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Abstract
The aim of this paper is to introduce and develop a truly declarative framework for entity linking
and, in particular, for entity resolution. As in some earlier approaches, our framework is based
on the systematic use of constraints. However, the constraints we adopt are link-to-source con-
straints, unlike in earlier approaches where source-to-link constraints were used to dictate how to
generate links. Our approach makes it possible to focus entirely on the intended properties of the
outcome of entity linking, thus separating the constraints from any procedure of how to achieve
that outcome. The core language consists of link-to-source constraints that specify the desired
properties of a link relation in terms of source relations and built-in predicates such as similarity
measures. A key feature of the link-to-source constraints is that they employ disjunction, which
enables the declarative listing of all the reasons as to why two entities should be linked. We also
consider extensions of the core language that capture collective entity resolution, by allowing
inter-dependence between links.

We identify a class of “good” solutions for entity linking specifications, which we callmaximum-
value solutions and which capture the strength of a link by counting the reasons that justify it.
We study natural algorithmic problems associated with these solutions, including the problem
of enumerating the “good” solutions, and the problem of finding the certain links, which are the
links that appear in every “good” solution. We show that these problems are tractable for the
core language, but may become intractable once we allow inter-dependence between link rela-
tions. We also make some surprising connections between our declarative framework, which is
deterministic, and probabilistic approaches such as ones based on Markov Logic Networks.
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1 Introduction

Entity linking is a long-standing research problem that has received considerable attention over
the years. The most extensively investigated case of entity linking is entity resolution, which is
the problem of linking pieces of information occurring in one or more, possibly heterogeneous,
datasets that refer to the same real-world object (entity). Entity resolution is known under
various names: record linkage, data deduplication, reference reconciliation, merge-purge (see,
e.g., [9, 11, 15, 22, 26]). Much of entity resolution research has focused on developing the
algorithms, similarity measures, and the general methodologies for matching entities, while
at the same time significant engineering effort has been devoted to experimenting and tuning
the resulting systems.

In recent years, we have seen several new efforts aimed at raising the level of abstraction
in entity resolution systems. These efforts, ranging from the earlier AJAX framework [17]
to the more recent Dedupalog [2] and HIL [21] languages, represent attempts to specify, in
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26 A Declarative Framework for Linking Entities

a more declarative way, the basic ingredients of an entity resolution process. In particular,
instead of using lower-level implementation algorithms, they employ SQL-like constructs
or constraints expressed in logical formalisms as components of a high-level language. A
common characteristic in these approaches is the use of source-to-link constraints, that is,
constraints that specify the direct creation of the links from the source data. In turn, this
feature has the consequence that operational semantics are used, hence the meaning of a
specification in such a language is some link relation resulting from the operational semantics.
For example, HIL uses SQL-like statements to express the creation of links from a set of
sources and provides only an operational procedure to interpret such statements. As for
Dedupalog, the specification has the form of a Datalog-style program with constraints of two
types: hard constraints and soft constraints. The goal is to find a link relation that satisfies
the hard constraints, and that minimizes the number of soft constraints violated. Since this
turns out to be a computationally intractable problem, the semantics of Dedupalog is given
by an algorithm that, in many cases, produces an approximately optimal result.

In this paper, we take a different approach to declarative entity linking (and, in particu-
lar, to declarative entity resolution), where we clearly separate the specification from the
implementation, and also ensure that the implementation always satisfies the specification.
Our goal is to provide a clean and expressive specification language, with rigorous semantics,
which can serve as a foundation for the implementation or evaluation of entity linking systems.
Two salient features of our framework are as follows.

First, we consider entity resolution as a general problem of defining links between source
values. A (binary) link is modeled as a binary table that relates pairs of values from the given
source relations. While, as described earlier, entity resolution is typically confined to the
problem of matching entities representing the same real-world object, our framework allows
linking entities that are not necessarily of the same type; in particular, a link relation need
not be an equivalence relation. In other words, the same type of specification is used not
only to match person records across multiple databases (which is a typical entity resolution
application), but also to link a subsidiary company with its parent company or to link a
CEO with his/her company.

Second, as in some of the earlier approaches, our specification language is based on
constraints. However, the constraints we adopt are link-to-source constraints, unlike in earlier
approaches where source-to-link constraints were used to dictate how to populate the link
relations. Our approach makes it possible to focus entirely on the intended properties of
the outcome of entity linking, thus separating the constraints from any procedure of how to
achieve that outcome. The core language L0 consists of link-to-source constraints that specify
the desired properties of link relations in terms of the source relations and built-in predicates,
such as similarity measures. We also consider extensions of L0 in which other link relations
may be used in the specification of link relations, thus allowing a link to also depend on other
links. We distinguish two such extensions, namely, the language L1 in which no recursion
is allowed in the specification (i.e., no link relation depends on itself) and the language
L2 in which recursion is allowed; these extensions capture what is usually called collective
entity resolution [6], where inter-dependence between links is allowed. A key feature of the
link-to-source constraints is that, in their most general form, they are disjunctive constraints
that enable the declarative listing of all the reasons as to why two entities are linked. In
addition, our specification languages make use of inclusion dependencies that specify the
provenance of the links w.r.t. the source data, and also allow for functional dependencies
that specify when a link relation is many-to-one or one-to-one.

Since all our constraints are link-to-source, they always admit solutions, that is, link
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relations that satisfy all the constraints at hand. (The empty link instance is always a
solution, albeit not necessarily a desirable one.) Therefore, one of the main questions that has
to be addressed is: what are the “good” solutions out of the space of all possible solutions?
Moreover, since multiple good solutions may exist for a given specification and a given
source instance, a related important problem is that of identifying the certain links and the
ambiguous links, that is, those links that appear in every good solution and, respectively, in
some, but not in every, good solution. From a practical point of view, the certain links are the
links that should be kept, while the ambiguous links are the links that must be inspected by a
human. In particular, examination of the ambiguous links may lead to a revised specification
that will result into fewer ambiguous links. Thus, producing the ambiguous links is an
important computational task.

As a first candidate of a class of “good” solutions, we consider maximal solutions, where
goodness is maximality among solutions w.r.t. set containment. For each fixed entity linking
specification in the core language L0, we show that there is a polynomial-delay algorithm that,
for each source instance I, enumerates all of the maximal solutions for I. (A polynomial-delay
algorithm [24] for a problem is an algorithm that, given an input, generates all solutions
to the problem, one after another, where the first solution is generated in polynomial time,
and the next solution is generated in polynomial time after the previous solution.) We also
show that there are polynomial-time algorithms that, given a source instance I, compute the
certain links and the ambiguous links for I w.r.t. the class of maximal solutions. However,
we point out that, in practice, there are too many maximal solutions, which implies that
quite often there are too few certain links, if any. In other words, the semantics given by
maximal solutions is too coarse-grained and does not have enough differentiating power
among solutions. In view of the above, we refine the semantics by considering a subclass of
maximal solutions that we call maximum-value solutions, which maximize the total strength
of links. Under this semantics, the strength of a link is measured by counting the disjuncts
and existential witnesses that “justify” the existence of a link. For each fixed entity linking
specification in the core language L0, we show that there is a polynomial-delay algorithm
that, for each source instance I, enumerates all of the maximum-value solutions for I. We
also show that there are polynomial-time algorithms that, for each source instance I, compute
the certain links and the ambiguous links for I w.r.t. the class of maximum-value solutions.

We also establish that some existing probabilistic approaches for entity resolution can be
captured, in a precise sense, by entity linking specifications in L0 under a suitable extension
of the maximum-value semantics that allows for weight functions. We start with a well-known
class of probabilistic matching algorithms that originated with Fellegi and Sunter [15] and is
at the core of many commercial systems, including IBM’s QualityStage [23]. We show that
the core logic behind these matching algorithms is captured by a fragment of L0 where each
disjunct in the matching constraint consists of a single atomic formula. We then consider
the richer probabilistic framework of Markov Logic Networks (MLNs) [29], which in general
allows for arbitrary first-order formulas to be interpreted in a probabilistic sense. We show
that a class of linear MLNs that is useful for entity resolution [30] is captured by a fragment
of L0 (under the same extended semantics). Thus, rather surprisingly, a purely probabilistic
approach (based on MLNs) can be captured in a deterministic way. As a byproduct, we show
that for linear MLNs, there is a polynomial-delay algorithm for enumerating the maximum
probability worlds, and polynomial-time algorithms for computing the certain and ambiguous
links (w.r.t. the class of maximum probability worlds). To the best of our knowledge, these
are the first polynomial-time results for MLN-based entity resolution.

The state of affairs turns out to be dramatically different for the extended language L1
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28 A Declarative Framework for Linking Entities

that allows dependence of a link on other links, but disallows recursive interdependence
between links. To begin with, we show that there is a fixed entity linking specification in L1
for which the following problem is NP-complete: given a source instance I and a positive
integer k, is there a solution for I whose value is at least k? Consequently, there is no
polynomial-delay algorithm for enumerating the maximum-value solutions, unless P = NP.
Moreover, we show that there is a fixed entity linking specification in L1 for which there
are no polynomial-time algorithms for telling whether a link is certain or ambiguous w.r.t.
the class of maximum-value solutions, unless NP = coNP. It should be noted that the
intractability of recognizing the certain links and the ambiguous links is established by using
results about the computational complexity of recognizing frozen variables in constraint
satisfaction problems [25]. On the positive side, we identify a large syntactic fragment of L1
for which there is a polynomial-delay algorithm for enumerating maximum-value solutions, as
well as polynomial-time algorithms for computing the certain links and the ambiguous links.

The complete proofs of all our results will appear in a full version of this paper.

2 A Declarative Framework for Linking Entities: Basics

A source relational schema is a finite sequence S = 〈R1, . . . , Rm〉 of relation symbols, each
of a fixed arity. When attribute names are not essential, we may identify attributes by
their position. A source instance I over S is a sequence (RI1, . . . , RIm), where each RIi
is a finite relation of the same arity as Ri. We often use Ri to denote both the relation
symbol and the relation RIi that interprets it. Additionally, a link schema is a finite sequence
L = 〈L1, . . . , Ln〉 of link symbols, where each Li is binary. A link instance J over L is a
sequence (LJ1 , . . . , LJn) of finite binary relations. For a relation T (either source or link) and
a tuple t in T , we denote by T (t) the association between T and t and refer to it as a fact.
When T is a link relation, we may refer to T (t) as a link. An instance can be conveniently
represented by its set of facts. Given instances K and K ′, we say that K is a subinstance of
K ′ and write K ⊆ K ′ if the set of facts in K is a subset of the set of facts in K ′. We write
K ⊂ K ′ if this subset relationship is strict.

We specify a link relation, implicitly, by defining the properties that it must satisfy. For
each link symbol L, there are three sets of constraints, as follows. The first set contains at
most one matching constraint of the form

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk),

where ψ(x, y,u) is a (possibly empty) conjunction of atomic formulas over S, the universally
quantified variables u must occur in ψ, and where αi ::= ∃z φi(x, y,u, z). Each φi is a
conjunction of source atomic formulas, along with equalities and other built-in or user-defined
boolean predicates (such as similarity or string containment). Also, note that x and y are
universally quantified, but for simplicity of notation we omit their quantifiers.

The intuition behind the use of disjunction in the matching constraint is that it lists all
the possible matching conditions (i.e., α1, . . ., αk) for why a link L(x, y) may exist. If a link
L(x, y) exists, then one or more of those reasons must be true. We do not require a matching
constraint to be given for each link; for those links without a matching constraint, the link
relation is implicitly defined by the rest of the constraints. We will give concrete examples of
matching constraints shortly. We will also explain the role of the universal quantification ∀u
and of the formula ψ(x, y,u).

The second set of constraints, for a given link symbol L, consists of an inclusion dependency
of the form L[X] ⊆ R[A] and an inclusion dependency of the form L[Y ] ⊆ R′[A′]. Here,
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X and Y denote the first and the second attribute of L, while A and A′ denote attributes
in source relations R and R′. As usual, R[A] denotes the projection of R on A. The two
dependencies specify an upper bound for the set of links that can appear in L: every link
in L will be a pair relating a value in R[A] with a value in R′[A′]. Finally, the third set of
constraints, for a given link symbol L, with attributes X and Y , consists of zero, one or both
of the functional dependencies L : X → Y and L : Y → X. Functional dependencies encode
basic cardinality constraints on the result of entity linking. (See also [21] for the significance
of such constraints in practice.) The presence of one functional dependency means that the
links are required to be many-to-one, that is, an entity on one side must be linked with at
most one entity on the other side. The presence of both functional dependencies means that
the links must be one-to-one.

We use the term L0 for the above language, consisting of matching constraints, and
inclusion and functional dependencies. Later, we also consider extensions to L0 (such as
allowing for inter-dependencies among the links). We use the term entity linking specification
(in L0) for a triple E = (L,S,Σ) where L is a link schema, S is a source schema, and Σ
is a set of constraints containing, for each link symbol L in L, (1) at most one matching
constraint, (2) two inclusion dependencies, and (3) zero, one or two functional dependencies,
all as defined above.

I Definition 1. Let E = (L,S,Σ) be an entity linking specification, and I be a source
instance. A solution for I w.r.t. E is a link instance J such that (J, I) |= Σ, where (J, I) is
the instance over the schema L ∪ S obtained by taking the union of the facts in J and I.

I Example 2. In this scenario, we link subsidiaries in one database with parent companies
in another database. Consider the following source schema S:

Subsid(sid, sname, location) Company(cid, cname, hdqrt) Exec(eid, cid, name, title)

This source schema includes the relation symbols Subsid from the first database, and Company
and Exec from the second database. A source instance I for S is given below as a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”,
“CEO, Citibank N.A.”)

The intention is to generate links between subsidiary ids and corresponding company ids.
Thus, the link schema L consists of a single link symbol L(sid, cid). In the scenario,“Citibank
N.A.” is the name of a true subsidiary of “Citigroup Inc”, while “CIT Bank” is the name of a
true subsidiary of “CIT Group Inc”. We note that this is a real-life example, and “Citigroup
Inc” and “CIT Group Inc” are two different financial institutions. The goal of entity linking
is to identify links such as L(s1, c1) and L(s2, c2), given the available evidence.

A possible entity linking specification that exploits the available attributes and the
relationship between the source tables is E = (L,S,Σ), where Σ consists of a matching
constraint:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn) ∨ ∃e, n, t(Exec(e, cid, n, t)∧ contains(t, sn))),

two inclusion dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the functional
dependency L : sid → cid. While the inclusion dependencies specify where L is allowed to
take values from, the functional dependency gives the additional requirement on L that the
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30 A Declarative Framework for Linking Entities

links must be many-to-one from sid to cid. Thus, every subsidiary must link to at most one
company, but the converse need not hold. The matching constraint gives the actual matching
logic and includes a listing of all the possible matching conditions for why a link may exist.
Concretely, if a subsidiary id and a company id are linked, then it must be that one of the
two matching conditions holds: (1) there is an overlap in the names, as specified by sn ∼ cn,
or (2) there is some executive working for the company and this executive has a title that
contains the subsidiary’s name.

The universally quantified conjunction Subsid (sid, sn, loc) ∧ Company (cid, cn, hd) gives
the context surrounding the occurrences of sid and cid in the source relations. In general, the
matching conditions can refer to any variable in the context (e.g., sn, cn), and each matching
constraint’s disjunction must be true for every instantiation of the universal variables. For
example, if a subsidiary id (sid) is associated with two or more subsidiary names (sn) in
the source relation Subsid, then the disjunction of the two matching conditions must hold
for every such name. Thus, we consider every name variation of the subsidiary; if for some
variation sn the matching conditions do not hold, then that may be an indication that we
do not have a true subsidiary.

The following are solutions for I w.r.t. E :

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}

We assume here that the name overlap predicate ∼ evaluates to true for all pairs of subsidiary
name and company name occurring in our instance I (thus, “Citibank N.A.” ∼ “Citigroup
Inc” but also “Citibank N.A.” ∼ “CIT Group Inc”, and so on). Note that the link L(s1, c1)
satisfies both the ∼ predicate and the the Exec-based condition, while other links satisfy
only the ∼ predicate. The link instance J5 = {L(s1, c1), L(s1, c2)} is not a solution, since it
violates the functional dependency. Finally, we note that every subinstance of a solution is
always a solution. J

The above example shows that, in general, we allow matching of entities that are not
necessarily of the same type and where a link relation is not necessarily an equivalence
relation.

A key feature of the language is that matching constraints do not “force” the existence
of the links. They form only a necessary condition for the existence of the links. This is a
departure from the more traditional approaches based on source-to-link rules of the form
α→ L, which eagerly populate (or require) links in L whenever the matching condition α is
true. However, when other constraints are considered (e.g., functional dependencies), the
links in L may become invalid. As a result, any specification that includes source-to-link
rules will likely have no solutions. In contrast, our notion of entity linking specification
always has solutions. A large part of this paper will then be focused on identifying a subset
of “good” solutions among all the possible solutions.

Before we proceed to define concrete classes of “good” solutions, we first define the notions
of certain, possible and ambiguous links. These notions can be defined, generally, w.r.t. an
arbitrary class of solutions, that is, w.r.t. a subset C of solutions that satisfy some property.
We may also refer to the solutions in a class C as C -solutions.

I Definition 3. Assume a class C of solutions and an entity linking specification E = (L,S,Σ).
Then, given a source instance I:
(i) The set of certain links for I w.r.t. C and E is the set of links that appear in every

C -solution J for I w.r.t. E .
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(ii) The set of possible links for I w.r.t. C and E is the set of links that appear in some
C -solution J for I w.r.t. E .

(iii) The set of ambiguous links for I w.r.t. C and E is given by the set difference between
the possible and the certain links for I w.r.t. E .

3 A Naive Semantics Based on Maximal Solutions

The first class of “good” solutions that we investigate is the class of maximal solutions, where
“goodness” of a solution is defined as maximality w.r.t. set containment.

I Definition 4. Assume an entity linking specification E = (L,S,Σ). Given a source instance
I, a maximal solution for I w.r.t. E is a link instance J such that: (1) (J, I) satisfies Σ, and
(2) there is no J ′ such that J ⊂ J ′ and (J ′, I) satisfies Σ.

I Example 5. We revisit Example 2. The solutions J1, J2, J3, J4 are maximal for the
given source instance I (and w.r.t. the given E), because in each of the four instances, we
cannot add any further links over the sid- and cid-values in I without violating the functional
dependency. It can also be verified that these four instances are all the maximal solutions
for I. J

Maximal solutions vs. repairs. We next show a connection with source-to-link constraints
and the framework of repairs [4], which we shall use later in this section. Given an entity
linking specification E = (L,S,Σ) in L0, we first extract a source-to-link specification
M = (S,L,Σ′) as follows. For each matching constraint mL in Σ, and given the inclusion
dependencies L[X] ⊆ R[A] and L[Y ] ⊆ R′[A′], we add the following source-to-link constraint
in Σ′:

(m′L) R(. . . , x, . . .) ∧R′(. . . , y, . . .) ∧ (∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk)) → L(x, y)

In the above, the occurrence of x in the R-atom is in the position of attribute A and, similarly,
the occurrence of y in the R′-atom is in the position of attribute A′. Intuitively, the formula
m′L inverts the direction of the implication in mL. For every pair x, y of values, with x

coming from R[A] and y coming from R′[A′], we check that the left-hand side of m′L is
satisfied in the source. If that is the case then m′L requires the addition of an appropriate
link in L. We can formally define this process of adding links by using the chase as follows.

First, we note thatM can be seen as a schema mapping or data exchange setting [12]
where the link schema plays the role of a target schema. The constraints in Σ′ are a particular
case of first-order tgds [3], that is, source-to-target tgds where the left-hand side of the
tgd can contain an arbitrary first-order formula (rather than just a conjunction of atomic
formulas). As shown in [3], the chase with first-order tgds behaves in the same way as the
chase with regular source-to-target tgds. In particular, it terminates in polynomial time
in the size of the source instance. Furthermore, since there are no existentially quantified
variables in L, each m′L is a full tgd; hence, the chase produces no nulls and its result for a
given source instance I is unique.

Let us denote the result of the chase by U = chaseM(I). Intuitively, U contains all the
links that are possible based on just the matching constraints and inclusion dependencies.
However, when we consider the additional functional dependencies in Σ, not all the links in U
are possible due to conflicts. Instead we must consider subinstances of U that are consistent.
The maximal subinstances of U that are consistent are also known as the subset repairs [4]
of U .
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As it turns out, the subset repairs of U = chaseM(I) w.r.t. the functional dependencies
are precisely the maximal solutions w.r.t. the original entity linking specification.

I Proposition 6. Assume an entity linking specification E = (L,S,Σ) in L0, and letM =
(S,L,Σ′) be the source-to-link specification constructed from E. Furthermore, let F be the
set of functional dependencies in Σ. Then, for every source instance I, the set of maximal
solutions for I w.r.t. E is the same as the set of subset repairs of U = chaseM(I) w.r.t. F .

Based on the previous proposition and known results about the consistent answers of
projection-free queries [8], we immediately obtain the following tractability results.

I Theorem 7. Let E be an entity linking specification in L0. Then:
There is a polynomial-delay algorithm that, given a source instance I, enumerates all the
maximal solutions for I w.r.t. E.
There is a polynomial-time algorithm that, given a source instance I, computes the set of
certain links for I w.r.t. the class of maximal solutions and E.
There is a polynomial-time algorithm that, given a source instance I, computes the set of
ambiguous links for I w.r.t. the class of maximal solutions and E.

Proposition 6 provides a useful connection between an entirely declarative specification,
based on maximal solutions w.r.t. E , and a more procedural approach, based on chasing
withM and then applying repairs. It also gives us polynomial-time algorithms for the three
problems of interest. While this connection with repairs is directly applicable for L0 and the
semantics of maximal solutions, the situation becomes more complex for the more refined
semantics that we consider later, where we will need to employ graph-based techniques to
handle link values.

Deficiency of maximal solutions. We now point out the main deficiency of the semantics
based on maximal solutions: in general, there may be too many maximal solutions and,
hence, too few certain links. Intuitively, the semantics given by maximal solutions is too
coarse-grained and does not have enough discriminating power to identify the “good” links.
Consider our scenario in Example 2. We showed that there are four maximal solutions, J1,
J2, J3, and J4, for the given source instance I. It can be easily seen that the set of certain
links in this example is empty: there is no link that appears in all four maximal solutions
and, hence, no link qualifies as a certain link. On the flip side, every link that occurs in one
of the four maximal solutions is possible (and ambiguous). However, some links are clearly
stronger than others. In particular, the link L(s1, c1) relating “Citibank N.A.” to “Citigroup
Inc.” satisfies both the ∼ predicate and the Exec-based matching condition, while the other
links satisfy only the ∼ predicate. Intuitively, there is evidence that suggests that L(s1, c1)
is a strong link that should be differentiated from the other links.

To address the above issue, we next refine the class of “good” solutions by assigning
value to links, which in turn will increase the power of discriminating among the links. In
particular, it will allow to increase the number of links that qualify as certain, thus reducing
ambiguity.

4 Maximum-Value Solutions

We now consider a variation of the core language L0 that allows us to differentiate among
the links in a solution, based on the evidence supporting each link. More precisely, for each
link fact L(a, b) in a solution, we count the number of disjuncts that are satisfied among
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all the possible disjuncts α1, . . . , αk in the matching constraint mL. We also count, for
each satisfied disjunct αi = ∃z φi, the number of different instantiations of the existentially
quantified variables z that witness the satisfaction of φi. Intuitively, the larger these numbers
are, the better the links are.

While syntactically similar to L0, the new language will be semantically different due to
the presence of counting. In particular, in the new language, one cannot drop disjuncts that
are logically redundant, since such disjuncts may be important for measuring the strength of
the links, so dropping them would change the semantics. To make this behavior explicit, in
the notation for a matching constraint mL, we replace ∨ with a new symbol ⊕ as follows:

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ⊕ . . .⊕ αk).

Syntactically, everything else is the same as in L0. We call the resulting language L0(⊕).
While the notion of a solution is the same as for L0 and continues to be based on logical

satisfaction (where ⊕ is interpreted as ∨), the notion of a “good” solution in L0(⊕) will now
change to reflect the strength or the value of the links. Concretely, we will identify, among
the maximal solutions, a subclass of solutions that additionally maximize the total value of
the links.

Assume an entity linking specification E = (L,S,Σ) in L0(⊕). Let I be a source instance
and J be a solution for I w.r.t. E . We define the value of a link L(a, b) in the solution J as
follows.

First, if there is no matching constraint mL for L, we take the value of L(a, b) to be 1.
This is the case when there are no direct requirements on the link, other than the inclusion
and functional dependencies (if any). Furthermore, the link is consistent with other links in
the given solution (since it appears in the solution). Giving it a value of 1 (as opposed to
0, for example) ensures that the total value of a solution strictly increases with an increase
in the number of links. Assume now that there is a matching constraint mL for L. Since
(J, I) satisfies mL, it must be that I satisfies the right-hand side of mL where x and y are
instantiated with a and b. Assume first that there is no instantiation u0 of the vector of
universally quantified variables u such that I |= ψ(a, b,u0). This means that the matching
constraint for L(a, b) is satisfied for vacuous reasons. For the same reasons as above (in the
case of no matching constraint), we take the value of the link to also be 1. In all other cases,
we let the value of the link be:

Val(L(a, b)) = min
u0

(
∑
αi,z0

1). (1)

In the above, u0 ranges over all the distinct instantiations of the vector of universally
quantified variables u such that I |= ψ(a, b,u0). We take the minimum, over all such u0, of
the strength with which the source instance I satisfies the disjunction α1 ∨ . . . ∨ αk. This
strength is defined as a sum that gives a value of 1 for every disjunct αi such that I satisfies
αi(a, b,u0) and, moreover, for every distinct instantiation z0 of the vector z of existentially
quantified variables of αi that makes this satisfaction hold. (Recall that αi is, in general, of
the form ∃z φi(x, y,u, z).) In the case when the existentially quantified variables are missing,
then we count only 1 per disjunct.

Intuitively, the sum in formula (1) calculates the matching strength by counting the
number of satisfied disjuncts together with the evidence (i.e., the number of existential
witnesses), while the minimum guarantees that we take the weakest matching strength among
all u0.

The value of a solution J , denoted by Val(J), is then the sum of the values of the links
in J .
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I Definition 8. Assume an entity linking specification E = (L,S,Σ) in L0(⊕). Given a source
instance I, a maximum-value solution for I w.r.t. E is a link instance J such that: (1) (J, I)
satisfies Σ, and (2) for every J ′ such that (J ′, I) satisfies Σ, we have that Val(J ′) ≤ Val(J).

I Example 9. Recall Example 2. By applying formula (1), the values of the individual
links that can be formed between subsidiary ids and company ids, based on the matching
constraint, are:

Val(L(s1, c1)) = 2 Val(L(s1, c2)) = Val(L(s2, c1)) = Val(L(s2, c2)) = 1

The value of 2, for the link L(s1, c1), is obtained as follows. First, for the given s1 and c1,
there is only one way to instantiate the universally quantified variables sn, loc, cn, and hd
in the matching constraint. (This is because there is only one tuple for s1 in Subsid, and
one tuple for c1 in Company.) Hence, the min in the formula (1) is applied over a single
element. Then, it can be seen that both disjuncts in the matching constraint are satisfied
for s1 and c1. The first disjunct contributes a value of 1, since the disjunct is simply the
atomic formula sn ∼ cn. The second disjunct also contributes a value of 1, since there is
only one way to instantiate the existential variables in the Exec-based condition (with the
values corresponding for “E. McQuade”). Thus, the total strength with which the disjuncts
are satisfied is 2 and, hence, the value of the link is 2. A similar evaluation takes place for
the other three links, with the difference that only the first disjunct is satisfied.

Consider the earlier solutions J1, J2, J3, and J4, which were shown to be the maximal
solutions. By summing up the values of their links, we obtain that Val(J1) = Val(J2) = 3,
while Val(J3) = Val(J4) = 2. So, J1 and J2 are maximum-value solutions, while J3 and
J4 are not. It can also be seen that there is now one certain link, namely L(s1, c1), which
appears in both J1 and J2 and correctly relates “Citibank N.A.” with “Citigroup Inc”. This
in contrast with the case of the maximal solutions semantics where we had zero certain
links. Also, the two links L(s2, c1) and L(s2, c2), relating “CIT Bank” with either “Citigroup
Inc.” or “CIT Group Inc.” are now ambiguous, whereas in the case of the maximal solutions
semantics all four links were ambiguous. Finally, the ambiguity of L(s2, c1) and L(s2, c2) is,
intuitively, the best we can achieve here, since there is not enough information to differentiate
between the two links, based on the given specification. A human user is needed at this point
to further refine the entity linking specification, possibly by using additional information
(e.g., additional attributes or relations). J

A simple but important observation for L0(⊕) is that, even though Val(L(a, b)) was
defined relative to a solution J (in which L(a, b) occurs), the actual value of Val(L(a, b))
is independent of J . This is so because, in L0(⊕), the formula ψ and the disjuncts α1,
. . ., αk are over the source schema. In Section 6, we will consider richer languages, where
the α’s can also depend on link predicates. Even though the same definitions of value and
maximum-value solutions continue to apply for the richer languages, there we will have that
Val(L(a, b)) depends, in general, on the choice of the solution J in which it occurs.

I Proposition 10. If E is an entity linking specification in L0(⊕) and I is a source instance,
then every maximum-value solution for I w.r.t. E is also a maximal solution for I w.r.t. E.

The proposition is an immediate consequence of the fact that in L0(⊕), the value of a link
is independent of the solution in which it occurs, and is at least one. The reverse inclusion
does not hold, as seen in Example 9. Thus, for L0(⊕), maximum-value solutions form a strict
subclass of maximal solutions. As a consequence, the set of certain links over maximum-value
solutions is often a strict superset of the certain links over maximal solutions.
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We give next the main complexity result of this section, stating the tractability of L0(⊕).
In contrast with Theorem 7, which follows from results on data repairs, the proof of the
following theorem is of a different nature and makes use of maximum-weight matching type
of algorithms. In particular, it is based on extensions of results from [10, 16, 27].

I Theorem 11. Let E be an entity linking specification in L0(⊕). Then:
There is a polynomial-delay algorithm that, given a source instance I, enumerates all the
maximum-value solutions for I w.r.t. E.
There is a polynomial-time algorithm that, given a source instance I, computes the certain
links for I w.r.t. the class of maximum-value solutions and E.
There is a polynomial-time algorithm that, given a source instance I, computes the
ambiguous links for I w.r.t. the class of maximum-value solutions and E.

5 Connection to Probabilistic Approaches

In this section, we investigate the relationship between our declarative framework based on
disjunctive matching constraints and existing probabilistic methods for entity resolution.

We start by introducing a simple yet powerful extension of L0(⊕) that incorporates
weights and which we call L0(⊕,w). For each matching constraint

(mL) L(x, y)→ ∀u(ψ(x, y,u)→ α1 ⊕ . . .⊕ αk),

and for each disjunct αi ::= ∃z φi(x, y,u, z) there is now a weight function wφi(x, y,u, z)
that returns a number. Intuitively, with each disjunct that returns true or false we also
have a function that computes a weight (or a score) for that disjunct. The semantics of
L0(⊕,w) is the same as that of L0(⊕) except that when counting existential witnesses for
each disjunct we also multiply by the number returned by the weight function for that
disjunct. Theorem 11 goes through when we replace L0(⊕) by L0(⊕,w), by the same proof.

5.1 Comparison to Probabilistic Matching
The first connection we make is to a well-known class of probabilistic matching algorithms
that has originated with Fellegi and Sunter [15] and is at the core of many commercial
systems including IBM’s QualityStage [23], which we use as a representative example.

The probabilistic matching algorithm in QualityStage approaches record matching in
three steps. First, it applies pairwise comparison functions over the individual attributes (or
fields) in the two records to be compared. For each pair of attributes, the function returns
a score based on two probabilities (that must be learned or given to the system a priori):
the “match” probability m, which is the probability that two fields match given that it is
known that the two records match, and the “unmatch” (or accidental match) probability
u, which is the probability that two fields match but the records do not match. Secondly,
the algorithm aggregates the scores returned by individual comparison functions by taking
a weighted sum, where each comparison function has its own weight (also to be learned or
given to the system a priori). Finally, a link is returned if it has high-enough aggregated
score (higher than a threshold, which also must be learned or tuned).

We show that the first two steps in the above algorithm can be captured by a single
disjunctive matching constraint, while the third one can be captured as an implementation
step. We use a canonical example for deduplication of mailing lists.

I Example 12. The source schema S consists of two relation symbols: MasterList, repres-
enting a master list of mailing addresses, and NewList, a list with new mailing addresses
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that must be deduplicated against the first one. Both relations are assumed to have the
same schema, including personal attributes (e.g., last name ln, first name fn, etc.) and also
address attributes (e.g., street name street, etc.). Furthermore, we assume each record has
been assigned a record id (rid) and the deduplication problem is one of linking an rid from
the new list to a unique rid in the master list. The core functionality of a QualityStage
algorithm can be logically expressed by an entity linking specification E = (L,S,Σ) in
L0(⊕,w), where Σ consists of a single matching constraint:

L(rid1, rid2) →
∀ln1, fn1, . . . , street1, ln2, fn2, . . . , street2
( NewList(rid1, ln1, fn1, street1, . . .) ∧ MasterList(rid2, ln2, fn2, street2, . . .)
→ SOUNDEX(ln1, ln2) ⊕ SOUNDEX(fn1, fn2) ⊕ . . . ⊕ EDIT(street1, street2) ),

along with the obvious inclusion dependencies. Although QualityStage does not have
cardinality constraints, it is natural to add to our specification the functional dependency
L : rid1 → rid2. In the above matching constraint, each disjunct calls a QualityStage
built-in comparison function (e.g., SOUNDEX, which compares how similar two names sound,
or edit distance EDIT), by passing the arguments to be compared. In turn, each call to a
QualityStage comparison function returns a weight that depends on the given arguments and
also on the aforementioned probabilities m and u for the particular attribute. The weight
of each possible link is then the sum of the weights for all the disjuncts. Maximum-value
solutions are obtained as solutions (containing non-conflicting links) that maximize the total
value. (QualityStage has the additional requirement that only links whose weights are above
a certain threshold are considered possible. This can be easily added in an implementation
on top of our maximum-value semantics.)

We note that the above matching constraint uses only a fragment of L0(⊕,w) where each
disjunct is a simple atomic formula with no existential quantification and no conjunction. J

5.2 Comparison to Markov Logic Networks for Entity Resolution
We now connect to a richer probabilistic framework, that of Markov Logic Networks (MLNs)
[29], which in general allows for arbitrary first-order formulas to be interpreted in a prob-
abilistic sense. We show that a class of MLNs that is useful for entity resolution [30] is
captured, in a precise sense, by the fragment of L0(⊕,w) with no universal quantification.
Thus, rather surprisingly, a purely probabilistic approach (based on MLNs) can be captured
in a deterministic way (via L0(⊕,w)). We make use of this correspondence to obtain a
polynomial-delay algorithm for enumerating the maximum-probability worlds in the MLN
setting, and polynomial-time algorithms for finding the certain and ambiguous links over
maximum-probability worlds. These are the first polynomial-time results, to the best of our
knowledge, for MLN-based entity resolution.

5.2.1 Markov Logic Networks: Preliminaries
The fragment of MLNs that we consider is defined as follows. For simplicity of discussion,
we assume that there is one single link symbol L; the same definitions extend immediately
to the case of multiple link symbols in the schema. A linear MLN M is a set of formulas
σi → L(x, y) (for 1 ≤ i ≤ n), each with a weight wi, where σi is a conjunction of atomic
formulas over the source, and where the free variables of σi include x and y. Examples
of linear MLN formulas for entity resolution appear in [30], with the provision that the
role of the link relation is played there by the Equals predicate. Later we also consider
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extensions of linear MLNs where a link symbol may also appear in the left-hand side, thus
allowing for inter-dependencies among the links. We assume that the same requirements we
have for the presence of inclusion dependencies involving the link relation L in our entity
linking specifications are also required in the MLN setup; also, as with our entity linking
specifications, there may be functional dependencies on L.

Note that the formulas σi → L(x, y) in linear MLNs are source-to-link constraints; thus,
they fall in the category of rules that eagerly populate the link relations. As discussed
earlier in Section 2, such specifications may not have solutions. However, in the MLN
framework, these formulas are not required to be satisfied in a hard logical sense but rather
in a probabilistic sense, which allows for violations and which we explain next.

Fix a source instance I. For each “possible world”, that is, choice of link instance L0 for
L satisfying the inclusion dependencies w.r.t. I and the functional dependencies on L, we
assign a probability to that possible world, based on the source-to-link formulas inM and
their weights, as follows. Let K be an instance over the combined source and link schema,
and let γ be a formula over the combined schema. A (K, γ)-valuation (or simply valuation, if
K and γ are fixed or understood) is a function v from the free variables of γ to members of
the domain of K. Denote by |γ| the number of valuations that make γ true in K. Then the
probability assigned to a link instance L0 (for a given source instance I) is proportional (see
also [30]) to ew1|σ1→L|+···+wn|σn→L|, where the role of L is played by L0. (These probabilities
are scaled so that they sum up to 1, over all choices for L0.) Intuitively, the probability of a
world increases with the number of valuations that make a formula inM true and also with
the weight of the formula.

Define a link (a tuple over the L schema) to be certain (w.r.t. the class of maximum-
probability worlds) if it is in every maximum-probability world w.r.t.M (for the given source
instance I). Similarly, we define ambiguous links.

5.2.2 Translation to L0(⊕, w)
Given the linear MLN with formulas σi → L(x, y) with weight wi, for 1 ≤ i ≤ n, we define the
corresponding entity linking specification in L0(⊕,w) to consist of the matching constraint
L(x, y)→ ∃z1σ1 ⊕ · · · ⊕ ∃znσn, where zi consists of the free variables of σi other than x and
y, and where the disjunct ∃ziσi has weight wi, for 1 ≤ i ≤ n. Also, this corresponding entity
linking specification has the same inclusion dependencies and functional dependencies on L
as the linear MLN. Note that the weight function for each disjunct σi is a constant, whereas
for QualityStage we needed in general nonconstant weight functions for each disjunct in a
matching constraint.

LetM be an MLN, and let E be the corresponding entity linking specification in L0(⊕,w).
For a given source instance I, let us denote the set of maximum-probability worlds w.r.t.
M by Max Probability WorldsM(I), the set of solutions w.r.t. E by SolutionsE(I), and the
set of maximum-value solutions w.r.t. E by Max Value SolutionsE(I).We have the following
result, interrelating maximum-value solutions and maximum-probability worlds.

I Theorem 13. LetM be a linear MLN, let E be the corresponding entity linking specification
in L0(⊕,w), and let I be a source instance. Then:

Max Value SolutionsE(I) = Max Probability WorldsM(I) ∩ SolutionsE(I).
The certain links for I w.r.t. the class of maximum-probability worlds andM are precisely
the certain links for I w.r.t. the class of maximum-value solutions and E.

Note that the second part of the theorem holds even though the sets of maximum-value
solutions and of maximum-probability worlds do not coincide.
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The proof of the second part is based on a characterization of maximum-probability
worlds in terms of maximum-value solutions. (The details of this characterization will appear
in the full version of the paper.) We also use that characterization to prove the analog of
Theorem 11 for linear MLNs, that is, that for linear MLNs, there is a polynomial-delay
algorithm for enumerating the maximum-probability worlds, and polynomial-time algorithms
for finding the certain and ambiguous links.

5.3 Deterministic vs. Probabilistic: Discussion
We showed that our declarative language can capture important classes of probabilistic
methods, under a suitable extension that allows for weights. While this translation is
interesting in itself, we envision our language to be used as a deterministic framework (i.e.,
no probabilities) where the rules that govern the links are written out explicitly, by a domain
expert, as semantic rules with a true/false interpretation and (primarily) with no weights
(other than 1) in the disjuncts.

While probabilistic methods may provide more automation via learning algorithms to tune
or learn weights, probabilities, and thresholds, these methods are also more opaque in that it
is hard to explain the results other than in terms of scores or probabilities in the underlying
model. These methods may also be hard to customize when the results are not satisfactory.
A simple change in a parameter or a threshold may often have unintended consequences. In
contrast, a high-level deterministic language (such as L0(⊕)) provides a more transparent way
for linking entities where the results can be explained in terms of the rules (disjuncts) that
are satisfied. When the results are not satisfactory, rather than changing some numbers, a
domain expert can explicitly refine the entity linking logic by adding or removing disjuncts, or
by adding, removing or changing a conjunct within a particular disjunct. We note that similar
observations were made in the context of information extraction (IE) systems [7], where it
is observed that rule-based IE systems are the dominant systems adopted by commercial
companies for similar reasons (i.e., they are declarative, and easier to understand, to explain,
and to incorporate domain knowledge).

6 More Expressive Languages

We now explore extensions of the core language L0, to allow a matching constraint for a link
to possibly refer to other links. These extensions allow us to express what is usually called
collective entity resolution [6], that is, the process of creating multiple types of links together.

The matching constraint for a link symbol L has the same form mL as in Section 2.
However, in each disjunct αi ::= ∃z φi(x, y,u, z), the formula φi can now be a conjunction
of source and link atomic formulas, along with equalities and other built-in or user-defined
boolean predicates. If a specification is not allowed to have recursion among the link
predicates, we call the resulting language L1. Thus, in L1, there is a hierarchy of links, where
a matching constraint for a link L may call only links that are strictly lower in the hierarchy
than L. When recursion is allowed, we call the language L2. So L1 is a sublanguage of L2.
The corresponding variations for maximum-value solutions, L1(⊕) and L2(⊕), are defined
as in the case of L0. We also consider the corresponding weighted versions L1(⊕,w) and
L2(⊕,w).

I Example 14. Consider a bibliographic example where we link papers (from one database)
with articles (from another database), while also linking the corresponding venues. The source
schema S consists of Paper(pid, title, venue, year) and Article(ano, title, journal, year).
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Here, pid is a unique id assigned to Paper records, while venue could be a conference, a
journal, or some other place of publication. The Article relation represents publications
that appeared in journals, and ano is a unique id assigned to such records. The link schema
L consists of two relations: PaperLink (pid, ano) and VenueLink (venue, journal). The
first relation is intended to link paper ids from Paper with article numbers from Article,
when they represent the same publication. The second relation is intended to relate journal
values that occur in Article (e.g., “ACM TODS”) to journal values that occur under the
venue field in Paper (e.g., “TODS”).

A possible entity linking specification in L2 is E = (L,S,Σ), where Σ contains:

VenueLink(ven, jou) → (ven ∼1 jou)
∨ ∃pid, t1, y1, ano, t2, y2 ( Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)
∧ PaperLink(pid, ano) )

PaperLink(pid, ano) →
∀t1, ven, y1, t2, jou, y2 ( Paper(pid, t1, ven, y1)∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2)) ∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou)) )

The first constraint specifies that we may link a venue with a journal only if their string
values are similar (via some similarity predicate ∼1), or if there are papers and articles that
have been published in the respective venue and journal and that are linked via PaperLink.
The second constraint specifies that we may link a paper with an article only if their titles
are similar (via a similarity predicate ∼2) and their years of publication match exactly, or if
their titles are similar and their venues of publications are linked via VenueLink.

Additionally, Σ includes two functional dependencies on PaperLink: pid→ ano, ano→
pid, to reflect that each paper id in Paper must match to at most one article number in
Article, and vice-versa. We do not require any functional dependencies on VenueLink; thus,
we could have multiple venue strings in Paper matching with a journal string in Article,
and vice-versa. We also include in Σ the expected inclusion dependencies from the link
attributes to the corresponding source attributes (e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching
constraint for PaperLink, we obtain a different entity linking specification that is in L1.
While the advantage of such specification is that it is non-recursive, the modified specification
is more constrained: the matching conditions for PaperLink are stricter now (whereas before
we had a disjunction of conditions). As a result, there will be less possible links for the
modified specification. J

6.1 Results for L1 and L2

We now focus on the computational complexity of the relevant problems (computing/enu-
merating maximum-value solutions and computing certain and ambiguous links). We show
that we hit intractability in general, even in the case of L1, the non-recursive fragment of L2.
On the other hand, we show that there is a large syntactic fragment of L1 that is tractable.
Finally, we show that the correspondence between L0(⊕,w) and MLNs breaks when we go
to the richer L1(⊕,w).

Our first result, for L1(⊕), states the NP-completeness of determining whether there
exists a solution of at least a given value. In turn, this implies that there is no polynomial-time
algorithm to compute one maximum-value solution (unless P = NP). Hence, there is no
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polynomial-delay algorithm for the problem of enumerating maximum-value solutions (again,
unless P = NP).

I Theorem 15. There is a fixed entity linking specification E in L1(⊕) for which the following
problem is NP-complete: Given source instance I and positive integer k, is there a solution
for I w.r.t. E of value at least k?

We now turn our attention to the problems of computing certain and ambiguous links.
If C is a class of solutions and E = (L,S,Σ) is a fixed entity linking specification, then
recognizing certain links w.r.t. C and E is the following decision problem: given a source
instance I and a link l, is l a certain link for I w.r.t. C and E? The problem of recognizing
ambiguous links w.r.t. C and E is defined in a similar way. Here, we investigate the complexity
of recognizing certain and ambiguous links for the class of all maximum-value solutions for
entity linking specifications in L1(⊕). The main result is that there is an entity linking
specification in L1(⊕) for which no polynomial-time algorithms for recognizing certain and
ambiguous links exist, unless NP = coNP.

By Theorem 15, there is an entity linking specification E in L1(⊕) such that the following
problem is NP-complete: given a source instance I and a positive integer k, is there a solution
for I of value at least k? For that particular specification, recognizing certain links and
recognizing ambiguous links are trivial problems because no link is certain and every link is
ambiguous; intuitively, this is so because E encodes 3-Colorability, a problem that has
“symmetries”.

To establish the intractability of recognizing certain and ambiguous links, we bring into
the picture the concept of a frozen variable from constraint satisfaction. An instance of the
constraint satisfaction problem consists of a set of variables, a domain of values for each
variable, and a set of constraints that restrict the combinations of values that some tuples of
variables may take. A solution to such an instance is an assignment of values to variables so
that all constraints are satisfied. A variable is frozen if it takes the same value in all solutions
of a given instance. Jonsson and Krokhin [25] showed that for every constraint satisfaction
problem over a two-element domain the problem of recognizing frozen variables exhibits the
following trichotomy: it is in PTIME or it is coNP-complete or it is DP-complete. Recall
that DP is the class of all decision problems that can be written as the conjunction of a
problem in NP and a problem in coNP; in particular, both NP and coNP are subclasses
of DP (see also [28]). Constraint satisfaction problems over a two-element domain can be
thought of as variants of boolean satisfiability. An important such NP-complete variant is
Positive-1-in-3-SAT, which asks: given a positive 3CNF-formula ϕ (i.e., a 3CNF-formula
in which each clause has the form (x ∨ y ∨ z)), is there a 1-in-3 satisfying truth assignment
(i.e., a truth assignment that makes exactly one variable true in every clause of ϕ)? Theorem
6.1 in [25] implies that the following problem is DP-complete: given a positive 3CNF-formula
ϕ and a variable x of ϕ, is it true that there is a 1-in-3 satisfying truth assignment for ϕ
and the variable x is frozen? By exploiting the above result, we are able to establish the
intractability of recognizing certain and ambiguous links for entity linking specifications in
L1(⊕).

I Theorem 16. There is a fixed entity linking specification E in L1(⊕) such that:
Unless NP = coNP, there is no polynomial-time algorithm for recognizing certain links
w.r.t. to the class of all maximum-value solutions and E.
Unless NP = coNP, there is no polynomial-time algorithm for recognizing ambiguous
links w.r.t. to the class of all maximum-value solutions and E.
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While the above complexity results for L1 show intractability in general, the next theorem
gives special conditions under which the same problems become tractable for L1(⊕). However,
if any of the conditions fails to be satisfied, then we fall back into intractability. We say that
an entity linking specification is 2-level hierarchical if the link relations each fall into one of
two disjoint sets, the “top-level links” and the “bottom-level links”. The right-hand side of
the matching constraints for the bottom-level link relations can refer only to source relations
and built-in predicates (like equality, similarity, and string containment). The right-hand
side of the matching constraints for the top-level link relations can refer only to bottom-level
link relations, source relations, and built-in predicates.

I Theorem 17. Assume that the entity linking specification is 2-level hierarchical. Assume
also the following three conditions.
1. The top-level links have no FDs.
2. There are no universal quantifiers in the matching constraints for the top-level links.
3. Each disjunct in each matching constraint for each top-level link refers to at most one

bottom-level link relation.
Then there is a polynomial-delay algorithm to enumerate the maximum-value solutions, and
there are polynomial-time algorithms to compute the certain and the ambiguous links.

Furthermore, if any of the three assumptions (1), (2), or (3) is violated, then it may be
NP-complete even to decide the following: Given source instance I and positive integer k, is
there a solution for I of value at least k?

As an immediate application of the above theorem, recall the entity linking specification
in L2 for VenueLink and PaperLink in Example 14, and the entity linking specification in L1
obtained from it by the modification described in the same Example 14. The entity linking
specification in L1, where VenueLink is the top-level link, and PaperLink is the bottom-level
link, satisfies the assumptions of Theorem 17, and so enjoys the desirable properties in the
conclusions of (the positive part of) the theorem. Interestingly enough, it turns out that
even the entity linking specification in L2 for this example enjoys the desirable properties.

We close this section by considering the weighted versions L1(⊕,w) and L2(⊕,w).
Theorem 13 shows a precise correspondence between a linear MLN and its corresponding
entity linking specification in L0(⊕,w). Does this correspondence carry over to L1(⊕,w)
or L2(⊕,w)? Let us define extended linear MLNs to be defined like linear MLNs, except
that instead of taking σi to be a conjunction of atomic formulas over the source, we allow
these atomic formulas to also involve another link relation. We then define the corresponding
entity linking specification as before. It can be shown that the analog of Theorem 13 fails
(the details will appear in the full version of the paper). Thus, the two frameworks, one
based on deterministic entity linking specifications, the other based on probabilistic Markov
Logic Networks, diverge when allowing for inter-dependencies among links.

7 Related Work

As mentioned in the introduction, there has been extensive earlier work on entity resolution;
overviews can be found in the recent surveys [14] and [18] and the tutorial [19]. We have
also made in-depth connections to existing probabilistic approaches for entity resolution. We
now comment briefly on some other declarative approaches to entity resolution.

An early argument in favor of using link-centric constraints to specify links in a declarative
manner appeared in [1], but no formal language, semantics or algorithms were given there.
We already discussed Dedupalog [2], a high-level framework that enables collective entity
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resolution through the use of Datalog-like constraints. The result of executing a Dedupalog
program is an instance that satisfies the hard constraints of the program but may violate
the soft constraints of the program. Thus, a Dedupalog program is only a guideline for the
implementation, which is an algorithm that attempts to minimize the number of violations
of soft constraints. In contrast, the constraints we use form a truly declarative specification,
by stating only the necessary conditions that must be satisfied by links, thus decoupling the
specification from any implementation.

The language LinQL [20] uses SQL-like syntax to define similarity predicates among
string-valued attributes only. In contrast, we create links among structured entities, and
the LinQL similarity functions could be used as one ingredient in our framework. Matching
dependencies (MDs) were introduced in [13] to enforce equality on attribute values based on
matching conditions. In effect, MDs are source-to-link constraints that may modify source
relations. MDs have been given operational semantics in [5] via a variation of the chase
procedure that fixes violations of a given set of MDs. Like Dedupalog, MDs look only at
equivalence (same-as) type of linkage.

8 Concluding Remarks

We laid the foundation for a truly declarative entity-linking framework that is based on
specifying only the desired properties of the links. We identified a class of maximum-value
solutions for entity linking specifications, and studied the computational complexity of
producing such solutions and identifying certain and ambiguous links. This work opens
up several new directions in reasoning about entity linking specifications. These include
studying the implication and equivalence of entity linking specifications (e.g., deciding when
two such specifications have the same certain links), as well as delineating the expressive
power of the languages we introduced. More broadly, this work may also provide a different
perspective for linking heterogeneous entities in the Semantic Web.
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