be constructed in O(|B|) time. This takes O(kn) time in total. It follows from the
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definition of Tj |B in Section 1.1 that for any A ( B, (Tj |B)|A = Tj |A holds, so the
same preprocessing works for all recursion levels and does not need to be repeated during
recursive calls. Excluding the time required by its recursive calls, the running time of
Old_Adams_consensus({T1|B, T2|B, . . . , Tk|B}) then becomes O(k|B|) for each B ∈ B.
In total, the running time of Old_Adams_consensus(S) is O(kn +

∑
B∈B k|B|) = O(k ·∑

B∈B |B|) = O(k ·
∑
`∈L |B(`)|). By Lemma 1,

∑
`∈L |B(`)| ≤

∑
`∈L minkj=1 depth

Tj (`).
The theorem follows. J

Since |L| = n and depthTj (`) < n for all ` ∈ L and Tj ∈ S, Theorem 2 implies that the
worst-case running time of Old_Adams_consensus is O(kn2), as already mentioned in [20].
However, if the average leaf depth is small then the running time will be better. According
to Theorem 2, we obtain:

I Corollary 3. If S is a set of trees with expected average leaf depth α then the expected
running time of Old_Adams_consensus is O(knα).

For example, the expected average leaf depth in a random binary phylogenetic tree
with n leaves generated in the Yule-Harding model [5, 14, 20], the uniform model [5, 20],
and the activity model [14] (with the activity parameter p set to 1

2 ) is O(logn) [5, 14],
O(n1/2) [5], and O(n1/2) [14], respectively. In these cases, the expected running time of
Old_Adams_consensus will be O(kn logn), O(kn1.5), and O(kn1.5).

3 New algorithm for k input trees

This section gives a more efficient solution for computing the Adams consensus tree of k input
trees. The algorithm is called New_Adams_consensus_k and its worst-case running time is
O(kn logn).

The main idea is to use the centroid path decomposition technique [9] in a new manner
to avoid making recursive calls to “large” subproblems, and treat them iteratively instead.
Essentially, by utilizing Lemma 4 below, the algorithm implicitly computes π(S) in such a
way that the Adams consensus tree can be constructed recursively for all parts in π(S), except
for one. To handle the remaining part, its corresponding Adams consensus tree is constructed
iteratively by going down the centroid paths in all the trees in unison and applying Lemma 4
at each level. (As a side note, this kind of “synchronized centroid path traversal” appears to
be a novel way of applying the centroid path decomposition technique.) Finally, the Adams
consensus tree of S is assembled by attaching the root of each tree constructed for the parts
in π(S) to a new root node.

The details of the algorithm are described below, and the pseudocode is listed in Al-
gorithm 3.

Some additional definitions are needed. Recall from [9] that a centroid path in a tree T is
a path in T of the form P = 〈pα, pα−1, . . . , p1〉, where the node pw−1 for every w ∈ {2, . . . , α}
is any child of pw with the maximum number of leaf descendants, and p1 is a leaf. Let P be
a centroid path in a tree T . For any u ∈ V (T ) such that u does not belong to P but the
parent of u does, the subtree Tu is called a side tree of P . For any side tree τ of a centroid
path starting at the root of a tree T , the property |Λ(τ)| ≤ |Λ(T )|/2 holds.

A delete operation on any non-root, internal node u in a tree is the operation of letting
all of u’s children become children of the parent of u, and then removing u and the edge
between u and its parent. A fan tree is a tree in which either all the leaves are children of
the root, or there is just a single leaf.

STACS 2015
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Algorithm 3 Algorithm New_Adams_consensus_k.
Algorithm New_Adams_consensus_k
Input: A set S = {T1, T2, . . . , Tk} of trees with Λ(T1) = Λ(T2) = . . . = Λ(Tk) = L.
Output: The Adams consensus tree of S.

1: if T1 has only one leaf then
2: T := T1;
3: else
4: for j := 1 to k do
5: Let Pj be a centroid path in Tj starting at the root, construct the tree T ′j based

on Pj , and preprocess Tj ;
6: end for
7: h := 0;
8: repeat
9: h := h+ 1;

10: Xh :=
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached to the

root of T ′j
}
;

11: πXh := Compute_restricted_partition({T ′1, T ′2, . . . , T ′k};Xh);
12: for j := 1 to k do T ′j := T ′j |(Λ(T ′j) \Xh);
13: until Λ(T ′1) = ∅;
14: for j := 1 to k do
15: for w := 1 to h do construct Ti|B for all B ∈ πXw ;
16: end for
17: for w := h downto 1 do
18: for B ∈ πXw do TB := New_Adams_consensus_k({T1|B, T2|B, . . . , Tk|B});
19: Create a tree Qw whose root is the parent of the root of every TB , B ∈ πXw ;
20: if w < h then attach the root of Qw+1 as a child of the root of Qw;
21: end for
22: T := Q1;
23: end if
24: return T ;

For each j ∈ {1, 2, . . . , k}, let Pj be a centroid path in Tj that starts at the root of Tj .
Let T ′j be the tree obtained by taking a copy of Tj and doing a delete operation on every
non-root, internal node whose parent does not belong to Pj ; note that by performing all
delete operations in top-down order, T ′j can be constructed in O(n) time. Thus, T ′j consists
of the centroid path Pj with a collection of fan trees attached to it, and each such fan tree’s
leaf label set is equal to the leaf label set of one of the side trees of Pj . The T ′j-tree is a
useful summary of Tj that enables us to quickly retrieve the leaf label set of any side tree
in Tj or to check which side tree in Tj that a specified leaf belongs to in O(1) time.

As in Old_Adams_consensus above, New_Adams_consensus_k needs to compute the
partition π(S) of L to determine the branching structure at the top level of the Adams
consensus tree. However, for efficiency reasons, it does not compute π(S) directly. Instead,
it computes a restricted partition, defined as follows: For any X ⊆ L, let π(S;X) =
{B ∩ X : B ∈ π(S) and |B ∩ X| ≥ 1}. In other words, π(S;X) is the partition π(S)
restricted to elements in X. Note that π(S;X) may not be a true partition of X as
it can be a singleton. To continue the example from Figure 1 in Section 1.2 where we
had π(S) =

{
{a}, {b, c, d}, {e}, {f}

}
, if X = {a, b, c} then π(S;X) =

{
{a}, {b, c}

}
and if

X = {b, c} then π(S;X) =
{
{b, c}

}
.
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I Lemma 4. Let X =
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a fan tree attached

to the root of T ′j
}
. If X 6= L then π({T1, T2, . . . , Tk}) = π({T ′1, T ′2, . . . , T ′k};X) ∪ {L \X},

and if X = L then π({T1, T2, . . . , Tk}) = π({T ′1, T ′2, . . . , T ′k};X).

Proof. X is also equal to
{
x ∈ L : for some j ∈ {1, 2, . . . , k}, x belongs to a side tree of Pj

attached to the root of Tj
}
. Consider any B ∈ π({T1, T2, . . . , Tk}). If B contains at least one

element from X then B ⊆ X, and consequently B ∩X = B and B ∈ π({T1, T2, . . . , Tk};X).
On the other hand, if B contains no elements from X then B must be equal to L \
X. Therefore, π({T1, T2, . . . , Tk}) ⊆ π({T1, T2, . . . , Tk};X) ∪ {L \ X} when X 6= L, and
π({T1, T2, . . . , Tk}) ⊆ π({T1, T2, . . . , Tk};X) when X = L.

Next, consider any B ∈ π({T1, T2, . . . , Tk};X). By definition, B ∈ π({T1, T2, . . . , Tk}).
Also, if X 6= L then L \ X is nonempty and consists of all leaves that are descend-
ants of the child of the root of Tj that lies on Pj for every j ∈ {1, 2, . . . , k}; since
all these leaves belong to the same part in π(Tj) for each j ∈ {1, 2, . . . , k}, we have
L \X ∈ π({T1, T2, . . . , Tk}). Thus, π({T1, T2, . . . , Tk};X) ∪ {L \X} ⊆ π({T1, T2, . . . , Tk})
when X 6= L, and π({T1, T2, . . . , Tk};X) ⊆ π({T1, T2, . . . , Tk}) when X = L.

Finally, π({T ′1, T ′2, . . . , T ′k};X) = π({T1, T2, . . . , Tk};X) by the construction of the T ′j-
trees. The lemma follows. J

We now describe New_Adams_consensus_k.
First, for each j ∈ {1, 2, . . . , k}, Steps 4–6 build Pj and T ′j and preprocess Tj in O(n)

time as in Section 8 of [9] so that for any specified partition π of L, the set of all trees of
the form Tj |Bi with Bi ∈ π can be constructed in O(n) total time later on. The algorithm
then enters a repeat-loop (Steps 8–13) that computes and stores the restricted partition
π({T ′1, T ′2, . . . , T ′k};X1), where X1 is the subset X of Λ(T ′1) (= Λ(T ′2) = . . . = Λ(T ′k)) defined
in Lemma 4. By Lemma 4, the parts in π({T ′1, T ′2, . . . , T ′k};X1) along with Λ(T ′1) \X1 yield
the partition at the top level of the Adams consensus tree. After that, the leaves belonging
to X1 are removed from all the T ′j-trees. The process is repeated until the T ′j-trees are empty,
and each subsequent iteration of the repeat-loop mimics the computations at one recursion
level in Old_Adams_consensus that determine how to further partition the leaves in the
set Λ(T ′1)\X1. Next, the algorithm constructs Tj |B for every part B previously computed by
the repeat-loop for all j ∈ {1, 2, . . . , k} (Steps 14–16). Then, the Adams consensus tree Qw
at each level w is built by recursively computing the Adams consensus tree TB for every
part B in π({T ′1, T ′2, . . . , T ′k};Xw) at this level (Step 18), combining the obtained solutions
(Step 19), and attaching the Adams consensus tree Qw+1 for the part corresponding to L\Xw

in Lemma 4 (Step 20). Lastly, the tree Q1 obtained at the topmost level is returned (Step 24).
The correctness follows from Lemma 4 and the correctness of Old_Adams_consensus.

The time complexity is given by the next theorem:

I Theorem 5. New_Adams_consensus_k runs in O(kn logn) time.

Proof. Denote the time complexity of New_Adams_consensus_k({T1|L′, T2|L′, . . . , Tk|L′})
for any L′ ⊆ L by t(L′).

We derive a recurrence for t(L′) in the following way. Steps 4–6 build Pj and T ′j and pre-
process Tj in O(|L′|) time for each j ∈ {1, 2, . . . , k}, i.e., in O(k|L′|) time in total. Iteration h
of the repeat-loop computes a set Xh in Step 10, which takes O(k|Xh|) time by using the
T ′j-trees, and the restricted partition πXh = π({T ′1, T ′2, . . . , T ′k};Xh) of Xh in Step 11, which
also takes O(k|Xh|) time by using the technique from Procedure Compute_partition in
Algorithm 2 and the first part of the proof of Theorem 2. To implement Step 12 in O(k|Xh|)
time, update each T ′j-tree directly by removing all leaves that belong to Xh as well as any pre-
viously internal node that turns into a leaf as a result and contracting any outgoing edge from
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a node of degree 1. Constructing all the trees Tj |B in Steps 14–16 takes a total of O(k|L′|)
time with the technique from Section 8 of [9]. Finally, for each w ∈ {1, 2, . . . , h}, the recursive
calls in Step 18 take

∑
B∈πXw

t(B) time and building Qw in Steps 19 and 20 takes O(|Xw|)
time. In total, the time complexity is t(L′) = O(k|L′|) +

∑h
w=1

(
O(k|Xw|) +

∑
B∈πXw

t(B)
)
.

To solve the recurrence, we use the fact that
⋃h
w=1 πXw is a partition of L′. Write

πL′ =
⋃h
w=1 πXw . Then t(L′) = O(k|L′|) +

∑
B∈πL′ t(B). Since every part B ∈ πL′ is of

size at most |L′|/2 according to the definition of a side tree of a centroid path, the problem
size is reduced by (at least) half for each successive recursive call. Thus, there are O(log |L′|)
recursion levels. The total size of all subproblems in each recursive level is O(|L′|), so each
recursion level takes O(k|L′|) time. This gives t(L′) = O(k|L′| log |L′|). J

4 New algorithm for two input trees

Here, we present an even faster algorithm for the case k = 2. The algorithm is named
New_Adams_consensus_2 and has a worst-case running time of O(n · logn

log logn ).

4.1 Outline of the algorithm

Consider any recursive call of the form Old_Adams_consensus({T1|B, T2|B}) for some B ⊆ L
in the algorithm in Section 1.2. To obtain the partition of the leaves in B, the algorithm will
spend Ω(|B|) time using the procedure Compute_partition. A faster method for doing the
partitioning is needed to improve the overall running time. First, we observe that by the
definition of the algorithm, B always satisfies B = Λ(Tu1 ) ∩ Λ(T v2 ) for some pair of nodes
u ∈ V (T1), v ∈ V (T2). This means that successive recursive calls to the algorithm can
be specified by pairs of vertices from T1 and T2. Secondly, we observe that the algorithm
needs to proceed recursively from (u, v) only to those (u′, v′), where u′ ∈ ChildT1(u) and
v′ ∈ ChildT2(v), for which |Λ(Tu′

1 ) ∩ Λ(T v′

2 )| > 0. Based on these observations, define
Zu,v = {(u′, v′) : u′ ∈ ChildT1(u), v′ ∈ ChildT2(v), |Λ(Tu′

1 ) ∩ Λ(T v′

2 )| > 0}. We have:

I Lemma 6. Suppose u ∈ V (T1) and v ∈ V (T2) are given. Let B = Λ(Tu1 ) ∩ Λ(T v2 ),
γ = lcaT1(B), and δ = lcaT2(B). If |B| > 1 then π({T1|B, T2|B}) = π({Tu1 |B, T v2 |B}) =
π({T γ1 |B, T δ2 |B}) = {Λ(Tu′

1 ) ∩ Λ(T v′

2 ) : (u′, v′) ∈ Zγ,δ}.

Proof. By definition, π({T γ1 |B, T δ2 |B}) is equal to {Λ(Tu′

1 )∩Λ(T v′

2 ) : u′ ∈ ChildT1(γ), v′ ∈
ChildT2(δ), Λ(Tu′

1 ) ∩ Λ(T v′

2 ) 6= ∅} = {Λ(Tu′

1 ) ∩ Λ(T v′

2 ) : (u′, v′) ∈ Zγ,δ}. J

Algorithm New_Adams_consensus_2 (summarized in Algorithm 4) uses this lemma to
compute the Adams consensus tree of {Tu1 |B, T v2 |B} for any two specified nodes u ∈ V (T1),
v ∈ V (T2), where B = Λ(Tu1 ) ∩ Λ(T v2 ). (Selecting u and v to be the roots of T1 and T2 thus
yields the Adams consensus tree of T1 and T2.)

The algorithm works as follows. If |B| = 1 then the answer is just the common leaf in
Λ(Tu1 ) ∩ Λ(T v2 ). Otherwise, the algorithm computes γ = lcaT1(B) and δ = lcaT2(B), calls a
procedure Compute_Z (to be described in Section 4.3) to construct Zγ,δ, and then, for every
(u′, v′) ∈ Zγ,δ, computes its corresponding Adams consensus tree Tu′,v′ recursively. The
Adams consensus tree of {Tu1 |B, T v2 |B} is obtained by attaching the computed Tu′,v′-trees
to a newly created common root node. Lemma 6 implies that this gives the same output as
Old_Adams_consensus, so the correctness is guaranteed by the correctness of the latter.
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Algorithm 4 Algorithm New_Adams_consensus_2.
Algorithm New_Adams_consensus_2
Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with Λ(T1) = Λ(T2).
Output: The Adams consensus tree of {Tu1 |B, T v2 |B}, where B = Λ(Tu1 ) ∩ Λ(T v2 ).

1: Compute c := |Λ(Tu1 ) ∩ Λ(T v2 )|;
2: if c = 1 then
3: Let T be a tree consisting of the only common leaf in Λ(Tu1 ) ∩ Λ(T v2 );
4: else
5: Find the leftmost leaf a and the rightmost leaf a′ in T1|(Λ(Tu1 ) ∩ Λ(T v2 )), and the

leftmost leaf b and the rightmost leaf b′ in T2|(Λ(Tu1 ) ∩ Λ(T v2 ));
6: γ := lcaT1(a, a′); δ = lcaT2(b, b′);
7: Z := Compute_Z(γ, δ);
8: Let T be a tree consisting of a single root node r;
9: for every (u′, v′) ∈ Z do

10: Tu′,v′ := New_Adams_consensus_2(u′, v′);
11: Attach Tu′,v′ as a child of r;
12: end for
13: end if
14: return T ;

4.2 Auxiliary data structure for orthogonal range counting on a grid
The time complexity of New_Adams_consensus_2 is analyzed in Section 4.3 below. It relies
on an efficient data structure for orthogonal range counting on a grid, developed in this
subsection and summarized in Lemma 8. This data structure is an extension of the wavelet
tree-based data structure used by Bose et al. [6] for supporting orthogonal range counting
queries on a grid. Our extension consists of also supporting truncated range maximum (or
minimum) queries efficiently, where the objective is to report the point with the maximum
(or minimum) x-coordinate inside any query rectangle [1..`]× [s..s′], if any. Furthermore, we
bound the time needed to construct the data structure since this is crucial in our application.

Firstly, for smaller grids, we have:

I Lemma 7. Let N = {(1, N [1]), . . . , (n,N [n])} be a set of points on an n× t grid, where
t = O(logε n) for any constant ε with 0 < ε < 1/2, such that every column contains exactly
one point. We can build a data structure in O(n) time after which: (i) counting the number
of points inside any query rectangle [1..`]× [s..s′] takes O(1) time; and (ii) reporting the point
with the maximum (or minimum) x-coordinate inside any query rectangle [1..`]× [s..s′] takes
O(1) time.

Proof. Omitted from the conference version of the paper due to space constraints. J

For larger grids, we apply Lemma 7 to obtain:

I Lemma 8. Let N = {(1, N [1]), . . . , (n,N [n])} be a set of points on an n×n grid such that
every column contains exactly one point and every row contains exactly one point. We can
build a data structure D(N) in O(n · logn

log logn ) time after which: (i) counting the number of
points inside any query rectangle [x..x′]× [y..y′] takes O( logn

log logn ) time; and (ii) reporting the
point with the maximum (or minimum) x-coordinate inside any query rectangle [x..x′]× [y..y′]
takes O( logn

log logn ) time.
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Proof. The basic data structure is the same as in the proof of Lemma 6 in [6], namely a
t-ary wavelet tree. Here, we select t = logε n for any 0 < ε < 0.5.

On the top level, we project the n points into the 2d-space [1..n]× [1..t] by converting
each point (i,N [i]) to (i,N1[i]), where N1[i] = bN [i]/(n/t)c. We use Lemma 7 to maintain a
range query data structure for {(i,N1[i]) : i = 1, . . . , n}, and also build a rank data structure
that lets us compute rankj(i) in N1[1..n] (here, rankj(i) is the number of occurrences of
j in N1[1..i]). This data structure can be built in O(n) time. To be precise, we store
rankj(i) for every i which is a multiple of log2 n, requiring O(nt logn

log2 n
) = O(n) bits space. We

also store rankj(i)− rankj(log2 nb i
logn c) for every i which is a multiple of logn

log logn , requiring
O(tn log logn

logn log lognt) = O(n) bits. We precompute a table occtable(x1, . . . , x`, j) that stores
the number of occurrences of j in x1, . . . , x`, where 1 ≤ xi ≤ t, 1 ≤ j ≤ t, ` ≤ logn

log logn . This
table has o(n) entries and can be computed in o(n) time. By taking x = b i

log2 n
c log2 n and

y = b i log logn
logn c logn

log logn , we have rankj(i) = rankj(x)+(rankj(y)−rankj(x))+ occtable(N [i−
y + 1], . . . , N [i], j), which can be computed in constant time.

On the second level, based onN1[], we partition the n points into t point setsN2,1, . . . , N2,t.
The set N2,j contains all the points where N1[i] = j. Let n2,j = |N2,j |. Every point (i,N [i])
in N2,j is projected into the 2d-space [1..n2,j ] × [1..t]. Suppose the rank of i is r among
all the x-coordinates of the points in N2,j . Then, (i,N [i]) is converted to (r,N2,j [r]) where
N2,j [r] = b(N [i]− (n/t)j)/(n/t2)c. We use Lemma 7 again to maintain a range query data
structure for these n2,j points. We also build a rank data structure for N2,j [1..n2,j ] in O(n2,j)
time. We continue the process recursively and build the above data structures on each level.
Since there are logt n levels, the entire data structure can be constructed in O(n logt n) time.

Next, given any query rectangle [`1..`2] × [s1..s2], we proceed in a similar manner as
in [6]. Let z1 = ds1/(n/t)e and z2 = bs2/(n/t)c. The query is partitioned into: (1) [`1..`2]×
[s1..(n/t)z1]; (2) [`1..`2]× [(n/t)z1 + 1..(n/t)z2]; and (3) [`1..`2]× [(n/t)z2 + 1..s2].

Query (2) is equivalent to the query [`1..`2]× [z1 + 1..z2] among the points in {(i,N1[i]) :
i = 1, . . . , n}, and can be solved in O(1) time according to Lemma 7. Let x1 = rankz1−1(`1)
and x2 = rankz1−1(`2), and denote y1 = s1 − (n/t)(z1 − 1) and y2 = s2 − (n/t)(z2 − 1).
Query (1) is equivalent to the query [x1..x2] × [y1..y2] among the points in N2,z1−1. We
handle this query recursively. Query (3) is handled in the same way. As there are logt n levels
and each level takes O(1) time, the query is answered in O(logt n) = O( logn

log logn ) time. J

4.3 Time complexity
This subsection explains how to implement New_Adams_consensus_2. Do the following
preprocessing:

Fix an arbitrary left-to-right ordering of the children at every node in T1. For i ∈
{1, 2, . . . , n}, let L1(i) be the ith leaf in T1 in the resulting left-to-right ordering. (Thus,
(L1(1), L1(2), . . . , L1(n)) is a permutation of L.) Define L2(i) for i ∈ {1, 2, . . . , n} analog-
ously using T2. Let N =

{
(L−1

1 (`), L−1
2 (`)) : ` ∈ L

}
and build the data structure D(N)

from Lemma 8.
For j ∈ {1, 2}, preprocess Tj in O(n) time so that any lcaTj (B)-query can be answered
in O(|B|) time [3, 13].
As in the proof of Theorem 2 in Section 2 above, preprocess Tj for j ∈ {1, 2} with the
level ancestor data structure of [4] in O(n) time so that the ancestor of any ` ∈ L at
depth 1 in Tj can be returned in O(1) time. Also preprocess Tj for j ∈ {1, 2} in O(n)
time as in Section 8 of [9] so that Tj |B for any B ⊆ L can be constructed in O(|B|) time.
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The preprocessing takes O(n · logn
log logn ) time in total.

Next, for any pair of siblings u, u′ ∈ V (Tj), j ∈ {1, 2}, let Tu..u
′

j denote the set of all
rooted subtrees of the form T xj , where x belongs to the interval of siblings [u, . . . , u′] in Tj ,
and define Λ(Tu..u′

j ) =
⋃
x∈[u,...,u′] Λ(T xj ).

I Lemma 9. Given the data structure D(N) in Lemma 8, for any siblings u and u′ in T1
and any siblings v and v′ in T2, the value of |Λ(Tu..u′

1 )∩Λ(T v..v′

2 )| can be found in O( logn
log logn )

time. Furthermore, the leftmost and rightmost leaves in T1 (or T2) among all leaves in
Λ(Tu..u′

1 ) ∩ Λ(T v..v′

2 ) can be reported in O( logn
log logn ) time.

Proof. Let lu be the leftmost leaf in Tu1 and ru′ the rightmost leaf in Tu
′

1 . Then each
` ∈ Λ(Tu..u′

1 ) satisfies L−1
1 (lu) ≤ L−1

1 (`) ≤ L−1
1 (ru′). Similarly, each ` ∈ Λ(T v..v′

2 ) satisfies
L−1

2 (lv) ≤ L−1
2 (`) ≤ L−1

2 (rv′), where lv is the leftmost leaf in T v2 and rv′ the rightmost
leaf in T v

′

2 . Hence, any ` ∈ L belongs to Λ(Tu..u′

1 ) ∩ Λ(T v..v′

2 ) if and only if the point
(L−1

1 (`), L−1
2 (`)) lies in the rectangle defined by [L−1

1 (lu)..L−1
1 (ru′)]× [L−1

2 (lv)..L−1
2 (rv′)] on

the grid represented by D(N). By Lemma 8, the lemma follows. J

Lemma 9 allows the Zu,v-sets to be computed quickly by the procedure Compute_Z shown
in Algorithm 5. More precisely:

I Lemma 10. Given the data structure D(N) in Lemma 8, the procedure Compute_Z can
compute the set Zu,v for any u ∈ V (T1) and v ∈ V (T2) in O(|Zu,v| · logn

log logn ) time.

Proof. Let u1, . . . , uα be the ordered list of children of u and v1, . . . , vβ the ordered list
of children of v. The procedure identifies the pairs (up, vq) ∈ Zu,v in increasing order
of up and then in increasing order of vq. In the outer loop, each child up of u satisfying
Λ(Tup1 ) ∩ Λ(T v2 ) 6= ∅ is identified from left to right by using Lemma 9 in Step 4 and the level

Algorithm 5 Procedure Compute_Z.
Procedure Compute_Z
Input: u ∈ V (T1), v ∈ V (T2), where T1, T2 are two given trees with Λ(T1) = Λ(T2).
Output: Zu,v = {(u′, v′) : u′ ∈ ChildT1(u), v′ ∈ ChildT2(v), |Λ(Tu′

1 ) ∩ Λ(T v′

2 )| > 0}.
1: Let u1..uα and v1..vβ be the ordered lists of children of u and v, respectively;
2: Z := ∅; i := 1;
3: while i ≤ α do
4: Find the leftmost leaf a in T1 such that a ∈ Λ(Tui..uα1 ) ∩ Λ(T v2 );
5: If no such a exists, break;
6: Identify the up ∈ ChildT1(u) such that a ∈ Λ(Tup1 );
7: j := 1;
8: while j ≤ β do
9: Find the leftmost leaf b in T2 such that b ∈ Λ(Tup1 ) ∩ Λ(T vj ..vβ2 );

10: If no such b exists, break;
11: Identify the vq ∈ ChildT2(v) such that b ∈ Λ(T vq2 );
12: Let Z := Z ∪ {(up, vq)} and j := q + 1;
13: end while
14: Let i := p+ 1;
15: end while
16: return Z;
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ancestor data structure in Step 6. Each up is thus identified in O( logn
log logn ) time. Then, for

each such up, the inner loop similarly finds every child vq of v with Λ(Tup1 )∩Λ(T vq2 ) 6= ∅ from
left to right, using O( logn

log logn ) time per vq. In total, the procedure spends O(|Zu,v| · logn
log logn )

time to compute Zu,v. J

Finally, we are ready to analyze the running time of New_Adams_consensus_2. For any
u′ ∈ V (T1), v′ ∈ V (T2), denote Su′,v′ = Λ(Tu′

1 ) ∩ Λ(T v′

2 ).

I Theorem 11. Given the data structure D(N) in Lemma 8, New_Adams_consensus_2(u, v)
for any u ∈ V (T1) and v ∈ V (T2) runs in O(|Su,v| · logn

log logn ) time.

Proof. Let T (u, v) be the running time of New_Adams_consensus_2(u, v), including the time
required to compute γ, δ, and Zγ,δ and the recursive calls New_Adams_consensus_2(u′, v′)
for all (u′, v′) ∈ Zγ,δ. By using Lemma 9, Steps 1 and 5 can be carried out in O( logn

log logn ) time.
Step 6 takes O(1) time because of the preprocessing and Step 7 takes O(|Zγ,δ| · logn

log logn ) time
according to Lemma 10. We therefore have T (u, v) =

∑
(u′,v′)∈Zγ,δ T (u′, v′) + O(|Zγ,δ| ·

logn
log logn ). Observe that in the base case, i.e., where |Su,v| = 1, it holds that T (u, v) =
O( logn

log logn ).
We apply the recursion-tree method to solve the recurrence for T (u, v). The root of the

recursion tree for T (u, v) represents the top level of recursion, and its cost is O(|Zγ,δ| · logn
log logn ).

There are |Zγ,δ| subtrees attached to the root, each of which corresponds to a recursion
tree for one T (u′, v′) where (u′, v′) ∈ Zγ,δ. The leaves of the recursion tree represent the
base cases of the recursion, i.e., those T (x, y) satisfying |Sx,y| = 1, and they each have cost
O( logn

log logn ). It follows that the recursion tree for T (u, v) has exactly |Su,v| leaves and no
nodes with degree 1. Now, the value of T (u, v) is equal to the sum of the costs taken over all
nodes in the recursion tree. Clearly, the total contribution of the leaves is O(|Su,v| · logn

log logn ).
We rewrite the cost of each internal node in the recursion tree as O(d · logn

log logn ), where d is
the degree of that node. Since the sum of the degrees of all internal nodes in a tree without
any nodes of degree 1 is less than twice the number of leaves, the contribution of the internal
nodes is also O(|Su,v| · logn

log logn ). The total running time is T (u, v) = O(|Su,v| · logn
log logn ). J

Recall that D(N) is constructed during the preprocessing phase using O(n · logn
log logn )

time. Theorem 11 implies that New_Adams_consensus_2(r1, r2), where ri is the root of Ti
for i ∈ {1, 2}, computes the Adams consensus tree of {T1, T2} in O(n · logn

log logn ) time.

Acknowledgments: The authors would like to thank the anonymous reviewers for their
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