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Abstract
In the online random-arrival model, an algorithm receives a sequence of n requests that arrive

in a random order. The algorithm is expected to make an irrevocable decision with regard to
each request based only on the observed history. We consider the following natural extension of
this model: each request arrives k times, and the arrival order is a random permutation of the
kn arrivals; the algorithm is expected to make a decision regarding each request only upon its
last arrival. We focus primarily on the case when k = 2, which can also be interpreted as each
request arriving at, and departing from the system, at a random time.

We examine the secretary problem: the problem of selecting the best secretary when the
secretaries are presented online according to a random permutation. We show that when each
secretary arrives twice, we can achieve a competitive ratio of 0.767974 . . . (compared to 1/e in the
classical secretary problem), and that it is optimal. We also show that without any knowledge
about the number of secretaries or their arrival times, we can still hire the best secretary with
probability at least 2/3, in contrast to the impossibility of achieving a constant success probability
in the classical setting.

We extend our results to the matroid secretary problem, introduced by Babaioff et al. [3],
and show a simple algorithm that achieves a 2-approximation to the maximal weighted basis in
the new model (for k = 2). We show that this approximation factor can be improved in special
cases of the matroid secretary problem; in particular, we give a 16/9-competitive algorithm for
the returning edge-weighted bipartite matching problem.
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1 Introduction

The secretary problem [23, 10] is the following: n random items are presented to an observer
in random order, with each of the n! permutations being equally likely. There is complete
preference order over the items, which the observer is able to query, for the items he1 has
seen so far. As each item is presented, the observer must either accept it, at which point the
process ends, or reject it, and then it is lost forever. The goal of the observer is to maximize
the probability that he chooses the “best” item (i.e., the one ranked first in the preference
order). This problem models many scenarios; one such scenario is the one for which the
problem is named: n secretaries arrive one at a time, and an interviewer must make an
irrevocable decision whether to accept or reject each secretary upon arrival. Another is the

∗ Supported in part by the Google Europe Fellowship in Game Theory.
1 We use male pronouns throughout this paper for simplicity. No assumption on the genders of actual
agents is intended.
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house-selling problem, in which buyers arrive and bid for the house, and the seller would like
to accept the highest offer. An alternative way of modeling this problem is the following.
Each secretary is allocated, independently and uniformly at random, a real number r ∈ [0, 1],
which represents his arrival time. As before, the interviewer sees the secretaries in the order
of arrival and must make an irrevocable decision before seeing the next secretary. It is easy
to see that the two models are essentially equivalent (assuming n is known, see e.g., [7])
- the arrival times define a permutation over the secretaries, with each permutation being
equally likely. The optimal solution for the classical secretary problem is well known - wait
until approximately n/e secretaries have passed2 (alternatively until time t = 1/e), and
thereafter, accept a secretary if and only if he is the best out of all secretaries observed so
far (e.g., [15, 7]). This gives a probability of success of at least 1/e.

Consider the following generalization of the secretary problem: Assume that each sec-
retary arrives k times, and the interviewer has to make a decision upon each secretary’s
last arrival. We model this as follows: Allocate each secretary k numbers, independently
and uniformly at random from [0, 1), which represent his k arrival times. (Equivalently, we
may consider only the order of arrivals; in this case each of the (kn)! permutations over the
arrival events is equally likely.) A decision whether to accept or reject a secretary must be
made between his first and last arrival. We call this problem the (k− 1)-returning secretary
problem. The secretary problem is a classical example of the random-arrival online model
(e.g., [4, 24]), and our model immediately applies to this more general framework, capturing
several natural variations thereof, for example:
1. Requests may not require (or expect) an immediate answer and will therefore visit the

system several times to query it.
2. When requests arrive, the system gives them either a rejection or an acceptance, or an

invitation to return at some later time. It turns out that in many cases, very few requests
actually need to return; in the secretary problem, for example, a straightforward analysis
shows that the optimal algorithm will only ask O(logn) secretaries to return.3

3. Requests may enter the system and leave at some later time. The time the request stays
in the system can vary from “until just before the next item arrives”, in which case no
information is gained, to “until the end”, in which case the problem reduces to an offline
one. Clearly we would like something in between. When k = 2, the second random
variable allocated to the query can be interpreted as the time that the query leaves the
system, giving a natural formulation of this property in the spirit of the random-arrival
online model.

1.1 Our Results
When each secretary returns once (i.e., k = 2), we show that the optimal solution has
a similar flavor to that of the classical secretary problem - wait until some fraction of the
secretaries have passed (ignoring how many times each secretary has arrived), and thereafter
hire the best secretary (out of those we have seen so far), upon his second arrival. To tightly
bound the probability of success (for large n), we examine the case when each of the 2n
arrival times is selected uniformly at random from [0, 1). We use this model to show that
the success probability tends to 0.767974 . . . as n grows. In the classical secretary problem,

2 The exact number for each n can be computed by dynamic programming, see e.g., [15].
3 The algorithm will only ask the ith secretary that arrives to return if he is the best out of all the
secretaries it has seen thus far. The probability of this is 1/i. Summing over all secretaries gives the
bound.
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718 The Returning Secretary

it is essential to know the number of secretaries arriving in order to achieve a constant
success probability. We consider the case when n is not known in advance (and there is
no extra knowledge, such as arrival time distribution), and show that by choosing the best
secretary we have seen once he returns, with no waiting period, we can still obtain a success
probability of at least 2/3. We also consider cases when k > 2: we show that for k = 3,
we can achieve a success probability of at least 0.9, even without knowledge of n, and show
that setting k = Θ(logn) guarantees success with arbitrarily high probability (1 − 1

nα for
any α).

We extend our results to the matroid secretary problem, introduced by Babaioff et al.,
[3], which is an adaptation of the classical secretary problem to the domain of weighted
matroids. A weighted matroid is a pair M = (E, I) of elements E and independent sets
I, and a weight function w : E → R, which obeys the properties of heredity and exchange
(see Section 2 for a formal definition). In the matroid secretary problem, the elements of
a weighted matroid are presented in random order to the online algorithm. The algorithm
maintains a set S of selected elements; when an element e arrives, the algorithm must
decide whether to add it to S, under the restriction that S∪{e} is an independent set of the
matroid. The algorithm’s goal is to maximize the sum of the weights of the items in S. It
is currently unknown whether there exists an algorithm that can find a set whose expected
weight is a constant fraction of the optimal offline solution. The best result to date is an
O(log log ρ)-competitive algorithm,4 where ρ is the rank of the matroid, due to Lachish [22].
We show that in the returning online model, there is an algorithm which is 2-competitive
in expectation (independent of the rank). We also show that for bipartite edge-weighted
matching, and hence for transversal matroids5 in general, this result can be improved, and
show a 16/9-competitive algorithm.

1.2 Related Work
The origin of the secretary problem is still being debated: the problem first appeared in
print in 1960 [13]; its solution is often credited to Lindley [23] or Dynkin [10]. Hundreds of
papers have been published on the secretary problem and variations thereof; for a review, see
[12]; for a historical discussion, see [11]. Kleinberg [19] introduced a version of the secretary
problem in which we are allowed to choose k elements, with the goal of maximizing their
sum. He gave a 1 − O(

√
1/k)-competitive algorithm, and showed that this setting applies

to strategy-proof online auction mechanisms.
The matroid secretary problem was introduced by Babaioff et al. [3]. They gave an

O(log ρ)-competitive algorithm for general matroids, where ρ is the rank of the matroid, and
several constant-competitive algorithms for special cases of the matroid secretary problem.
Lachish [22] gave an O(log log ρ) algorithm for the matroid secretary problem. There have
been several improvements on special cases since then. Babaioff et al., [2] gave algorithms
for the discounted and weighted secretary problems; Korula and Pál [20] showed that graphic
matroids6 admit 2e-competitive algorithms; Kesselheim et al. [18] gave a 1/e-competitive
algorithm for the secretary problem on transversal matroids and showed that this is optimal.

4 An online algorithm whose output is within a factor c of the optimal offline output is said to be
c-competitive; see Section 2 for a formal definition.

5 Transversal matroids (see Section 4 for a definition) are a special case of bipartite edge-weighted
matching.

6 In a graphic matroid G = (V, E), the elements are the edges of the graph G and a set is independent
if it does not contain a cycle.
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Soto [28] gave a 2e2/(e− 1)-competitive algorithm when the adversary can choose the set of
weights of the elements, but the weights are assigned at random to the elements, (and the
elements are presented in a random order). Gharan and Vondrák [14] showed that once the
weights are random, the ordering can be made adversarial, and that this setting still admits
O(1)-competitive algorithms. There have been other interesting results in this field; for a
recent survey, see [9].

1.3 Comparison with Related Models

There are several other ther papers which consider online models with arrival and departure
times. Due to the surge in interest in algorithmic game theory over the past 15 years, and
the economic implications of the topic, it is unsurprising that many of these papers are
economically motivated. Hajiaghayi et al. [17], consider the case of an auction in which
an auctioneer has k goods to sell and the buyers arrive and depart dynamically. They
notice and make use of the connection to the secretary problem to design strategy-proof
mechanisms: they design an e-competititive (w.r.t. efficiency) strategy-proof mechanism
for the case k = 1, which corresponds to the secretary problem, and extend the results to
obtain O(1)-cometitive mechanisms for k > 1. Hajiaghayi et al. [16], design strategy-proof
mechanisms for online scheduling in which agents bid for access to a re-usable resource
such as processor time or wireless network access, and each agent is assumed to arrive and
depart dynamically. Blum et al. [5], consider online auctions, in which a single commodity
is bought by multiple buyers and sellers whose bids arrive and expire at different times.
They present an O(log (pmax − pmin))-competitive algorithm for maximizing profit and an
O(log(pmax/pmin))-competitive algorithm for maximizing volume where the bids are in the
range [pmin, pmax], and a strategy-proof algorithm for maximizing social welfare. They also
show that their algorithms achieve almost optimal competitive ratios. Bredin and Parkes [6]
consider online double auctions, which are matching problems with incentives, where agents
arrive and depart dynamically. They show how to design strategy-proof mechanisms for this
setting.

In Section 2 we introduce our model. In Section 3 we provide an optimal algorithm
for the returning secretary problem. In the full version of the paper we give an over 2-
competitive algorithm for the returning matroid secretary problem; we show that we show
we can improve this competitive ratio to 16/9 for transversal matroids (and more generally,
returning edge-weighted bipartite matching); and we analyze the cases of the k-returning
secretary problem for k = 3 and k = Θ(logn).

2 Model and Preliminaries

Consider the following scenario. There are n items which arrive in an online fashion, and
each item arrives k times. Each arrival of an item is called a round; there are kn rounds. The
order of arrivals is selected uniformly at random from the (kn)! possible permutations. An
algorithm observes the items as they arrive, and must make an irrevocable decision about
each item upon the item’s last appearance. We call such an algorithm a (k − 1)-returning
online algorithm and the problem it solves a (k − 1)-returning online problem. Because the
problem is most natural when k = 2, for the rest of the paper, we assume that k = 2 (and
instead of “1-returning”, we simply say “returning”.) In the full version of the paper, we
consider scenarios when k > 2.

We use the following definition of matroids:
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720 The Returning Secretary

I Definition 2.1. A matroid M = (E, I) is an ordered pair, where E is a finite set of
elements (called the ground set), and I is a family of subsets of E, (called the independent
sets), which satisfies the following properties:
1. ∅ ∈ I,
2. If X ∈ I and Y ⊆ X then Y ∈ I,
3. If X,Y ∈ I and |Y | < |X| then there is an element e ∈ X such that Y ∪ {e} ∈ I.
Property (2) is called the hereditary property. Property (3) is called the exchange property.
An independent set that becomes dependent upon adding any element of E is called a basis
for the matroid. In a weighted matroid, each element e ∈ E is associated with a weight
w(e). The returning matroid secretary problem is the following: Each element of a weighted
matroidM = (E, I) arrives twice, in an order selected uniformly at random out of the (2n)!
possible permutations of arrivals. The algorithm maintains a set of selected elements, S,
and may add any element to S at any time between (and including) the first and second
appearances of the element, as long as S∪{e} ∈ I. The goal of the algorithm is to maximize
the sum of the weights of the elements in S. The success of the algorithm is defined by its
competitive ratio.

I Definition 2.2 (competitive ratio, c-competitive algorithm). If the weight of a maximal-
weight basis of a matroid is at most c times the expected weight of the set selected by
an algorithm (where the expectation is over the arrival order), the algorithm is said to be
c-competitive, and its competitive ratio is said to be c.

A special case of the returning matroid secretary problem is the returning secretary problem,
in which there are n secretaries, each of whom arrives twice. The goal of the algorithm is
to identify the best secretary. The algorithm is successful if and only if it chooses the best
secretary, and we quantify how “good” the algorithm is by its success probability.

Without loss of generality, we assume throughout this paper that the weights of all the
elements are distinct (this applies to secretaries as well - given any two secretaries, one must
be strictly better than the other).7 Although we do not discuss computational efficiency in
this work, all the algorithms in this paper are polynomial in the succinct representation of
the matroid.

We denote the set {1, 2, . . . n} by [n].

3 The Returning Secretary

Assume that there are n secretaries that arrive in an online fashion. Each secretary arrives
twice, and the order is selected uniformly at random from the (2n)! possible orders. At all
times, we keep note of who the best secretary is out of all the secretaries seen so far. We call
this secretary the candidate. That is, in each round, if the secretary that arrived is better
than all other secretaries that arrived before this round, he becomes the candidate. Note
that it is possible that in a given round, the candidate will have already arrived twice. At
any point between immediately after first arrival and immediately after the second arrival,
we can accept or reject a secretary; an acceptance is final, a rejection is only final if made
upon the second arrival. Once we accept a secretary, the process ends. We win if we accept
(or choose) the best secretary. We would like to maximize the probability of winning.

7 Babaioff et al., [3] show that we do not lose generality by this assumption in the matroid secretary
problem. The result immediately applies to our model.
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3.1 Optimal Family of Rules
What is the best strategy for maximizing the probability of winning? We first show that the
optimal rule must be taken from the family of stopping rules as described in the following
lemma.

I Lemma 3.1. The optimal strategy for choosing the best secretary in the returning secretary
problem has the following structure: wait until d distinct secretaries have arrived; thereafter,
accept the best secretary out of the secretaries seen so far, when he returns.

Proof. Without loss of generality, we can restrict our attention to strategies that make
decisions regarding a secretary s only upon s’s arrivals, as every strategy that makes decisions
between the two arrival times has an equivalent strategy that defers the decision making
to the second arrival. Let dr be the random variable denoting the number of distinct
secretaries that have arrived up to (and including) round r (r ∈ [2n]). Denote by H(r) =
{x1, x2, . . . , xr−1} the history at round r, where xi = (yi, zi): yi is the relative rank (among
the secretaries that have arrived until now) of the secretary that arrived at time i, and
zi represents whether this is the first or second time that this secretary has arrived (i.e.
yi ∈ [dr], zi ∈ {1, 2}). Any (deterministic) strategy S must have the following structure:
for every realization of xr = (yr, zr), and H(r), S must accept or reject. That is S :
(Hr, yr, zr)→ {accept, reject}. Denote the optimal strategy by S∗. Clearly,
1. If the tth secretary is not the best, we will not choose him: ∀yr 6= 1, S∗(Hr, yr, zr) =

reject.
2. If this is the first time we have seen a secretary, we cannot gain anything by choosing

him now. It is better to wait for the second arrival, as we lose nothing by waiting:
S∗(Hr, yr, 1) = reject.

Therefore, we only need to consider choosing the best secretary we have seen so far when
he returns; i.e., we only accept at time t such that yr = 1, zr = 2. For all other values of yi
and zi, S∗ must reject; henceforth, we only focus on the case that yr = 1, zr = 2, and omit
this from the notation. Denote the event that S∗ accepts on history Hr by Acc(Hr). As S∗
is a probability-maximizing strategy,

S∗(Hr) = accept ⇐⇒ Pr[win |Acc(Hr)] ≥ Pr[win |¬Acc(Hr)]. (1)

Given that dr = d, Pr[win |Acc(Hr)] = d/n, as this is exactly the probability that the
best secretary is part of a group of d secretaries selected uniformly at random. Although we
cannot give such an elegant formula for Pr[win |¬Acc(Hr)], we know that it is the probability
of winning given that we have seen d secretaries, rejected them all, and have (n−d) secretaries
remaining to observe; hence, the probability is dependent only on d (as n is fixed). Denote
this probability function by g(d). We do not attempt to describe g, other than to say that
g must be non-increasing in d. (This is easy to see: g(d) ≥ g(d + 1) as a possible strategy
is to always reject the dth secretary.)

As the left side of (1) is an increasing function of d, and the right side is a decreasing
function of d (and as S∗ is a probability-maximizing function), S∗ will accept only if the
number of distinct secretaries that have arrived is at least d∗, the minimal d such that
d/n ≥ g(d). We can conclude that the optimal strategy is to observe the first d∗ secretaries
without hiring any and to choose the first suitable secretary thereafter. It is easy to see
(similarly to [8]), that randomization cannot lead to a better stopping rule. J

From Lemma 3.1, we can conclude that there is some function f : n → [0, n] for which the
optimal algorithm for the returning secretary problem is Algorithm 1.
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722 The Returning Secretary

Algorithm 1: Returning secretary algorithm with function f : n→ [0, n]
Input : n, the number of secretaries
Output: A secretary s

the Candidate = ∅;
for round r = 1 to 2n do

Let ir be the secretary that arrives on round r;
Denote by dr the distinct number of secretaries that have arrived up to round r;
if ir is the Candidate then

if dr > f(n) then
Return ir;

if ir is better than the Candidate then
the Candidate = ir;

We do not, at this time, attempt to find the function f for which Algorithm 1 is optimized;
we will optimize the parameter of a similar algorithm for a slightly different setting in
Subsection 3.3. For now, we focus on the special case where f(n) ≡ 0, which we call the
no waiting case. Aside from being interesting in their own right, these results will come in
useful later on, for tightly bounding the success probability.

3.2 The No Waiting Case

In the classical secretary problem, even if we don’t know n in advance, we can still find
the best secretary with a reasonable probability, assuming we have some other information
regarding the secretaries. For example, the secretaries can have an known arrival time
density over [0, 1] [7]8; n can be selected from some known distribution [26]; there are other,
similar scenarios (see e.g., [29, 1, 25]). However, with no advance knowledge at all, it is
impossible to attain a success probability better than 1/n (with a deterministic algorithm):
if we don’t accept the first item, we run the risk of there being no other items, while if we
do accept it, we have accepted the best secretary with probability 1/n. It is easy to see that
while randomization may help a little, is cannot lead to a constant success probability. In
the returning-online scenario, though, we have the following result.

I Theorem 3.2. In the returning secretary problem, even if we have no previous information
on the secretaries, including the number of secretaries that will arrive, we can hire the best
secretary with probability at least 2/3.

Denote by win the event that we hire the best secretary. Theorem 3.2 is immediate from
the following lemma.

I Lemma 3.3. When applying Algorithm 1 to the returning secretary problem with f(n) ≡ 0,

Pr[win] = 2n+ 1
3n .

8 Note that this is different from the alternative formulation described in the introduction as in this case
n is unknown.
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Proof. Let us call the best secretary Don. If we reach round i and see Don, we say we win
on round i, and denote this event wini. (Notice that we can say that we win at this point
even though this is the first time we see Don, as we will certainly hire him). The probability
of winning on round 1 is exactly the probability that Don arrives first:

Pr[win1] = 2
2n.

We win on round 2 if any secretary other than Don arrived on round 1, and Don arrived on
round 2.

Pr[win2] =
(

2n− 2
2n

)(
2

2n− 1

)
.

The probability of winning on round i > 2 is the following (the best secretary we had seen
until that point did not return between rounds 2 and i− 1, and Don arrived on round i):

Pr[wini] =
(

2n− 2
2n

)(
2n− 4
2n− 1

)(
2n− 5
2n− 2

)(
2n− 6
2n− 3

)
. . .

(
2n− i− 1
2n− i+ 2

)(
2

2n− i+ 1

)
.

Therefore

Pr[win] = 1
n

+ 1
n(2n− 1)(2n− 3)

2n−2∑
i=2

(2n− i)(2n− i− 1)

= 1
n

+ 2(n− 1)(2n− 1)(2n− 3)
3n(2n− 1)(2n− 3) (2)

= 3
3n + 2(n− 1)

3n
= 2n+ 1

3n ,

where (2) is reached by substituting j = 2n− i and simplifying the sum. J

3.3 Optimizing the Success Probability
We would now like to optimize f in Algorithm 1 in order to maximize the algorithm’s success
probability. For ease of analysis, we turn to the alternative model for the secretary problem:
instead of generating a random permutation over the secretaries, each secretary i is allocated,
uniformly and independently at random, two real numbers r1

i , r
2
i ∈ [0, 1), representing his

two arrival times. Assume that f∗ is the optimal function for Algorithm 1. Fix n and let µ
denote the time of the arrival of the (f∗(n))th distinct secretary. It is easy to see that the
two models are asymptotically identical: for large n, Pr[ij is one of the first f∗(n) arrivals] u
Pr[ij ∈ [0, µ)]. The analysis in this model is much cleaner, and so, for simplicity, (and at the
expense of accuracy for small n), we use it to obtain our bounds. The optimal algorithm for
the returning secretary problem in this model is Algorithm 2.

We introduce some new notation.
Denote by win(µ) the event that we hire the best secretary when using Algorithm 2 with
parameter µ.
Let αi(µ) be the event that r1

i , r
2
i ∈ [0, µ).

Let βi(µ) be the event that r1
i ∈ [0, µ) and r2

i ∈ [µ, 1) or vice versa.
Let γi(µ) be the event that r1

i , r
2
i ∈ [µ, 1).
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724 The Returning Secretary

Algorithm 2: Returning secretary algorithm with parameter µ ∈ [0, 1)
Output: A secretary s

the Candidate = ∅;
Observe the first secretary;
while there are secretaries that have not arrived do

Let i be the observed secretary;
Let ti be the time that i is observed;
if i is the Candidate then

if time ≥ µ then
Return i;

if i is better than the Candidate then
the Candidate = i;

Observe the next secretary;

We omit (µ) from the notation when it is clear from context. Label the best secretary by
1, the second best by 2 and so on. Denote by win(NWi) the event that we find the best
secretary in the no waiting scenario with i secretaries (recall that this is 2i+1

3i ). We make
the following observations, which rely on the arrival times being independent.

I Observation 3.4. ∀i ∈ [n],Pr[αi(µ)] = µ2,Pr[βi(µ)] = 2µ(1− µ),Pr[γi(µ)] = (1− µ)2.

I Observation 3.5. Pr[win |γ1, γ2, . . . , γi, αi+1] = Pr[win(NWi)].

Proof. If γ1, γ2, . . . , γi hold then all of the appearances of the best i secretaries are in the
interval [µ, 1). Both appearances of the (i + 1)th best secretary are in [0, µ); therefore we
will definitely choose one of the i best secretaries, and the probability of choosing the best
is as in the no waiting scenario. J

I Observation 3.6.

Pr[win |γ1, γ2, . . . , γi, βi+1] = Pr[win(NWi+1)|secretary i+ 1 is the first to arrive].

Proof. If γ1, γ2, . . . , γi and βi+1 hold then all appearances of the best i secretaries are in
the interval [µ, 1), and the (i + 1)th secretary arrived once by time µ. This reduces to the
problem of choosing the best secretary in the no waiting scenario, given that the (i + 1)th
secretary arrives first. J

I Claim 3.7. Pr[win(NWi+1)|secretary i+ 1 is the first to arrive] = 2i
2i+1 Pr[win(NWi)].

Proof. Given that i + 1 is the first to arrive, if i + 1 arrives second, we lost. If not, i + 1
cannot be chosen anymore, and we are exactly in the no waiting scenario with i secretaries.
The probability that i+ 1 arrives second given that he also arrives first is 1

2i+1 . J

Combining Observation 3.6 and Claim 3.7 gives the following corollary.

I Corollary 3.8. Pr[win |γ1, γ2, . . . , γi, βi+1] = 2i
2i+1 Pr[win(NWi)].

We are now able to obtain a recursive representation of Pr[win |γ1, γ2, . . . , γi].

I Claim 3.9. Pr[win |γ1, γ2, . . . , γi] = µ2+4µi−2µ2i
3i + (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1].
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Proof.

Pr[win |γ1, γ2, . . . , γi] = Pr[win |γ1, γ2, . . . , γi, αi+1] Pr[αi+1]
+ Pr[win |γ1, γ2, . . . , γi, βi+1] Pr[βi+1]
+ Pr[win |γ1, γ2, . . . , γi, γi+1] Pr[γi+1]

=µ2 Pr[win(NWi)] + 4µi(1− µ)
2i+ 1 Pr[win(NWi)] (3)

+ (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1]

=µ2 + 4µi− 2µ2i

2i+ 1 Pr[win(NWi)]

+ (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1],

=µ2 + 4µi− 2µ2i

3i + (1− µ)2 Pr[win |γ1, γ2, . . . , γi+1], (4)

where (3) is due to Observations 3.4, and 3.5 and Corollary 3.8, and (4) is due to Lemma 3.3.
J

I Claim 3.10. For any constant k, and any µ ∈ [0, 1),

Pr[win] ≥ 2µ(1− µ) +
k∑
i=1

(
(1− µ)2i(µ2 + 4µi− 2µ2i)

3i

)
+ 2

3(1− µ)2k+1. (5)

Proof.

Pr[win] = Pr[win |α1] · Pr[α1] + Pr[win |β1] · Pr[β1] + Pr[win |γ1] · Pr[γ1]
=0 · (µ2) + 1 · 2µ(1− µ) + Pr[win |γ1] · (1− µ)2, (6)

where (6) is due to Observation 3.4.
Recursively applying Claim 3.9, and noticing that Pr[win |γ1, γ2, . . . , γi] ≥ 2

3 , for all i,
completes the claim. J

I Lemma 3.11. For any x ∈ [0, 1), Pr[win] ≥ 2x− 4
3x

2 − 1
3 (1− x)2 log(1− x2).

Proof. Substituting x = 1− µ in (5), and ignoring the lowest order term, we get

Pr[win] ≥ 2x(1− x) + 1
3

k∑
i=1

x2i
(

(1− x)2 + 4(1− x)i− 2(1− x)2i

i

)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

k∑
i=1

x2i(4− 4x)− 2(1− x)2)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

k∑
i=1

x2i(2− 2x2)

= 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 1

3

(
k∑
i=1

2x2i −
k∑
i=1

2x2(i+1)

)

≥ 2x(1− x) + 1
3(1− x)2

k∑
i=1

x2i

i
+ 2

3x
2 (7)

−→
k→∞

2x− 4
3x

2 − 1
3(1− x)2 log(1− x2), (8)

STACS 2015



726 The Returning Secretary

Algorithm 3: Returning matroid secretary algorithm
Input : a cardinality n = |E| of the matroidM = (E, I)
Output: an independent set S ∈ I

Let n elements arrive, without choosing any element;
Let E′ denote the elements which only arrived once thus far;
Relabel the elements of E′ by 1, 2, . . . , |E′|, such that w1 ≥ w2 ≥ · · · ≥ w|E′|;
S ← ∅;
for i = 1 to |E′| do

if S ∪ i ∈ I then
S ← S ∪ i;

Return S;

where in (7), we once again ignore the lowest order term, and (8) is because
∞∑
i=1

yi

i
is the

Taylor series for − log(1− y), for |y| < 1. J

Differentiating (8), we find that the winning probability is maximized at

x =
√
e5 − eW (2e5)

e5/2 ≈ 0.727374 . . .

, where W (z) is the Lambert W function (also known as the the product log function). This
implies µ ≈ 0.272626 . . ., and for this value, Pr[win] ≈ 0.767974 . . .. This gives our main
result of the section.

I Theorem 3.12. The success probability of Algorithm 2 with µ = 0.272626 . . . converges
to the success probability of the optimal algorithm for the returning secretary problem, as
n tends to infinity; the probability of hiring the best secretary using Algorithm 2 is at least
0.767974.

4 Extension to Matroid Secretary Problems

We extend our results to the matroid secretary problem. Due to space restrictions, we only
provide an outline of the results, and defer the proofs to the full version of the paper.

4.1 The Returning Matroid Secretary
We show that in the returning online model, when k = 2, a simple algorithm obtains a
2-approximation to the maximum-weight basis of the matroid. It is a well known property
of matroids (e.g., [27]), that the Greedy algorithm always finds a maximum-weight basis.
Algorithm 3, in essence, lets n elements arrive, and then runs the Greedy algorithm on the
elements which have only arrived once.

I Theorem 4.1. There is a simple algorithm for the returning matroid secretary problem
that is 2-competitive in expectation.

We use the following algorithm. Due to space considerations, the analysis of the algorithm
and proof of Theorem 4.1 is deferred to the full version of the paper.
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Algorithm 4: Returning bipartite edge-weighted matching algorithm
Input : vertex set R and a cardinality n = |L|
Output: a matching M

Let Lr be the vertices that arrived until round r.;
Let L′ ⊂ Ln denote the vertices that only arrived once until round n;
M = optimal matching on G[L′ ∪R];
for each subsequent round t > n, when vertex `t ∈ L arrives do

Mt = optimal matching on G[Lt ∪R];
Let et be the edge assigned to `t in Mt;
if M ∪ et is a matching then

M = M ∪ et;

Return M ;

We also show that in some cases, this algorithm can be improved to give better bounds;
specifically in the case of bipartite edge-weighted matching (a generalization of transversal
matroids).

4.2 Returning Bipartite Edge-Weighted Matching
The returning bipartite edge-weighted matching problem is a generalization of the returning
transversal matroid problem.9 Let G = (L ∪ R,E) be a bipartite graph with a weight
function w : E → R+. We are initially given R and n = |L|. In each step, a vertex v ∈ L
arrives together with its edges (and the edges’ weights). Each vertex arrives twice, and the
order of arrival is selected uniformly at random from the (2n)! possible arrival orders. When
a vertex ` ∈ L arrives for the second time, it is either matched to one of the free vertices in
R that are adjacent to `, or left unmatched. The goal of the algorithm is to maximize the
weight of the matching. Note that if |R| = 1, and we succeed only if we find the maximum
matching, this is exactly the returning secretary problem.

We present a variation on the returning matroid secretary algorithm, where instead of the
Greedy algorithm, we use a maximum-matching algorithm (using any maximum matching
algorithm, e.g., the Hungarian method [21]). We then use local improvements, similarly to
[18]. Once again, we present the algorithm here, but due to space considerations, leave its
analysis and the proof of Theorem 4.2 to the full version.

I Theorem 4.2. Algorithm 4 is 16/9-competitive in expectation.

Acknowledgements I would like to thank Yishay Mansour and the anonymous reviewers
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