
Visibly Counter Languages
and Constant Depth Circuits
Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

WSI – University of Tübingen
Sand 13, 72076 Tübingen, Germany
{krebs,lange,ludwigm}@informatik.uni-tuebingen.de

Abstract
We examine visibly counter languages, which are languages recognized by visibly counter au-
tomata (a.k.a. input driven counter automata). We are able to effectively characterize the
visibly counter languages in AC0 and show that they are contained in FO[+].

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases visibly counter automata, constant depth circuits, AC0, FO[+]

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.594

1 Introduction

One important topic of complexity theory is the characterization of regular languages
contained in constant depth complexity classes [7, 3, 5, 4]. In [4] Barrington et al. showed
that the regular sets in AC0 are exactly the languages definable by first order logic using
regular predicates.

We extend this approach to certain non-regular languages. The visibly pushdown languages
(VPL) are a sub-class of the context-free languages containing the regular sets which exhibits
many of the decidability and closure properties of the regular languages. Their essential
feature is that the use of the pushdown store is purely input-driven: The input alphabet is
partitioned into call, return and internal letters. On a call letter, the pushdown automaton
(PDA) must push a symbol onto its stack, on a return letter it must pop a symbol, and on an
internal letter it cannot access the stack at all. This is a severe restriction, however it allows
visibly pushdown automata (VPA) to accept non-regular languages, the simplest example
being anbn. At the same time, VPA are less powerful than general PDA: They even cannot
check if a string has an equal number of a’s and b’s. In fact, due to the visible nature of the
stack, membership testing for VPA might be easier than for general PDA. It is known to be
in NC1 [8] and hence it is NC1-complete. On the other hand the membership problem for
the context-free languages is complete for SAC1 [20].

Visibly counter automata (VCA) [2] were introduced by Bárány, Löding, and Serre as
a restricted model of visibly pushdown automata as they were of use to decide a certain
sub-class membership problem of VPL. They still contain all regular sets.

In this paper, we show that all visible one-counter languages in AC0 are definable by
first order logic using addition as an numerical predicate. Our techniques allow us to decide
whether a visible one-counter language is in fact a member of AC0.

Examples of visible counter languages are:
The set {anbn | n ≥ 0}∗, the Kleene-closure of {anbn | n ≥ 0}, is in AC0.
The one-sided Dyck language of a single pair of parentheses. This language is not in AC0.

© Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 594–607

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.594
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Krebs, K.-J. Lange, and M. Ludwig 595

The set {{a, aba}nbn | n ≥ 0} is as hard as the set Equality of all strings in {0, 1}∗ in
which the numbers of ones coincides with those of zeros and is thus not in AC0.

Another interest stems from descriptive complexity [13]. Here we use the model of
predicate logic for language recognition where variables are associated with word positions.
An interesting question is whether one can extend the conjecture of Straubing to a family of
non-regular languages. It states that for any set of quantifiers Q the intersection with regular
languages relates to the use of regular predicates: Q[arb] ∩ REG = Q[Reg]. This question
was examined in detail in [15]. Here we show FO[arb] ∩ VCL ⊆ FO[+], which shows that
only the addition predicate is needed.

The rough idea of our proof is to exhibit two decidable properties of a visible counter
automaton A which together characterize the property of the accepted language L(A):

The first property concerns the ”height behavior“ of words. E.g. the Dyck set contains all
possible height progressions and is not in AC0. However the language L = {anbn | n ≥ 0}
has a very simple height behavior. The language L∗ is more complicated in this respect
but is still in AC0. We introduce the notion of simple height behavior of a language to
capture this. If L(A) has simple height behavior, then a matching predicate is definable
in FO[+]. If not, then L(A) is not in AC0.
The second property is a modification of quasi-aperiodicity (see [4, 19]) of regular languages
fit for our needs. If L(A) does not have the property we can reduce a language outside
AC0 to it. Otherwise we get a certain FO[Reg] formula.

If L(A) has the two properties then by using the matching predicate and the FO[Reg]
formula, we can build an FO[+] formula for L(A).

Due to the space constraints we omit some of the proofs. We thank the anonymous
referees for their helpful comments.

2 Preliminaries

By Z we denote the integers, by N the non-negative integers and by Q the rational numbers.
An alphabet is a finite set Σ and ε is the empty word. A language is a subset of Σ∗. For a
word w, |w| is the length of the word and |w|M for M ⊆ Σ is the number of letters in w
which belong to M . If not locally defined otherwise, wi is the letter in position i in w. For a
language L ⊆ Σ∗, the set F (L) ⊆ Σ∗ is the set of all factors of words in L. For every language
L ⊆ Σ∗ we define a congruence relation, the syntactic congruence of L: For x, y ∈ Σ∗ it is
x ∼L y iff for all u, v ∈ Σ∗ we have uxv ∈ L⇔ uyv ∈ L. The syntactic monoid is syn(L), the
set of equivalence classes under ∼L with the induced multiplication. The syntactic morphism
of L is ηL : Σ∗ → syn(L).

We use circuits as a model of computation. Important complexity classes include:
AC0 - polynomial-size circuits of constant depth with Boolean gates of arbitrary fan-in.
ACC0

k - AC0 circuits plus modulo-k-gates. ACC0 is the union of ACC0
k for all k.

TC0 - polynomial-size circuits of constant depth with threshold gates of arbitrary fan-in.
NC1 - polynomial-size circuits of logarithmic depth with bounded fan-in.

Circuits have a certain input length. However it is desirable to be able to treat arbitrary
long inputs. This is achieved with families of circuits which contain one circuit for each input
length. If for some n ∈ N the circuit with input length n is computable in some complexity
bound, we speak of uniformity. One prominent example is so called DLOGTIME-uniformity.
Consult e.g. [21] for further references on circuit complexity.

We also use the model of first-order predicate logic over finite words. Variables range
over word positions and so the numerical predicates are sets of word positions. E.g. < is a

STACS 2015

596 Visibly Counter Languages and Constant Depth Circuits

predicate of arity two with obvious semantic. We allow for existential and all quantification:
∃,∀. We write FO[<] for the set of languages we get of first-order formulas with < predicate.
The + predicate has arity three: (i, j, k) ∈ + iff i+ j = k.

The class (of non-uniform) AC0 coincides with first order logic with arbitrary numerical
predicates, which we denote by FO[arb] [12, 10]. For the interplay of circuits and logic
see [19]. A prominent theorem is the equivalence of star-free languages, FO[<] languages
and languages with aperiodic syntactic monoid [18, 16]. A monoid M is aperiodic if for all
m ∈M it holds that mi = mi+1 for some i or equivalently if no subset of M is a non-trivial
group. For us a related notion is also important: The intersection of AC0 and the regular
languages is captured exactly by the set of languages which have a quasi-aperiodic syntactic
morphism ηL. It is quasi-aperiodic if for all t > 0, ηL(Σt) does not contain a non-trivial
group. Languages with quasi-aperiodic syntactic morphisms are exactly the ones in FO[Reg],
that is first order logic using the regular predicates, which are the order predicate and the
modulo predicates [4].

We will use the following languages:
Equality = {w ∈ {0, 1}∗ : |w|0 = |w|1} which is TC0-hard.
Modk = {w ∈ {0, 1}∗ : |w|0 ≡ 0 (mod k)} which is ACC0

k-hard.

Neither Equality nor Parity = Mod2 is in AC0 [9, 11].
Mehlhorn [17] and independently also Alur and Madhusudan [1] introduced input-driven

or visibly pushdown automata. Here, the input symbol determines the stack operation, i.e. if
a symbol is pushed or popped. This leads to a partition of Σ into call, return and internal
letters: Σ = Σcall ∪ Σret ∪ Σint. Then Σ̂ = (Σcall,Σret,Σint) is a visibly alphabet. In the rest
of the paper we always assume that there is a visibly alphabet for Σ.

We define a function ∆ : Σ∗ → Z which gives us the height of a word by ∆(w) =
|w|Σcall − |w|Σret . Each word w over a visibly alphabet can be assigned its height profile w∆,
which is a map {0, . . . , |w|} → Z with w∆(i) = ∆(w1 · · ·wi). A word w is well-matched if w∆

maps into N and ∆(w) = 0. Two positions i, j of a word are matched if wi ∈ Σcall, wj ∈ Σret,
and wi+1 . . . wj−1 is well-matched. In a well-matched word, every position i has a matching
position j, unless wi is an internal letter. Thus, positions with letters in Σint are always
unmatched. We say what a word w has a non-negative height profile if ∆(w1 · · ·wi) ≥ 0 for
all i ∈ {0, . . . , |w|}.

Bárány, Löding, and Serre [2] introduced the notion of visibly counter automata (VCA).
Since every VPA can be determinized and this is also true for visibly counter automata, we
restrict ourselves to deterministic automata:

I Definition 1 (m−VCA). An m−VCA A over Σ̂ = (Σcall,Σret,Σint) is a tuple: A =
(Q, q0, F, Σ̂, δ0, . . . , δm), where m ≥ 0 is the threshold, Q is the set of states, q0 the initial
state, F the set of final states and δi : Q× Σ→ Q is the transition functions.

A configuration is an element of Q × N. Note that m−VCAs, similar to VPAs, can
only recognize words where the height profile is non-negative. All other words are rejected.
An m−VCA A performs the following transition when a letter σ ∈ Σ is read: (q, k) σ→
(δmin(m,k)(q, σ), k + ∆(σ)). Then w ∈ L(A) iff (q0, 0) w→ (f, h) for f ∈ F and h ≥ 0. Note
that we slightly modified the semantics compared to [2], as they required h = 0 for a word
to be accepted. Our version is more general since we can accept languages which contain
words w with ∆(w) > 0. Bárány et al. needed that their 0−VCA only accepts languages of
well-matched words. With our definition we would need an 2−VCA so simulate this.

We say that a word w loops through q if (q, h) w→ (q, h+ ∆(w)) and ∆(w1 · · ·wi) +h > m

for all positions i.

A. Krebs, K.-J. Lange, and M. Ludwig 597

I Definition 2 (VCL). The class of the visibly counter languages (VCL) contains the
languages recognized by an m−VCA for some m.

3 Properties of Visibly Counter Languages

We will present two properties which a VCL language L must fulfill to be in AC0. The first
property concerns the behavior of the height profiles of the words in L. Intuitively, we need
to be able to compute most of the height profile in AC0. The second property assumes that
the height profile is known and is about computing the states which the automaton will pass
on its run on the input. This is closely related to the property a regular language must have
to be in AC0.

In the following we will decompose the automaton so that we can handle the two properties
independently. After that we treat the two properties and show that L is not in AC0, if one
of the properties is violated. On the other hand we are able to build an FO[+] formula in
case L has these two properties.

3.1 Decomposition of the Automaton
We will split the computation of the automaton in two steps. The first part is the computation
of the height profile. The second one can be seen as the regular part of the language. Formally,
we will extend the alphabet to include the stack-height information up to a threshold. We
will consider a new language of words over the extended alphabet. This language will be
regular since the information for the decision which δi to use is already coded into the input.

Similar to a regular transducer we define a transduction that appends the height profile
to a given word. In the following we fix a visibly alphabet Σ̂ of Σ.

I Definition 3 (Height transduction). We let τm : Σ∗ → Σ∗m where Σm = Σ × {0, . . . ,m}.
With τm we assign to each position in the word its height up to the threshold m.

τm(w) = τm(w1w2 · · ·wn) =
(w1,∆m(ε))(w2,∆m(w1)) · · · (wi,∆m(w1 · · ·wi−1)) · · · (wn,∆m(w1 · · ·wn−1))

where ∆m(w) = min(∆(w),m). The transduction τm is only defined on words with a non-
negative height profile. We call a word in Σ∗m valid if it is in F (τm(Σ∗)). We also say that i
is the label of the letter (a, i) ∈ Σm.

I Example 4. If a is a push letter, and b a pop letter, then τ2(aaba) = (a, 0)(a, 1)(b, 2)(a, 1).

I Definition 5. For an m−VCA A = (Q, q0, F, Σ̂, δ0, . . . , δm) we define RA = L(M) where
M is a finite automaton M = (Q, q0, F,Σm, δ), with δ(q, (a, i)) = δi(q, a).

The following statement is obvious:

I Lemma 6. If A is an m−VCA, then w ∈ L(A) if and only if τm(w) ∈ RA.

3.2 Height Computation
In this section we investigate in which cases the transduction τm is expressible as an FO[+]
formula.

For this we need to be able to count the number of call letters minus the number of
return letters in the prefix, which is in general TC0-hard. Yet, if all the states that are
important to the height computation i.e. can occur in loops that have a “fixed slope”, then
the computation will be in AC0. We fix some m−VCA A.

STACS 2015

598 Visibly Counter Languages and Constant Depth Circuits

(q, h1)

(q, h2)
+γ

−γ

w

w′

∆(w′)
α|w′|

Figure 1 Visualization of a state q having fixed slope where α is the actual slope and γ is the
corridor. If w′ is a prefix of w then ∆(w′) has to stay in the corridor.

I Definition 7 (fixed slope). We say that a state q has a fixed slope if there are numbers
α ∈ Q and γ ∈ N so that if for all words w ∈ Σ∗ with (q, h1) w→ (q, h2) and h1 + ∆(w′) ≥ m
for all prefixes w′ of w it holds that:

h2 = α|w|+ h1
α|w′| − γ ≤ ∆(w′) ≤ α|w′|+ γ for all prefixes w′ of w

We call α the slope and γ the corridor of q.

Figure 1 shows the concept of this definition.
As we will see, we can think of states with a fixed slope as of those which do not pose a

problem when computing the stack height in FO[+]. However there can be states without a
fixed slope, which do not make the language too hard for FO[+], since it is possible that
the recognition of a word does not depend on its height profile any more if A has visited
such a state. This happens if from this point the height of the word can never reach height
levels below m any more. The next definition captures this idea by some kind of reachability
property. Figure 2 visualizes the idea.

I Definition 8 (active). A state q is active if there is a word w ∈ L(A) with positions
i and j, i < j, such that after reading w1 · · ·wi, A is in q, ∆(w1 · · ·wi) > m + |Q| and
∆(w1 · · ·wi)−∆(w1 · · ·wj) > |Q|.

Before we prove that for a VCL language L every active state needs to have a fixed slope
for L to be in AC0, we give an example of a typical case of a hard language.

I Example 9. Consider the language L = {(a|aba)nbn | n ∈ N}. This language is clearly in
VCL but there is no m−VCA for L where every active state has a fixed slope. In fact L
is not in AC0 because of this. We can reduce the TC0-hard language Equality ⊆ {0, 1}∗
to L. Let φ and ψ be morphisms with φ(0) = aaa, φ(1) = aba and ψ(0) = ψ(1) = bb. The
reduction is f(w) = φ(w)ψ(w) which is in AC0. As one can see, the number of push letters
a and pop letters b is in balance iff there are as many 0’s as 1’s: |f(w)|a = 3|w|0 + 2|w|1 =
|f(w)|b = |w|1 + 2|w|. This is equivalent to |w|0 = |w|1.

In the following lemma and its proof, we generalize the idea of the previous example.

I Lemma 10. If a language L ∈ VCL is recognized by an m−VCA which has an active state
without a fixed slope, then L is not in AC0.

A. Krebs, K.-J. Lange, and M. Ludwig 599

∆(w)

w

m

m+ |Q|

i j

q

|Q|q′

q′

Figure 2 The state q is an active state since there is a word w ∈ L such that q occurs at position
i with a height above m+ |Q| and there is a word position j with a height difference of |Q| compared
to i. By this we know that there is a down loop - in this case through state q′. This is used in
lemma 10.

Proof. Let A be an m−VCA with L = L(A) having a state q which is active but does not
have a fixed slope. This implies that there are words besides the empty word forming a loop
through q. In fact, there must be two words u and v which loop through q with |u| = |v| and
∆(u) > ∆(v). Also there must exist a word w ∈ L with certain properties: intuitively w has
a “high” position, and thus there must be loops going up to and down from that position
and one loop goes through q. In the following we assume q to be responsible for an up loop.
The case where q is responsible for the down loop can be treated similarly. To be precise, w
has the following properties:

Using position i from the definition of active, in the run q appears in position i and w
has a height above m+ |Q| in i.
Because of the existence of position j with smaller height (a difference of at least |Q|+ 1),
there must be a down loop. Let q′ be a state looped when going down.
We can partition w into w = αβγ with α = w1 · · ·wi and q′ is reached after αβ the first
time, i.e. never in between α and αβ.
There is a word x ∈ Σ∗ looping through q′. We assume that −∆(x) > ∆(αβ), which is
equivalent to ∆(αβx) < 0.

It is important to note that between α and αβ the height never falls below m.
In the following we want to reduce the language Equality ⊆ {0, 1}∗, which is in TC0

but not in AC0, to L by using the following pumping approach:

αu−k∆(x)βxk∆(u)γ ∈ L

for all k ≥ 0. This is true, since ∆(u−k∆(x)) = −∆(xk∆(u))
We define the following words: u′ = u−2∆(x), v′ = v−2∆(x), and x′ = x∆(u)+∆(v).
The key property is ∆(u′u′) > ∆(u′v′) = −∆(x′x′) > ∆(v′v′) and |u′| = |v′|. We define

the morphisms φ, ψ : {0, 1}∗ → Σ∗ with φ(0) = u′, φ(1) = v′ and ψ(0) = ψ(1) = x′ and the
map f : w 7→ αφ(w)βψ(w)γ. Since for all morphisms we used it holds that for two words of
same length, the images have the same length, f is computable in AC0.

For w ∈ {0, 1}∗, let w̄ be the word, where 0 and 1 are switched, e.g. w = 0100, then
w̄ = 1011. We now have w ∈ Equality ⇔ f(w) ∈ L ∧ f(w̄) ∈ L. This is true since if w
has more 0’s than 1’s (or vice versa) then either ∆(f(w)) or ∆(f(w̄)) is negative (which is

STACS 2015

600 Visibly Counter Languages and Constant Depth Circuits

∆(w)

w ∈ Σ∗

m

q

q

q

q

q

q

∆(w)

w ∈ Σ∗
m

q

q

q

Figure 3 The left example shows an active state which might have a fixed slope (at least the
pictured situation is no counter example). Through q we get an up loop and after the word has
reached a height level below m, q can be reached again. In the right example however we see that q
is active and does not have a fixed slope.

ensured by the condition −∆(x) ≥ ∆(αβ) we had on x) and such words cannot be accepted
by some Vca. So f is in fact a reduction and hence L 6∈ AC0. J

In the proof of the previous lemma, we saw that we get a property of the accepted
language. If we have two automata for some language and one of them has an active state
without a fixed slope and the other one does not then we get a contradiction using a pumping
argument.

I Corollary 11. If for some m−VCA A every active state has a fixed slope then in all VCA
for L(A) the active states have fixed slopes.

This corollary justifies to formulate a property of languages:

I Definition 12 (simple height behavior). If in some VCA all active states have a fixed slope,
we say that the recognized language has simple height behavior.

Figure 3 shows situations being relevant for this property.
We now assume L(A) has simple height behavior. In this case we can compute a sufficient

approximation of the matching predicate in FO[+] and in turn use this predicate to define a
stack height predicate.

We would like to define the matching predicate in FO[+] that is true for all words w with
two positions i, j that are matching positions, i.e. Σcall(wi) and Σret(wj) and wi+1 . . . wj−1
is well-matched. Even if a language L is in FO[+], the matching predicate is not necessarily
in FO[+]. Hence we only approximate the matching predicate from below, i.e. we only have
false negatives and recognize all matching pairs of positions that are needed later.

First, we need to define some helper predicates that allow us to verify that the height
profile of some factor wi+1 . . . wj has a slope α and stays within a corridor ±γ around this
slope and the height profile is above some minimal value hl.

I Definition 13. For every α ∈ Q and γ ∈ N we define a 5-ary predicate Bα,γ(x, y, s, t, l)
such that: wx=i,y=j,s=hs,t=ht,l=hl

|= Bα,γ(x, y, s, t, l) iff
∆(wi+1 . . . wj) = ht − hs,
for all i < k ≤ j we have ∆(wi+1 . . . wk) > hl − hs,
for all i < k ≤ j we have α|wi+1 . . . wk| − γ ≤ ∆(wi+1 . . . wk) ≤ α|wi+1 . . . wk|+ γ, and
∆(wi+1 . . . wj) = α|wi+1 . . . wj |.

A. Krebs, K.-J. Lange, and M. Ludwig 601

I Lemma 14. For any α ∈ Q and γ ∈ N, the predicate Bα,γ(x, y, s, t, l) can be defined in
FO[+].

I Lemma 15. Given an m−VCA A, such that L = L(A) has simple height behavior, we
can define a binary predicate M in FO[+] such that for every w ∈ Σ∗ and positions i, j of w:

wx=i,y=j |= M(x, y) implies that the position i matches the position j in w.

If w ∈ L and there is a k > i with ∆(w1 . . . wk) ≤ m and the position i matches the
position j then wx=i,y=j |= M(x, y).

To prove this, we will first define such a predicate for positions i, j that both have stack
height larger than m+ |Q| and then define it inductively for smaller stack heights.

Fix a word w and i, j. The question is, how to verify that i and j are matching positions.
To do so, we need to verify that wi is a push letter, wj is a pop letter and the word
z = wi+1 . . . wj−1 is well-matched.

For intuition we first consider a simple case. Assume that z ∈ (Σ∗callΣ∗ret)k, then we
could guess the 2k − 1 positions x1, . . . , x2k−1 where we switch between push and pop
letters. We would verify that we push more on the stack than pop for every prefix of z, i.e.
x1 − (x2 − x1) ≥ 0, x1 − (x2 − x1) + (x3 − x2)− (x4 − x3) ≥ 0, . . . Finally we need to test if
the sum of the length of the intervals with push letters is equal to the sum of the length of
the intervals with pop letters.

Unfortunately we cannot assume that there is a constant k such that all words z are
of this form. But we have a similar form for each factor z where we need to test if it is a
well-matched word if the whole word w belongs to L. Assume here that w is well-matched.
Since w ∈ L there is an accepting run for w, hence every state occurring in an interval of
height at least m+ |Q| is an active state, and every active state has a fixed slope. Let q be
an active state that appears more than once in the run of w inside of z. Let k, l be the first
and last position inside z where the state q occurs. Then the height difference ∆(zk . . . zl) is
αq · (l − k), where αq is the slope of the state q. Since there are only finitely many states,
we can split z into a fixed number of intervals such that in each interval the stack height
is “nearly linear” increasing or decreasing or being constant. If we cannot find such a fixed
number of intervals then w cannot be in L. The following lemma will formalize this idea.

I Lemma 16. Given a language L ⊆ Σ∗ in VCL with simple height behavior, we can define
a binary predicate M>m+|Q| in FO[+] such that for every w ∈ Σ∗ and positions i, j of w:

wx=i,y=j |= M>m+|Q|(x, y) implies the position i matches the position j in w.

If w ∈ L and ∆(w1 . . . wi) > m+ |Q| and there is a k > i with ∆(w1 . . . wk) ≤ m and the
position i matches the position j then wx=i,y=j |= M>m+|Q|(x, y).

Proof. We will first give the intuition on how to define the predicate M>m+|Q|. Then we will
show if M>m+|Q| is true that the positions i, j are actually matching positions, and finally
that for w ∈ L and i, j matching positions with stack height at least m, the predicate is true.

Let L be accepted by some m−VCA A. Following the idea above our formula will need to
guess at most n = |Q|+ 1 points z0, . . . , zn and the “slope” between these points represented
by a state q1, . . . , qn. Finally we guess the stack-height h0, . . . , hn at the points z0, . . . , zn
relative to ∆(w1 . . . wi−1).

STACS 2015

602 Visibly Counter Languages and Constant Depth Circuits

x z1z2 z3z4z5z6 z7z8z9 z10
z11z12

z13 z14z15
y

slope of q3 sl. of q7 slope of q10 slope of q14

Figure 4 Example for positions of z1, . . . , z15 fitting to the input word.

M>m+|Q|(x, y) = x < y ∧ Σcall(x)∧ Σret(y) ∧∨
(q1,...,qn)∈Qn ∃z0 . . . ∃zn∃h1 . . . ∃hn

z0 = x ∧ zn = y − 1 ∧ h0 = hn
n−1∧
i=0

zi ≤ zi+1 ∧Aqi+1(zi, zi+1, hi, hi+1, h0)

The formulas A are defined below.
The idea is that the formula Aqi+1 needs to verify that the guess was correct in the sense

that the slope in interval zi + 1 . . . zi+1 is equal to the slope of qi+1 having a stack height
difference of hi+1 − hi. Note that we do not have to guess the state of the accepting run, but
only some state with the same slope. In the case of an interval length 0 or 1 the formula
Aqi+1 will ignore the state qi+1 and directly check if the height difference is zero respectively
corresponds to the single letter. See figure 4 as a sketch.

Finally we define the formula Aqi+1(zi, zi+1, hi, hi+1, h0):
If zi = zi+1 ∧ hi = hi+1 ∧ hi > h0 then the formula is true.
If zi + 1 = zi+1 the formula is true if hi = hi+1 − 1 ∧ hi > h0 (resp. hi = hi+1 ∧ hi > h0
or hi = hi+1 + 1 ∧ hi+1 > h0) and Σcall(zi+1) (resp. Σint(zi+1) or Σret(zi+1)).
In the case that zi + 1 < zi+1 we use the predicate Bα,γ(zi, zi+1, hi, hi+1, h0) where α is
the slope and γ the corridor of q.
Otherwise the predicate is false.

Finally, we need to verify that with our definition of M>m+|Q| we satisfy the conditions
of the lemma. The first condition is certainly true as guessing and verifying the stack height
always is correct if all A predicates are true. For the second condition we need to show that
is satisfies to guess n “turning points”. We only consider the case w ∈ L, hence there is an
accepting run of w and the sequence of states within the positions of x and y since w ∈ L
and the height profile will be below m at some point in the suffix all states of the accepting
run are active states and hence have fixed slope. If the distance of x and y is less than n
we could simple guess all states in this sequence. But their distance might be larger, hence
we compress this sequence. For a state with a fixed slope the whole interval between the
first and last occurrence should have a fixed slope and hence can be recognized by a single
A predicate. So in the compressed sequence states with a fixed slope will occur only once.
Hence it satisfies to guess n “turning points”. J

At this point we have defined the predicate M>m+|Q|. We can now define predicates Mk

for height k under the assumption we have defined Mk+1 already. This way we inductively
get M0.

A. Krebs, K.-J. Lange, and M. Ludwig 603

I Example 17. Consider L = {a(anbn)∗b | n ∈ N}. If w ∈ L then the first and the last
letter of w match but the number of intervals can be arbitrary large. There is a 2−VCA for
L but no 1−VCA. This reflects in the matching predicates.

Proof of Lemma 15. By the previous lemma we have a predicate M>m+|Q|. Fix a word w.
Any two positions i, j are matching positions if and only if wi ∈ Σcall, wj ∈ Σret, and every
push letter ws with i < s < j is matched to a pop letter wt with i < s < t < j. Note that if
i, j are at stack height h then s, t will be always at stack height > h, hence we can test if i, j
are matched testing matching in between only for words of larger stack height.

Mk(x, y) = Mk+1(x, y)
∨ x < y ∧ Σcall(x) ∧ Σret(y)
∧ ∀z(x < z < y ∧ ¬Σint(z))⇒ (∃z′x < z′ < y ∧ (Mk+1(z, z′) ∨Mk+1(z′, z))

Note that the first line in the definition ofMk, ensures that the power to recognize a matching
increases from Mk+1 to Mk. This way M0 will be true for all matchings which can occur in
a word in L. Hence M(x, y) = M0(x, y). J

A position is of stack height 0 if all call-positions in the prefix have matching return-
positions in the prefix. Similar a position is of stack height i if there are i call-positions in
the prefix with push letters and all positions are matched by positions in the same interval
generated by those i positions.

I Lemma 18. For every constant 0 ≤ j < m, we can define a monadic predicate Hk(x) in
FO[+] such that:

wx=i |= Hj(x) then ∆(w1 . . . wi−1) = k for arbitrary w ∈ Σ∗.
wx=i |= Hj(x) iff ∆(w1 . . . wi−1) = k for all w ∈ L.

Proof. A position i has stack height k iff all but k call letters in the prefix w1 . . . wi−1 match.
It is obvious that this can be defined in FO[+] using our matching predicates.

The matching predicates might have false negatives resulting in false negatives of Hk.
But in the case of w ∈ L and the case that the height at position i is k < m the matching
predicate is exact on the prefix w1 . . . wi−1 and hence the height is correctly presented by
Hk. J

We let H≥m = ¬
∨m−1
k=0 Hk be the negation of these predicates. Hence for w /∈ L the

predicate might have false-positives, i.e., the predicate might suggest a stack-height greater
or equal to m while in fact it is less than m.

3.3 The Regular Part
In this section we will show a second property which in addition to the property of the
previous section - simple height behavior - is sufficient to characterize the visibly counter
languages in AC0. This second property concerns RA. If RA is in FO[Reg] and if L has
simple height behavior, then we can build an FO[+] formula for L. Unfortunately there are
cases where RA is not in FO[Reg], but still L is in FO[+]. The problem here is that there
can be words which are witness for ηRA not being quasi-aperiodic, but which are not images
of τm; then we cannot deduct that L is not in AC0.

First we introduce a normal-form on visibly counter automata which concerns loops.
In the following definition we call a state q dead if there is no w = w1w2 ∈ L, so that
(q0, 0) w1→ (q, h) w2→ (q′, h′) with h ≥ m.

STACS 2015

604 Visibly Counter Languages and Constant Depth Circuits

I Definition 19. Anm−VCA A is called loop-normal if for all x, y ∈ Σ∗ with ∆(xy1 · · · yk) ≥
m for 0 ≤ k ≤ |y| and (q0, 0) x→ (q, h1) y→ (q, h2), q ∈ Q then either q is a dead state or there
is z ∈ Σ∗ with xyz ∈ L(A) and one of the following is true, depending on ∆(y):

If ∆(y) > 0, then there is a partition of z into z = z1z3 and a word z2 ∈ Σ∗ so that for
all i ≥ 0 we have that xyyiz1z

i
2z3 ∈ L(A).

If ∆(y) < 0, then there is a partition of x into x = x1x3 and a word x2 ∈ Σ∗ so that for
all i ≥ 0 we have that x1x

i
2x3yy

iz ∈ L(A).
If ∆(y) = 0, then xyiz ∈ L for all i ≥ 0.

We also require that δi = δm for m− |Q| < i < m.

The idea of this definition is, that if a prefix reaches a state in A that can be completed
to a word in L then no matter how many loops through this state are appended, the word
can still be completed to a word in L.

I Lemma 20. For everym−VCA A recognizing a language L there is a loop-normalm′−VCA
A′ recognizing L.

In this proof A is equipped with a modulo |Q|! counter coded into the states. This way the
looping word y (let us say ∆(y) > 0 here) has a height which is a multiple of |Q|!. Using
this, one can find the corresponding down looping word z′2. Then ∆(y) is a multiple of ∆(z′2)
and so one can construct z2 from z′2 with ∆(y) = −∆(z2).

The intersection of the regular languages and AC0 is characterized by the quasi-aperiodicity
of the syntactic morphism. A regular language R is in AC0 iff ηR(Σt) has only trivial groups
for all t. If R 6∈ AC0 then there exist words of equal length spanning a group. In this case we
can use those words to build an AC0 reduction from an ACC0

k-hard language to R. The same
we want to do with RA. Unfortunately there can be words of equal length spanning a group
in the syntactic monoid of RA but still L = L(A) is in AC0. The reason is that actually
we are only interested in RA ∩ τm(Σ∗), i.e. in a restricted set of inputs. This intersection
however is not regular any more.

In the following we use τm(Σ∗) which is the set of restricted inputs we are interested in.
It contains prefixes of labeled well-matched words. The set F (τm(Σ∗)) is the set of factors of
words in τm(Σ∗). Keep in mind that τm is not defined for inputs with negative height-profile,
e.g. τm(ba) is undefined if a is a push and b a pop letter.

I Lemma 21. If A is a loop-normal m−VCA then if there is a number t > 0 and a set
G ⊆ Σt

m with G∗ ⊆ F (τm(Σ∗)) so that the set ηRA(G) contains a non-trivial group, then
L 6∈ AC0.

This is proved by reducing Modk for some k to L which is possible if the property is met.
If so, the words generating a group can be appended after each other so that they still are a
valid input.

I Lemma 22. If for all t > 0 and for all G with G ⊆ Σt
m and G∗ ⊆ F (τm(Σ∗)) the set

ηRA(G) does not contain a non-trivial group, then there is an FO[Reg] formula φ with

L(φ) ∩ τm(Σ∗) = RA ∩ τm(Σ∗).

The proof is based on the proof in [19] which constructs an FO[Reg] formula for quasi-
aperiodic languages. We have a weaker property than quasi-aperiodicity, so we have to treat
groups which might occur. We can show that if our weaker property is met, occurring groups
can be eliminated without chancing the language under the restricted inputs.

A. Krebs, K.-J. Lange, and M. Ludwig 605

4 Results

If we combine our statements from the previous section, we get the following results.

I Theorem 23. For a loop-normal m−VCA A, L = L(A) is in AC0 if and only if
L(A) has simple height behavior and
for all t > 0 and for all G ⊆ Σtm with G∗ ⊆ F (τm(Σ∗)) the set ηRA(G) does not contain
a non-trivial group.

Proof. We already proved the direction from left to right with lemmas 10 and 21.
If we have A where all active states have a fixed slope and the formula φ from lemma 22, we

can build an FO[+] formula for L: Begin with the FO[Reg] formula φ. This formula operates
on the alphabet Σm and uses letter predicates Q(a,k)x. We replace them by (Qa(x) ∧Hk(x))
if k < m and by (Qa(x) ∧H≥m(x)) if k = m. The resulting formula is φ′ and operates over
Σ.

If a word w is in L then w |= φ′. The only thing we have to take care of are false positives
in the H≥m predicate which we mentioned earlier in the paper. A false positive here can
only occur if there is a non-active state q without fixed slope. This state loops up and never
comes down to m again (otherwise it would be active). So if we have a word which visits q
but reaches a height smaller than m after q, it cannot be in L. But then there is a word
w′ = w1xw2, where w1 brings A in the state q, x loops through q, ∆(x) > m and w = w1w2.
On w′, H≥m will not have a false positive, since after q the word is always above m. Also w′
cannot be in L and if w′ 6∈ L then also w 6∈ L. Hence if w 6∈ L then w 6|= φ′. J

In the proof of the previous theorem we constructed an FO[+] formula for every VCL in
AC0. We can state our main result in different ways:

I Corollary 24. The following statements are true:
VCL ∩ FO[arb] ⊆ FO[+].
VCL ∩AC0 ⊆ FO[+].
VCL ∩AC0 ⊆ DLOGTIME− uniformAC0.

It is easy to verify that all the properties of the previous lemma are decidable. Hence we
have an effective characterization.

I Corollary 25. Given some visibly counter automaton A, it is decidable whether L(A) lies
in AC0, resp. in FO[+].

Proof. Given A, we have to check for all states of A if they are active and if they have a
fixed slope. If there is an active state without fixed slope then L(A) 6∈ AC0.

For deciding if a state q ∈ Q has fixed slope, make a list of all words looping through q
up to length |Q|. Then clalculate the slope of all words. They are all equal iff q has a fixed
slope.

For deciding if a state q is active, check if there is a word x with ∆(x) > m+ |Q| which
brings A in state q. This is as hard as the membership problem for VCL. If such an x exists
then check for all words y ∈ Σ∗ up to length ∆(x)|Q| if xy ∈ L(A) and if there is a prefix y′
of y with ∆(x)−∆(y′) > |Q|. If such a y exists then q is active.

Finally we have to decide our modified quasi-aperiodicy property. First of all, t can be
bounded by a constant relative to the syntactic monoid of RA, where A is a loop-deterministic
automaton for L. Then there are only finitely many sets G to consider. The requirement of
G∗ ⊆ F (τm(Σ∗)) is equivalent to GG ⊆ F (τm(Σ∗)) which then is also decidable. J

STACS 2015

606 Visibly Counter Languages and Constant Depth Circuits

5 Discussion

Algebraic methods usable for languages up to now mainly pertain to finite monoids, i.e. to
regular languages. We see our results as a step towards the further application of algebraic
methods in the non-regular case. A natural continuation of this line of research would be an
algebraic theory for visible pushdown languages and their subclasses. A promising approach
to go here might be the use of forest algebras [6].

The characterization of the regular languages in AC0 as the class FO[Reg] used the notion
of quasi-aperiodic regular sets which is of an algebraic nature. Our result is oriented in this
direction, but is not as algebraic. It still leaves open to characterize exactly the set of all
visible counter languages contained in AC0 in terms of logic.

In [14] the notion of dense completeness has been introduced. A family of formal languages
F is said to be densely complete in a complexity class C if both F ⊂ C and for each C ∈ C
there exists a F ∈ F so that C ≤ F and F ≤ C, i.e.: F and C have the same complexity.
While the context-free languages turn out to be densely complete in the class SAC1, the
regular languages are not densely complete in the class NC1. As a consequence of our
result we are able to show unconditionally that the visible one-counter languages, which are
contained in NC1, are not densely complete in NC1. Up to now, dense families of formal
languages are known for the non-deterministic classes, NSPACE(logn), SAC1, and NP, only.

In our work we explored the intersection of a formal language class and a circuit-based
complexity class. Aside from the pair AC0 and VCL, there are some other combinations
worth being investigated using our methods.

References
1 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,

STOC, pages 202–211. ACM, 2004.
2 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown

languages. In Bruno Durand and Wolfgang Thomas, editors, STACS 2006, 23rd Annual
Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-
25, 2006, Proceedings, volume 3884 of Lecture Notes in Computer Science, pages 420–431.
Springer, 2006.

3 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

4 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Reg-
ular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499, 1992.

5 David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC1.
J. ACM, 35(4):941–952, 1988.

6 Mikolaj Bojańczyk and Igor Walukiewicz. Forest algebras, 2007.
7 Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits and

associative functions. J. Comput. Syst. Sci., 30(2):222–234, 1985.
8 Patrick W. Dymond. Input-driven languages are in log n depth. Inf. Process. Lett.,

26(5):247–250, 1988.
9 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-

time hierarchy. In FOCS, pages 260–270, 1981.
10 Yuri Gurevich and Harry R. Lewis. A logic for constant-depth circuits. Information and

Control, 61(1):65–74, 1984.
11 Johan Håstad. Almost optimal lower bounds for small depth circuits. In STOC, pages

6–20. ACM, 1986.

A. Krebs, K.-J. Lange, and M. Ludwig 607

12 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–
778, 1987.

13 Neil Immerman. Descriptive Complexity. Springer, New York, 1999.
14 Andreas Krebs and Klaus-Jörn Lange. Dense completeness. In Hsu-Chun Yen and Oscar H.

Ibarra, editors, Developments in Language Theory - 16th International Conference, DLT
2012, Taipei, Taiwan, August 14-17, 2012. Proceedings, volume 7410 of Lecture Notes in
Computer Science, pages 178–189. Springer, 2012.

15 Pierre McKenzie, Michael Thomas, and Heribert Vollmer. Extensional uniformity for
boolean circuits. SIAM J. Comput., 39(7):3186–3206, 2010.

16 Robert McNaughton and Seymour Papert. Counter-free automata. With an appendix by
William Henneman. Research Monograph No.65. Cambridge, Massachusetts, and London,
England: The M. I. T. Press. XIX, 163 p., 1971.

17 Kurt Mehlhorn. Pebbling mountain ranges and its application to dcfl-recognition. In
Jaco de Bakker and Jan van Leeuwen, editors, Automata, Languages and Programming,
volume 85 of Lecture Notes in Computer Science, pages 422–435. Springer Berlin Heidelberg,
1980.

18 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

19 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
Boston, 1994.

20 H. Venkateswaran. Properties that characterize LOGCFL. J. Comput. Syst. Sci., 43(2):380–
404, 1991.

21 Heribert Vollmer. Introduction to circuit complexity - a uniform approach. Texts in theo-
retical computer science. Springer, 1999.

STACS 2015

	Introduction
	Preliminaries
	Properties of Visibly Counter Languages
	Decomposition of the Automaton
	Height Computation
	The Regular Part

	Results
	Discussion

