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Abstract
Graph databases are currently one of the most popular paradigms for storing data. One of the
key conceptual differences between graph and relational databases is the focus on navigational
queries that ask whether some nodes are connected by paths satisfying certain restrictions. This
focus has driven the definition of several different query languages and the subsequent study of
their fundamental properties.

We define the graph query language of Regular Queries, which is a natural extension of unions
of conjunctive 2-way regular path queries (UC2RPQs) and unions of conjunctive nested 2-way
regular path queries (UCN2RPQs). Regular queries allow expressing complex regular patterns
between nodes. We formalize regular queries as nonrecursive Datalog programs with transitive
closure rules. This language has been previously considered, but its algorithmic properties are
not well understood.

Our main contribution is to show elementary tight bounds for the containment problem
for regular queries. Specifically, we show that this problem is 2Expspace-complete. For all
extensions of regular queries known to date, the containment problem turns out to be non-
elementary. Together with the fact that evaluating regular queries is not harder than evaluating
UCN2RPQs, our results show that regular queries achieve a good balance between expressiveness
and complexity, and constitute a well-behaved class that deserves further investigation.
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1 Introduction

Graph databases have become a popular data model over the last decade. Important
applications include the Semantic Web [3, 4], social network analysis [27], biological networks
[34], and several others. The standard model for a graph database is as an edge-labeled
directed graph [12, 30]: nodes represent objects and a labeled edge between nodes represents
the fact that a particular type of relationship holds between these two objects. For a survey
of graph databases, see [1, 5].

Conceptually, graph databases differ from relational databases in that the topology
of the data is as important as the data itself. Thus, typical graph database queries are
navigational, asking whether some nodes are connected by paths satisfying some specific
properties. The most basic query language for graph databases is that of regular-path queries
(RPQs) [24], which selects pairs of nodes that are connected by a path conforming to a
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regular expression. A natural extension of RPQs is the class of two-way regular-path queries
(2RPQs), which enable navigation of inverse relationships [14, 15]. In analogy to conjunctive
queries (CQs) and union of CQs (UCQs), the class of union of conjunctive two-way regular
path queries (UC2RPQs) enable us to perform unions, joins and projections over 2RPQs
[14]. The navigational features present in these languages are considered essential in any
reasonable graph query language [5].

More expressive languages have been studied, for example, in the context of knowledge
bases and description logics [11, 9, 8]. The class of nested two-way regular path queries
(N2RPQs) and the corresponding class of union of conjunctive N2RPQs (UCN2RPQs),
extends C2RPQs with an existential test operator, inspired in the language XPath [37, 7].
Typical results show that CN2RPQs is a well-behaved class, as it increases the expressive
power of C2RPQs without increasing the complexity of evaluation or containment [11, 8]. Yet
the regular patterns detected by 2RPQs and N2RPQs are still quite simple: they speak of
paths and a restricted form of trees. Thus, these languages cannot express queries involving
more complex regular patterns.

One key property that the query classes of UC2RPQs and UCN2RPQs fail to have is that
of algebraic closure. To see that, note that the relational algebra is defined as the closure of a
set of relational operators [2]. Also, the class of CQs is closed under select, project, and join,
while UCQs are also closed under union [2]. Similarly, the class of 2RPQs is closed under
concatenation, union, and transitive closure. In contrast, UC2RPQs and UCN2RPQs are
not closed under transitive closure. For example, the transitive closure of a binary UC2RPQ
query is not a UC2RPQ query. Thus, UC2RPQs and UCN2RPQs are not natural classes of
graph database queries.

In this paper we study the language of Regular Queries (RQ), which result from closing
the class of UC2RPQs also under transitive closure. We believe that RQ fully captures regular
patterns over graph databases. We define RQ as binary nonrecursive Datalog programs with
the addition of transitive closure rules of the form S(x, y)← R+(x, y). Such a rule defines S
as the transitive closure of the predicate R (which may be defined by other rules). The class
of RQ queries is a natural extension of UC2RPQs and UCN2RPQs and can express many
interesting properties that UCN2RPQs can not (see e.g. [11, 38, 36]), but its algorithmic
properties until now have not been well understood.

It is easy to see that the complexity of evaluation of regular queries is the same as
for UC2RPQs: NP-complete in combined complexity and NLogspace-complete in data
complexity. This is a direct consequence of the fact that regular queries are subsumed
by binary linear Datalog [21, 19]. Nevertheless, the precise complexity of checking the
containment of regular queries has been open so far. This is the focus of this paper.

The containment problem for queries asks, given two queries Ω and Ω′, whether the answer
of Ω is contained in the answer of Ω′, over all graph databases. Checking query containment
is crucial in several contexts, such as query optimization, view-based query answering,
querying incomplete databases, and implications of dependencies [13, 18, 28, 31, 26, 32]. A
non-elementary upper bound for regular query containment follows from [22, 23]. But, is the
complexity of the containment problem elementary or non-elementary? Given the importance
of the query-containment problem, a non-elementary lower bound for containment of regular
queries would suggest that the class may be too powerful to be useful in practice.

Our main technical contribution is to show elementary tight bounds for the containment
problem of regular queries. We attack this problem by considering an equivalent query
language, called nested unions of C2RPQs (nested UC2RPQs), which is of independent
interest. The intuition is that a regular query can be unfolded to construct an equivalent
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nested UC2RPQ. This is remiscent of the connection between nonrecursive Datalog and
UCQs: each nonrecursive program can be unfolded to construct an equivalent UCQ [2].
Unfoldings of regular queries may involve an exponential blow up in size, and thus we can
think of regular queries as a succinct version of nested UC2RPQs. We also analyze the
impact of this succinctness on the complexity of the containment problem.

Remarkably, despite the considerable gain in expressive power that comes with nesting
UC2RPQs, we are able to show that checking containment of nested UC2RPQs is Expspace-
complete, i.e, it is not harder than checking containment of UC2RPQs [14]. Our proof is
based on two novel ideas:
1. We reduce containment of nested UC2RPQs, to containment of a 2RPQ in a nested

UC2RPQ. The reduction is based on a serialization technique, where we represent
expansions of nested UC2RPQs as strings, and modify the original nested UC2RPQs
accordingly.

2. We show that checking containment of a 2RPQ E in a nested UC2RPQ Γ can be done in
Expspace. Here, we exploit automata-theoretic techniques used before, e.g. in [14, 16, 19]
to show that containment of UC2RPQs is in Expspace. Nevertheless, our proof requires
a deep understanding and a significant refinement of these techniques. The essence of the
proof is a suitable representation of the partial mappings of Γ to the expansions of E.
This representation is robust against nesting and does not involve a non-elementary blow
up in size.

This result yields a 2Expspace upper bound for containment of regular queries, and we
also provide a matching lower bound. Thus, the succinctness of regular queries is inherent
and the containment problem is 2Expspace-complete.

There are several other languages that are either more expressive or incomparable to
regular queries. One of the oldest is GraphLog [21], which is equivalent to first-order logic
with transitive closure. More recent languages include extended CRPQs [6], which extends
CRPQs with path variables, XPath for graph databases [35, 33], and algebraic languages
such as [29, 36]. Although all these languages have interesting evaluation properties, the
containment problem for all of them is undecidable. Another body of research has focused
on fragments of Datalog with decidable containment problems. In fact, regular queries were
investigated in [11] (under the name of nested positive 2RPQs), but the precise complexity
of checking containment was left open, with non-elementary tight bounds provided only for
strict generalizations of regular queries [38, 10, 11]. Interestingly, the containment problem is
non-elementary even for positive first-order logic with unary transitive closure [11], which is a
slight generalization of regular queries. Thus, regular queries seems to be the most expressive
fragment of first-order logic with transitive closure that is known to have an elementary
containment problem.

Organization. We present preliminaries in Section 2. In Section 3 we introduce regular
queries. The containment problem of regular queries is analyzed in Section 4. Finally, in
Section 5 we conclude the paper by discussing realistic restrictions on regular queries and
future work. Due to space limitations, we only present the main ideas and intuitions behind
our proofs. Complete proofs will be given in the full version of the paper.

2 Preliminaries

Graph databases. Let Σ be a finite alphabet. A graph database G over Σ is a pair (V,E),
where V is a finite set of nodes and E ⊆ V × Σ × V . Thus, each edge in G is a triple
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(v, a, v′) ∈ V ×Σ× V , whose interpretation is an a-labeled edge from v to v′ in G. We define
the finite alphabet Σ± = Σ∪ {a− | a ∈ Σ}, that is, Σ± is the extension of Σ with the inverse
of each symbol. The completion G± of a graph database G over Σ, is a graph database over
Σ± that is obtained from G by adding the edge (v′, a−, v) for each edge (v, a, v′) in G.

Conjunctive Queries. We assume familiarity with relational schemas and relational databases.
A conjunctive query (CQ) is a formula in the ∃,∧-fragment of first-order logic. We adopt a
rule-based notation: A CQ θ(x1, . . . , xn) over the relational schema σ is a rule of the form
θ(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where x̄ are the free variables, the variables in some ȳi not
mentioned in x̄ are the existential quantified variables and Ri is a predicate symbol in σ,
for each 1 ≤ i ≤ m. The answer of a CQ θ(x1, . . . , xn) over a relational database D is the
set θ(D) = {ā | D |= θ(ā))}, of tuples that satisfies θ in D. As usual, if θ is a boolean CQ,
that is, it has no free variables, we identify the answer false with the empty relation, and
true with the relation containing the 0-ary tuple.

We want to use CQs for querying graph databases over a finite alphabet Σ. In order to
do this, given an alphabet Σ, we define the schema σ(Σ) that consists of one binary predicate
symbol Ea, for each symbol a ∈ Σ. For readability purposes, we identify Ea with a, for each
symbol a ∈ Σ. Each graph database G = (V,E) over Σ can be represented as a relational
database D(G) over the schema σ(Σ): The database D(G) consists of all facts of the form
Ea(v, v′) such that (v, a, v′) is an edge in G.

A conjunctive query over Σ is simply a conjunctive query over σ(Σ±). The answer θ(G)
of a CQ θ over G is θ(D(G±)). A union of CQs (UCQ) Θ over Σ is a set {θ1(x̄), . . . , θk(x̄)} of
CQs over Σ with the same free variables. The answer Θ(G) is

⋃
1≤j≤k θj(G), for each graph

database G.
A (U)CQ with equality is a (U)CQ where equality atoms of the form y = y′ are allowed.

Although each CQ with equality can be transformed into an equivalent CQ (without equality)
via identification of variables, in some cases it will be useful to work directly with CQs with
equality. If ϕ is a CQ with equality, then its associated CQ (without equality) is denoted by
neq(ϕ).

C2RPQs. The basic mechanism for querying graph databases is the class of two-way regular
path queries, or 2RPQs [15]. A 2RPQ E over Σ is a regular expression over Σ±. Intuitively, E
computes the pairs of nodes connected by a path that conforms to the regular language L(E)
defined by E. Formally, the answer E(G) of a 2RPQ E over a graph database G = (V,E)
is the set of pairs (v, v′) of nodes in V for which there is a word r1 · · · rp ∈ L(E) such that
(v, v′) is in the answer of the CQ θ(x, y)← r1(x, z1), . . . , rp(zp−1, y) over G. Note that, when
p = 0, r1 · · · rp = ε and θ(x, y) becomes x = y.

The analogue of CQs in the context of graph databases is the class of conjunctive 2RPQs,
or C2RPQs [14]. A C2RPQ is a CQ where each atom is a 2RPQ, instead of a symbol in σ(Σ±).
Formally, a C2RPQ γ(x̄) over Σ is rule of the form γ(x̄)← E1(y1, y

′
1), . . . , Em(ym, y′m), where

x̄ are the free variables, the variables in {y1, y
′
1, . . . , ym, y

′
m} not mentioned in x̄ are the

existential quantified variables and Ei is a 2RPQ over Σ, for each 1 ≤ i ≤ m. The answer
γ(G) of γ over a graph database G is defined in the obvious way. A union of C2RPQs
(UC2RPQ) Γ over Σ is a finite set {γ1(x̄), . . . , γk(x̄)} of C2RPQs over Σ with the same free
variables. We define Γ(G) to be

⋃
1≤j≤k γj(G), for each graph database G.

Datalog. While UC2RPQs extends UCQs with a limited form of transitive closure, Datalog
extends UCQs with full recursion. A Datalog program Π consists of a finite set of rules
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of the form S(x̄) ← R1(ȳ1), . . . , Rm(ȳm), where S,R1, . . . , Rm are predicate symbols and
x̄, ȳ1, . . . , ȳm are tuples of variables. A predicate that occurs in the head of a rule is called
intensional predicate. The rest of the predicates are called extensional predicates. IDB(Π)
and EDB(Π) denote the set of intensional and extensional predicates, respectively. We
assume that each program has a distinguished intensional predicate called Ans.

Let P be an intensional predicate of a Datalog program Π and D a database with schema
EDB(Π). For i ≥ 0, P iΠ(D) denote the collection of facts about the intensional predicate
P that can be deduced from D by at most i applications of the rules in Π. Let P∞Π (D) be⋃
i≥0 P

i
Π(D). Then, the answer Π(D) of Π over D is Ans∞Π (D).

A predicate P depends on a predicate Q in a Datalog program Π, if Q occurs in the body
of a rule ρ of Π and P is the predicate at the head of ρ. The dependence graph of Π is a
directed graph whose nodes are the predicates of Π and whose edges capture the dependence
relation: there is an edge from Q to P if P depends on Q. A program Π is nonrecursive
if its dependence graph is acyclic, that is, no predicate depends recursively on itself. It is
well known that each nonrecursive program can be expressed as a UCQ, via unfolding of the
program.

A (nonrecursive) Datalog program over a finite alphabet Σ is a (nonrecursive) Datalog
program Π such that EDB(Π) = σ(Σ±). The answer Π(G) of a (nonrecursive) Datalog
program Π over a graph database G over Σ is Π(D(G±)).
I Remark. Typically, when we analyze a problem involving 2RPQs over Σ, we shall assume
that 2RPQs are represented as one-way nondeterministic finite automata (1NFA) over
alphabet Σ±. This does not affect the complexity of problems as we can translate a regular
expression to an equivalent automaton in polynomial time.

3 Regular Queries

We now introduce the class of Regular Queries (RQs) and establish some basic results
regarding the complexity of evaluation.

I Definition 1 (Regular query). A transitive closure rule is a rule of the form S(x, y) ←
R+(x, y), where S,R are predicate symbols and x, y are variables. We extend the notions of
intensional predicate, extensional predicate and dependence graph to a finite set of Datalog
and transitive closure rules in the natural way. A regular query Ω over a finite alphabet Σ is
a finite set of Datalog and transitive closure rules such that:
1. The extensional predicates of Ω belong to σ(Σ±).
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except maybe Ans, have arity 2.
4. The dependence graph of Ω is acyclic.

The semantics of regular queries is based on the semantics of Datalog. We define a
translation function λ that transforms a Datalog rule or a transitive closure rule into a set of
Datalog rules. If ρ is a Datalog rule then λ(ρ) = {ρ}. When ρ is a transitive closure rule of
the form ρ = S(x, y)← R+(x, y), then λ(ρ) contains the rules {S(x, y)← R(x, y), S(x, y)←
S(x, z), R(z, y)}. We translate each regular query Ω = {ρ1, . . . , ρk} into a Datalog program
λ(Ω) = λ(ρ1)∪· · ·∪λ(ρk). Then, the answer Ω(G) of a regular query Ω over a graph database
G is the answer of λ(Ω) over G.

I Example 2. Suppose we have a graph database of persons and its relationships. We have
relations knows, is a friend and is a good friend, abbreviated k, f and g, respectively. Thus
our alphabet is Σ = {k, f, g}. The following query returns all the pairs of persons connected
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by a chain of potential friends: p and p′ are potential friends, if either they are friends, or p
just knows p′, but they are connected with the same person by a chain of good friends.

G(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
S(x, y)← G+(x, y) R(x, y)← k(x, y), S(x, z), S(y, z)

By using ideas from [11], it can be shown that this query cannot be expressed by any
UCN2RPQ. J

Recall that the evaluation problem for regular queries asks, given a RQ Ω, a graph
database G and a tuple t̄, whether t̄ ∈ Ω(G). Each regular query can be translated to a
Datalog program, and in fact, this program is binary (all intensional predicates have arity 2,
except maybe by Ans) and linear (in the sense of [21]). As a consequence, we can derive
tight complexity bound for the evaluation problem [19, 21]. Interestingly, RQs are not harder
to evaluate than UCN2RPQs.

I Theorem 3. The evaluation problem for regular queries is NP-complete in combined
complexity and NLogspace-complete in data complexity.

4 Containment of Regular Queries

Given regular queries Ω and Ω′ over alphabet Σ, we say that Ω is contained in Ω′ if
Ω(G) ⊆ Ω′(G), for each graph database G over Σ. The containment problem for regular
queries asks, given two RQs Ω and Ω′, whether Ω is contained in Ω′. We devote the rest of
this paper to proving the following theorem:

I Theorem 4. The containment problem for regular queries is 2Expspace-complete.

We attack this problem by considering an equivalent language, called nested UC2RPQs.
As mentioned in the Introduction, each regular query can be unfolded to construct an
equivalent exponentially-sized nested UC2RPQ. Thus by considering first nested UC2RPQs,
we study the impact of succinctness in the complexity of the containment problem.

4.1 Containment of Nested UC2RPQs
To define formally the class of nested UC2RPQs we introduce a special type of rule. An
extended C2RPQ rule is a rule of the form S(x1, . . . , xn) ← R1(y1, y

′
1), . . . , Rm(ym, y′m),

where, for each 1 ≤ i ≤ m, either Ri is a 2RPQ or Ri is of the form Ri = P+
i , where Pi is a

binary predicate symbol. For a finite set Γ of extended C2RPQ rules, we define intensional
predicates and the dependence graph in the obvious way; now the 2RPQs mentioned in Γ
play the role of extensional predicates.

I Definition 5 (Nested UC2RPQ). A nested UC2RPQ Γ over Σ is a finite set of extended
C2RPQ rules such that:
1. All 2RPQs mentioned in Γ are defined over Σ.
2. There is a distinguished intensional predicate called Ans of arbitrary arity.
3. All intensional predicates, except possibly for Ans, have arity 2.
4. The dependence graph of Γ is acyclic.
5. For each intensional predicate S, there is a unique occurrence of S over rule bodies of Γ.
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Conditions (1)-(4) describe the basic structure of a nested UC2RPQ, and are analogous
to that of regular queries. The key condition is Condition (5). It disallows the use of a
predicate several times in different parts of the program. If the predicate S was already
defined, then S can be used in the body of only one rule, and in the body of that rule, it
can be used only once. It is important to note that S can occur several times in the head of
rules, that is, it can be defined by more than one rule.

The semantics of nested UC2RPQs is defined in terms of the semantics of regular queries.
For each 2RPQ E, let δ(E) be an equivalent regular query. We define a translation function
λ that maps an extended C2RPQ rule to a set of Datalog or transitive closure rules. Let ρ
be an extended C2RPQ rule of the form S(x1, . . . , xn)← R1(y1, y

′
1), . . . , Rm(ym, y′m), then

λ(ρ) contains the following rules:
One rule of the form S(x1, . . . , xn)← P1(y1, y

′
1), . . . , Pm(ym, y′m), where P1, . . . , Pm are

distinct fresh predicate symbols.
For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then we add rules in δ(E), where all the
predicate symbols in δ(E) expect by Ans are fresh symbols, and Ans is renamed to Pi.
If Ri = Q+, for a predicate symbol Q, then we add the rule Pi(x, y)← Q+(x, y).

We translate each nested UC2RPQ Γ = {ρ1, . . . , ρk} to a regular query λ(Γ) = λ(ρ1) ∪
· · · ∪ λ(ρk). Then, the answer Γ(G) of a nested UC2RPQ over a graph database G, is the
answer of λ(Γ) over G.

I Example 6. The following nested UC2RPQ corresponds to the unfolding of the query in
Example 2. Observe how the two occurrences of S now become two occurrences of distinct
predicates G1 and G2.

G1(x, y)← g(x, y) R(x, y)← f(x, y) Ans(x, y)← R+(x, y)
G2(x, y)← g(x, y) R(x, y)← k(x, y), G+

1 (x, z), G+
2 (y, z)

J

In this section, we provide tight complexity bounds for the containment problem for
nested UC2RPQs. As it turns out, checking containment of nested UC2RPQs is not harder
than checking containment of UC2RPQs.

I Theorem 7. The containment problem for nested UC2RPQs is Expspace-complete.

The lower bound holds trivially as containment of UC2RPQs is already Expspace-hard.
In order to prove the Expspace upper bound, we use the following approach:
1. We note that containment of nested UC2RPQs can be reduced to containment of boolean

nested UC2RPQs.
2. We show that containment of boolean nested UC2RPQs can be reduced to containment

of a boolean 2RPQ in a boolean nested UC2RPQ. The semantics of a boolean 2RPQ is
defined in the obvious way: the result is true if the answer of the 2RPQ is nonempty.

3. We prove an Expspace upper bound for containment of a boolean 2RPQ in a boolean
nested UC2RPQ.

Step (1) is straightforward and makes our subsequent arguments and definitions signifi-
cantly simpler. Thus, until the end of this section, we focus on boolean queries. When it is
clear from the context, we write 2RPQ and nested UC2RPQ, instead of boolean 2RPQ and
boolean nested UC2RPQ.

Step (2) is based on a serialization technique, where we represent expansions of nested
UC2RPQs as strings, and modify the original nested UC2RPQs accordingly. For step (3)
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we combine automata-theoretic techniques [14] with a suitable representation of the partial
mappings from a nested UC2RPQ to an expansion of a 2RPQ. This representation is robust
against nesting, in the sense that does not involve a non-elementary blow up in size.

4.1.1 Reduction to Containment of 2RPQs in nested UC2RPQs
We now show that checking containment of two nested UC2RPQs Γ and Γ′ over Σ can be
reduced to checking containment of a 2RPQ Ẽ in a nested UC2RPQ Γ̃ over a larger alphabet
∆. We start by defining the notion of expansion, which is central in the analysis of nested
UC2RPQs.

Let Γ be a nested UC2RPQ over alphabet Σ and let S be an intensional predicate. We
denote by rules(S) the set of rules in Γ such that S occurs in the head of the rule. An
expansion ϕ of S is a CQ with equality over Σ of the form

ϕ(x1, . . . , xn)← ϕ1(y1, y
′
1), . . . , ϕm(ym, y′m)

such that there is a rule ρ ∈ rules(S) of the form S(x1, . . . , xn)← R1(y1, y
′
1), . . . , Rm(ym, y′m)

and the following two conditions hold (note that n = 0 if S = Ans; otherwise, n = 2):
1. For each 1 ≤ i ≤ m, if Ri = E is a 2RPQ, then ϕi(yi, y′i) is a CQ with equality of the

form
ϕi(yi, y′i)← r1(yi, z1), r2(z1, z2), . . . , rp(zp−1, y

′
i)

where, p ≥ 0, r1 · · · rp ∈ L(E), and the zj ’s are fresh variables. When p = 0, we have that
r1 · · · rp = ε, and ϕi(yi, y′i) becomes yi = y′i.

2. If Ri = Q+ for an intensional predicate Q, then ϕi(yi, y′i) is a CQ with equality of the
form

ϕi(yi, y′i)← φ1(w0, w1), φ2(w1, w2), . . . , φq(wq−1, wq)

where q ≥ 1, w0 = yi, wq = y′i, w1, . . . , wq−1 are fresh variables and, for each 1 ≤ j ≤ q,
there is an expansion ζ(t1, t2) of Q such that φj(wj−1, wj) is the CQ obtained from ζ(t1, t2)
by renaming t1, t2 by wj−1, wj , respectively, and renaming the rest of the variables by new
fresh variables. In particular, the quantified variables of distinct φi and φj are disjoint.

An expansion of a nested UC2RPQ is an expansion of its predicate Ans. In particular,
any expansion of a nested UC2RPQ is a boolean query. The intuition is that an expansion
of a nested UC2RPQ is simply an expansion of its associated Datalog program [19, 16].
Containment of nested UC2RPQs can be characterized in terms of containment of CQs.
This is an easy consequence of the semantics of CQs [17, 39] and the fact that each nested
UC2RPQ is equivalent to the union of its expansions.

I Proposition 8. Let Γ and Γ′ be two nested UC2RPQs. Then, Γ is contained in Γ′ if and
only if, for each expansion ϕ of Γ, there exists an expansion ϕ′ of Γ′ and a containment
mapping from neq(ϕ′) to neq(ϕ).

Here, the definition of containment mapping is slightly different to the usual definition
[17], due to the presence of inverses:

I Definition 9. If θ and θ′ are two boolean CQs over Σ, then a containment mapping µ
from θ′ to θ is a mapping from the variables of θ′ to the variables of θ such that, for each
atom r(y, y′) in θ′, with r ∈ Σ±, either r(µ(y), µ(y′)) is in θ or r−(µ(y′), µ(y)) is in θ.

Given two nested UC2RPQs Γ and Γ′ over Σ, we shall construct a 2RPQ Ẽ and a nested
UC2RPQ Γ̃ such that Γ is contained in Γ′ if and only if Ẽ is contained in Γ̃. Our reduction
is based on two ideas:
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1. Expansions of Γ can be "serialized" and represented by serialized expansions, which are
strings over a larger alphabet ∆. More importantly, serialized expansions constitute a
regular language. Thus, we can construct a 2RPQ Ẽ such that L(Ẽ) is precisely the set
of serialized expansions of Γ. This technique has been already used before [14, 15].

2. Now we need to serialize Γ′. Proposition 8 basically tell us that Γ is contained in Γ′ iff Γ′
can be "mapped" to each expansion of Γ. We have replaced Γ by Ẽ. Thus, expansions
of Γ are replaced by serialized expansions. By modifying the 2RPQs mentioned in Γ′,
we construct a nested UC2RPQ Γ̃ such that Γ̃ can be mapped to a serialized expansion
W of Γ iff Γ′ can be mapped to the expansion of Γ represented by W . This is a new
technique and constitutes the crux of the reduction.

Serialization of Γ

We can represent each expansion ϕ of Γ, by a serialized expansion, that is, a string over a
suitable alphabet ∆. Suppose first that Γ is simply a C2RPQ, that is, a single rule of the
form Ans()← E1(y1, y

′
1), . . . , Em(ym, y′m). Then, an expansion ϕ corresponds to choose a

string ri = ri1, . . . , r
i
pi
∈ L(Ei), for each 1 ≤ i ≤ m. This can be represented by the string (a

similar representation is used in [14])

$y1r
1
1 · · · r1

p1
y′1$y2r

2
1 · · · r2

p2
y′2$ · · · $ymrm1 · · · rmpm

y′m$

Thus the alphabet ∆ contains Σ±, a separator $, and the variable set of Γ. Assume now
that Γ consists of two rules of the form

P (x, y)← F1(t1, t′1), . . . , Fn(tn, t′n) Ans()← P+(y1, y
′
1), E2(y2, y

′
2), . . . , Em(ym, y′m)

Suppose ϕ is the expansion of Γ resulting from choosing strings ri ∈ L(Ei), for each
2 ≤ i ≤ m, and for the atom P+(y1, y

′
1), choosing two intermediate variables z1 and z2, and

three expansions ϕ1, ϕ2, ϕ3 of P . Then, we represent ϕ by the string

$y1W1 ? $ ? W2 ? $ ? W3y
′
1$y2r

2y′2$ · · · $ymrmy′m$

where W1,W2,W3 are strings representing ϕ1, ϕ2, ϕ3, respectively, as defined before. Now,
the alphabet ∆ contains additionally the separator ? that represents fresh intermediate
variables that appear when we expand a transitive closure atom.

Applying this idea recursively, we can define serialized expansions for a general nested
UC2RPQ Γ. Additionally, it can be shown that serialized expansions can be detected by a
1NFA Ẽ over ∆. Moreover, we can construct Ẽ such that its size is polynomial in the size of
Γ. We say that Ẽ is the serialization of Γ.

Serialization of Γ′

We replaced Γ by Ẽ. Thus we replaced expansions of Γ by expansions of Ẽ, which are
of the form θW () ← w1(x0, x1), w2(x1, x2), . . . , wn(xn−1, xn), for a serialized expansion
W = w1 · · ·wn. Suppose W represents an expansion ϕ of Γ. Our goal is to construct Γ̃ such
that Γ̃ can be mapped to θW iff Γ′ can be mapped to neq(ϕ). To construct Γ̃, we modify Γ′
in order to translate mappings from Γ′ to neq(ϕ), into mappings from Γ̃ to θW (and vice
versa). Next we explain the main difficulties in the construction of Γ̃.

Let W be a serialized expansion representing an expansion ϕ of Γ. Note that some
symbols in W , as the variable symbols or the ? symbol, represent a particular variable in ϕ.
If the i-th symbol of W represents a variable in ϕ, we denote this variable by var(i). Note
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also that equality atoms in ϕ define equivalence classes over the variables of ϕ. We write
y ≡ϕ y′ when the variables y, y′ belong to the same equivalence class. Thus it could be
possible that var(i) ≡ϕ var(j), or even that var(i) = var(j), for two distinct positions i < j in
W . This implies that var(i) and var(j) are renamed exactly to the same variable in neq(ϕ).
Then, in order to simulate mappings from Γ′ to neq(ϕ), we have to consider positions i and
j as equivalent, that is, we must be able to "jump" between positions i and j, whenever
necessary.

To overcome this problem, we introduce the notion of equality string. Equality strings
are strings over ∆± with the following key property. For positions 1 ≤ i < j ≤ |W |,
var(i) ≡ϕ var(j) iff there is an equality string that can be "folded" into W from i to j.
Intuitively, a string α can be folded into W if α can be read in W by a two-way automaton
that outputs symbol r, each time it is read from left-to-right, and symbol r−, each time it is
read from right-to-left. For instance, consider the string W = $y1b

−ay2$. Then, by−1 y1b
−aa−

can be folded into W from 3 to 4, and b−aa−ay2$ can be folded into W from 3 to 6.
Next we give some intuition about equality strings. Equality strings are concatenations

of basic equality strings. There are several types of basic equality strings, each one detecting
a particular type of connection between variables. For example, suppose Γ is a query over
alphabet {a, b} defined by the rules

Q(t, s)← b(t, s) Ans()← a(x, y), a+ ε(x, z), Q+(w, z), aa(a+ b)(w, u)

and consider the expansion ϕ of Γ obtained by choosing the strings ε and aab for the second
and last atom, respectively, and no intermediate variables for Q+(w, z). This expansion is
represented by the following serialized expansion W

$x · a · y$x · z$w · $t · b · s$ · z$w · aab · u$

Note that x and z are equivalent in ϕ, since it contains the atom x = z (as we chose
the string ε). Then any occurrence of x is equivalent to any occurrence of z in W . In
particular, the first occurrence of x is equivalent to the last occurrence of z. This is witnessed
by an "horizontal" equality string x · a · y$x · z$w · $t · b · s$ · z, that is, a string satisfying
the regular expression x∆∗xz∆∗z. In general, we have to consider expressions of the form
x∆∗xz1∆∗z1z2∆∗ · · · zkz∆∗z, for a sequence of variables z1, . . . , zk. Note also that the first
occurrence of w is equivalent to the occurrence of t in W . This is because t is the first free
variable of the expansion b(t, s), which is renamed to w in ϕ by definition. This is witnessed
by a "downward" equality string w$t. In these two examples, we need to know that x and z
are in the same "level" and that the “level" of t is the level of w minus 1. In order to achieve
this, we incorporate levels to the symbols in ∆, thus the actual definition of ∆ is slightly
more involved that the one presented here.

Now we are ready to serialize the nested UC2RPQ Γ′. Let w = w1 · · ·wp be a string
over Σ±. The serialization of w, denoted by serial(w), is the set of strings over ∆± of the
form α0w1α1w2α2 · · ·αp−1wpαp, where, for each 0 ≤ i ≤ p, the string αi is either ε or an
equality string. If L is a language over Σ±, then serial(L) is the language over ∆± defined
by serial(L) = {w′ | w′ ∈ serial(w), for some w ∈ L}. It can be shown that if A is a 1NFA
accepting the language L over Σ±, then there exists a 1NFA A′ over ∆± accepting precisely
serial(L). Moreover, the size of A′ is polynomial in the size of A and ∆.

The serialization Γ̃ of Γ′ is the nested UC2RPQ over ∆ obtained from Γ′ by replacing
each 2RPQ E in Γ′ by serial(E). It is important to note that the serialization Γ̃ of Γ′ depends
on both Γ and Γ′. This is because it depends on ∆ (which, at the same time, depends on Γ).
Observe also that the size of Γ̃ is polynomial in the size of ∆ and Γ′, and thus polynomial in
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the size of Γ and Γ′. Furthermore, Ẽ and Γ̃ can be constructed in polynomial time from Γ
and Γ′. The following proposition concludes our reduction.

I Proposition 10. Let Ẽ and Γ̃ be the serialization of Γ and Γ′, respectively. Then, Γ is
contained in Γ′ if and only if Ẽ is contained in Γ̃.

The idea behind Proposition 10 is as follows. Suppose Γ is contained in Γ′. Let
θW ()← w1(x1, x2), w2(x3, x4), . . . , wn(xn, xn+1) be an expansion of Ẽ, whereW = w1 · · ·wn
is a serialized expansion representing ϕ. We know that there is a containment mapping µ
from neq(ϕ′) to neq(ϕ), for some expansion ϕ′ of Γ′. We have to find an expansion ψ of Γ̃
and a containment mapping ν from neq(ψ) to θW . The structure of neq(ψ) and neq(ϕ′) is
the same, except for the strings chosen when we expand 2RPQs. The internal variables of
an expansion are the fresh variables that appears when we expand 2RPQs (the zj ’s in the
definition of expansion). The rest of the variables are external variables. Thus, the idea is
that the external variables of neq(ψ) and neq(ϕ′) coincide, but the internal variables differ
according to the string chosen in both expansions. Now, for each external variable t in neq(ψ)
we define ν(t) as follows. Let s = µ(t) (we can apply µ to t as t is also an external variable of
neq(ϕ′)). Let y be a variable in ϕ that is renamed to s in the construction of neq(ϕ). Then,
we define ν(t) to be xj , for some 1 ≤ j ≤ n such that var(j) = y.

To conclude, we need to define the expansions of 2RPQs in neq(ψ) and extend ν to
the internal variables. Suppose that in neq(ϕ′) we expand a 2RPQ E, between external
variables t and t′, into the CQ a1(t, z2), a2(z2, z3), . . . , ak(zk, t′). We want to define an
expansion b1(t, o2), b2(o2, o3), . . . , b`(ok, t′) of serial(E) and extend ν to {o2, . . . , ok} (ν(t)
and ν(t′) are already defined). This amounts to finding a folding of B = b1 · · · b` into W
from i to j, where ν(t) = xi and ν(t′) = xj . We define B and this folding simultaneously.
We start with B = a1 · · · ak and analyze B from left to right. We examine the values
µ(t), µ(z2), . . . , µ(zk), µ(t′) in that order, and according to these values we fold B into W . If
all the values are internal variables, there is no problem: we can easily fold B into W . If we
see an external variable, we have a problem: we need to "jump" to an equivalent position in
order to continue our folding. Thus, we can interleave a suitable equality string α so we can
continue our folding into W . In this way, we end up with a string B ∈ L(serial(E)) (since we
only interleave equality strings with a1 · · · ak ∈ L(E)) and with a folding of B into W , as
required. The other direction of the proposition is similar.

4.1.2 Containment of 2RPQs in nested UC2RPQs: Upper Bound
Next we show that containment of a 2RPQ in a nested UC2RPQ is in Expspace. We exploit
automata-theoretic techniques along the lines of [14, 19, 16]. The main idea is to reduce
the complement of the containment problem of a 2RPQ E in a nested UC2RPQ Γ to the
non-emptiness of a suitable doubly exponential-sized 1NFA A. The crux of the construction
is an intermediate automaton AΓ that accepts all the (potential) expansions θ of E such
that there is a mapping from Γ to θ.

To show that checking containment of two UC2RPQs Γ′ and Γ is in Expspace, Calvanese
et al. exploit two-way NFAs (2NFAs) in order to construct an automaton AΓ that accepts
expansions θ of Γ′ such that Γ can be mapped to θ [14]. Moreover, they annotate the
expansions with variables of Γ, which indicate the potential mapping of Γ to the expansion.
This is possible because the number of possible annotations is bounded, as the number of
variables in the queries is bounded. But when Γ is a nested UC2RPQ the number of variables
involved in a mapping from Γ to θ is not bounded anymore, and thus it is by no means
obvious how to extend the techniques of [14] in this case. Instead, we follow a different
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approach, and construct AΓ directly as a 1NFA. The automaton AΓ scans the input θ from
left to right and in each step, it guesses a "partial mapping" from Γ to θ. This is formalized
with the notion of cut, which we define next.

We use the fact that the expansions for a 2RPQ E over Σ are CQs of a very particular form,
that we call linear CQs: they are sequences r1(z1, z2), . . . , rp(zp, zp+1) where r1 · · · rp ∈ L(E)
and each zj is distinct. Thus if we want to decide whether a 2RPQ E is contained in a nested
UC2RPQ Γ, we need only to look at those expansions of Γ that can be flattened into a linear
CQ, i.e., those that can actually be mapped to some linear CQ. Formally, given an expansion
ϕ of Γ, a linearization of ϕ is a linear CQ θ such that there is a containment mapping from
neq(ϕ) to θ. Furthermore, the set of linearizations of Γ is the union of all linearizations of all
the expansions of Γ. As we mentioned before, the idea of this proof is to show that the set of
linearizations of a nested UC2RPQ Γ can be characterized by an 1NFA AΓ.

The depth of a nested UC2RPQ is the maximum length of a directed path from some
2RPQ to the Ans predicate in its dependence graph, minus 1. For instance, the query in
Example 6 has depth 2.

Cuts. Let Γ be a nested UC2RPQ of depth 0, defined by the rules

Ans(x1, . . . , xn) ← Γ1
1(u1

1, v
1
1), . . . ,Γ1

m1
(u1
m1
, v1
m1

),
...

... (1)
Ans(x1, . . . , xn) ← Γ`1(u`1, v`1), . . . ,Γ`m`

(u`m`
, v`m`

),

Let Aij be a 1NFA associated with the 2RPQ Γij , for each 1 ≤ i ≤ ` and 1 ≤ j ≤ mi. Let
Vars(Γ, i) be the set of variables appearing in the i-th rule of query (1) above. A cut of Γ is an
`-tuple (C1, . . . , C`), where each of the Ci’s is either ⊥ or a triple of form (Previ, Samei,Si),
with Samei ⊆ Previ ⊆ Vars(Γ, i) and where Si is an mi-tuple Si = (si1, . . . , simi

) containing
a state of each of the Aijs, 1 ≤ j ≤ mi.

Using the definition of cuts for UC2RPQs, we can naturally extend the definition for cuts
of queries of depth > 0. Assume that the rules in Γ with the answer predicate in the head
follow form (1) above (note that now some of the Γijs might be predicates P+ instead of
RPQs). Then cuts for Γ are again `-tuples (C1, . . . , C`), the only thing that changes is the
definition of Si = (si1, . . . , simi

), for the cases when Γij is not a 2RPQ but a predicate of form
P+(x, y). In this case, sij is a cut of query P . Furthermore, initial cuts are those in which
each Previ is empty, and final cuts are those in which at least one of the Previs is equal to
Vars(Γ, i). A cut marks a variable x if in all Cis that are not ⊥ we have that x belongs to
Samei.

Let us now give some intuition on the notion of cuts. Suppose Γ is a C2RPQ and µ is
a mapping from Γ to a linearization θ of Γ. If we look at position k in θ, then the partial
mapping of µ until this position can be represented by a cut (Prev, Same,S): Prev are the
variables that are mapped to positions smaller or equal than k and Same are the variables that
are mapped precisely to position k. The intuition of S is as follows. We know that 2RPQs of
the form F (y, y′) with y, y′ ∈ (Prev ∪ Same) are already satisfied when looking up to k. The
only information that is missing is that of the 2RPQs that are "cut" by (Prev ∪ Same), that
is, the 2RPQs of the form F (y, y′) such that y ∈ (Prev ∪ Same) and y′ 6∈ (Prev ∪ Same) (or
vice versa). Suppose that µ expands F in a linearization given by the string r1 · · · rp and let
s1, . . . , sp+1 be an accepting run of F over r1 · · · rp. Consider the mapping µ over r1 · · · rp
and suppose rj is the last symbol to be mapped in positions smaller that k. Then S contains
the state sj . Note that this is the only information we need to extend this partial mapping
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to the one at position k + 1, and eventually to the global mapping µ. Since we are dealing
with UC2RPQs we also need to account for the case when a certain disjunct of Γ cannot be
mapped to a linearization: in this case the corresponding triple of the cut is set to ⊥.

The notion of cut is crucial for two reasons. First, transitions between cuts can be
captured by a 1NFA AΓ. Second, it is easy to see that the size of each cut is polynomial in
the size of Γ (here we use the fact that Γ is a nested UC2RPQ, instead of a regular query).
This implies that the set of all cuts, denoted by Cuts(Γ), is of exponential size in the size Γ.
This is important to obtain our desired Expspace upper bound.

Transition system based on cuts

Looking to characterize the set of linearizations of nested UC2RPQs, our next step is to
define a transition system T(Γ,w) defined over cuts of Γ and positions of a word w over Σ±,
i.e., over pairs from Cuts(Γ)× {1, . . . , p+ 1}.

Let us shed light on the intuition behind the system. We note first that our transition
system, while non-deterministic, can only advance to configurations relating greater or equal
positions in w. The idea is that a run of T(Γ,w) should non-deterministically guess the greatest
cuts, in terms of variables in Prev, that can be mapped to each position in w. For the same
reason, the transition system can only move towards configurations in which Prev is not
smaller that previous configurations.

I Example 11. Consider query Γ(x, y) ← g+(x, z), g+(y, z), stating that there is a path
labeled with g+ between both x and z, and y and z. It is not difficult to see that the CQ
θ = g(x, x′), g(x′, z), g(y′, z), g(y, y′) is a linearization of Γ. The string associated to θ is
w = ggg−g−. A valid run for T(Γ,w) over w starts in the initial cut in position 1. It moves to
cut ({x}, {x},S1), where S1 only needs to store the state where the automaton for query g+

is, after having read a g. We then advance to cut ({x, z}, {z},S2) in position 3, ({x, z}, {},S3)
in position 4, where now S3 again needs to store a state of the automaton for g+, and finally
to cut ({x, z, y}, {y},S4) in position 5. Since this last cut is final, we determine that T(Γ,w)
can advance form an initial state to a final state.

There is a technicality when formally defining this intuition, as variables x and y of Γ
need not be mapped right at the start or the end of the the computation of T(Γ,w). Thus to
state the correctness of this system we need to define a special type of run. Formally, given a
nested UC2RPQ Γ(x, y) and a word w, then pairs (C, p) and (C ′, p′) define an accepting run
for Γ over w if the following holds:

C marks x and C ′ marks y
There is an initial cut CI and a position pI of w such that one can go from (CI , pI) to
(C, p) by means of T(Γ,w).
There is a final cut CF and a position pF of w such that one can go from (C ′, p′) to
(CF , pF ) by means of T(Γ,w).

The following lemma states the correctness of our system.

I Lemma 12. Let Γ(x, y) be a nested UC2RPQ and w = r1, . . . , rp a string over Σ. There
are pairs (C, i) and (C ′, i′) over Cuts(Γ)× {1, . . . , p+ 1} that define an accepting run for Γ
over w if and only if there is an expansion ϕ of Γ and a containment mapping from neq(ϕ)
to the linear CQ Qw = r1(z1, z2), . . . rp(zp, zp+1) that maps x and y to variables zi and zi′ .
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Cut Automata. A straightforward idea to continue with the proof is to use the system
T(Γ,w) to create a deterministic finite automaton that accepts all strings that represent the
set of linearizations of Γ. However, after a careful analysis one realizes that doing this in a
straightforward way results in a much more expensive algorithm, so a little bit of extra work
has to be done to avoid additional exponential blowups in our algorithm. In a nutshell, the
idea is to extend the alphabet with information about cuts. Given Γ and w, we add to each
symbol of w the information about which cuts are reachable from configurations of the form
(C, p) in T(Γ,w), where 1 ≤ p ≤ |w|+ 1.

Formally, from Σ± we construct the extended alphabet Σ(Γ)× Σ± as follows. Assume
that Cuts(Γ) contains a number N of cuts. Then

If Γ is a nested UC2RPQ of depth 0, Σ(Γ) is an N + 2 tuple of subsets of Cuts(Γ), i.e.,
Σ(Γ) = (2Cuts(Γ))N+2. In other words, Σ(Γ) contains a subset of Cuts(Γ) for each cut in
Cuts(Γ) plus two additional subsets.
Otherwise assume that Γ is of form (1), and that P is the set of predicates occurring
in the rules of Γ that are not 2RPQs. Then Σ(Γ) = (2Cuts(Γ))N+2 × XP∈P Σ(P ). In
other words, it is the cartesian product of the set (2Cuts(Γ))N+2 with each Σ(P ), for every
predicate P that is a subquery of Γ.

I Lemma 13. Let Γ be a nested U2CRPQ. Then the number of different symbols in Σ(Γ)
is double exponential w.r.t. the size of Γ. Furthermore, each symbol in Σ(Γ) is of size
exponential w.r.t. Γ.

Let us now give some intuition regarding this construction. Let w be a string from
Σ(Γ) × Σ±, and let τ(w) be its projection over Σ±. Each symbol (up, ap), for up ∈ Σ(Γ)
contains, in particular, N + 2 subsets of Cuts(Γ), where N = |Cuts(Γ)|. The first subset of
Cuts(Γ) represent all those cuts C such that there is a position p̂ in w and an initial cut Ĉ
of Γ such that (C, p) is reachable from (Ĉ, p̂) using T(Γ,τ(w)). The second subset of Cuts(Γ)
contains all those cuts C such that there is a final cut Ĉ and a position p̂ so that (Ĉ, p̂) can
be reached from (C, p) using T(Γ,τ(w)). We have N subsets remaining, namely one for each
cut C of Γ. For each such cut C, its corresponding subset C contains all those cuts Ĉ for
which the configuration (Ĉ, p) is reachable from (C, p) using T(Γ,τ(w)).

If a string w from Σ(Γ) × Σ± satisfies the above conditions, we say that w has valid
annotations w.r.t. Γ. We show:

I Lemma 14. Let Γ be a nested U2CRPQ. Then the language of all strings over Σ(Γ)×Σ±
that have valid annotations w.r.t. Γ is regular. Furthermore, one can build an 1NFA that
checks this language of size double-exponential in the size of Γ.

We can finally proceed to build the desired 1NFA AΓ that gives the strings corresponding
to the linearizations of a nested UC2RPQ Γ. This 1NFA needs to simulate the system T(Γ,w),
from an initial cut of a nested UC2RPQ Γ to a final cut in which all variables have already
been mapped. Of course, we have to check, for every subquery Γij(uij , vij) of Γ, whether this
query is indeed satisfied when starting in the position assigned to variable uij and finishing
on the position assigned to vij . Since we might need to check for more than one such query
at any given point, synchronizing all these checks is non-trivial. We do it by relying on the
annotations added to strings, as explained above.

I Lemma 15. Given a nested UC2RPQ Γ over Σ, one can construct, in exponential time, a
1NFA AΓ over alphabet Σ(Γ)× Σ± such that AΓ accepts a string w = r1, . . . , rp with valid
annotations w.r.t. Γ if and only if there are pairs (C, i) and (C ′, i′) over Cuts(Γ)×{1, . . . , p+
1} that define an accepting run for Γ over w.
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Together with Lemma 12, this Lemma implies that AΓ characterizes all those strings w
that have valid annotations w.r.t. Γ such that τ(w) is accepted by Γ.

Main Proof. To decide containment of a 2RPQ E in a nested UC2RPQ Γ, we proceed as
follows:

Build an 1NFA AE for E, extended so that it works with the alphabet Σ(Γ)× Σ±.
Build the 1NFA AΣ(Γ) that checks for strings over Σ(Γ)× Σ± that are valid w.r.t. Γ.
Build the 1NFA AΓ, and complement it, obtaining the automaton (AΓ)C .

The language of (AΓ)C intersected with the language of AΣ(Γ) is precisely those strings
w with valid annotations such that its projection τ(w) over Σ± does not correspond to any
linearization of Γ. Thus, if we intersect this language with the one of AE , we have that the
resulting intersection is nonempty if and only if there is an expansion q for E that does not
correspond to any of the linearizations of Γ, i.e., if E is not contained in Γ.

Even though some of these automata can be of doubly exponential size w.r.t. E and Γ,
we can perform this algorithm in Expspace using a standard on-the-fly implementation. J

4.2 Containment of Regular Queries: upper and lower bounds
Expressing a regular query as a nested UC2RPQ may involve an exponential blow up in size.
Next we formalize this. Analogous to the case of nested UC2RPQs, the depth of a RQ is
the maximum length of a directed path from an extensional predicate to the Ans predicate
in its dependence graph, minus 1. For instance, the query in Example 2 has depth 2. The
height of a RQ or a nested UC2RPQ is the maximum size of rules(S) over all intensional
predicates S. Recall that rules(S) is the set of rules whose heads mention the predicate S.
Finally, the width of a RQ or a nested UC2RPQ is the maximum size of a rule body.

I Proposition 16. Let Ω be a regular query. Let h,w and d be the height, the width and the
depth of Ω, respectively. Then, Ω is equivalent to a nested UC2RPQ Γ of height at most
hO(wd), width at most wd+1, and depth at most d. In particular, the number of rules in Γ is
double-exponential in the size of Ω.

In view of this result, we cannot use Theorem 7 directly to show a 2Expspace upper
bound for the containment problem of two regular queries, as unfolding a regular query Ω
may result in a nested UC2RPQ Γ that is of double-exponential size with respect to Ω, and
thus the number of cuts in Γ might be of triple-exponential size with respect to Ω.

However, we can further refine the construction we have shown so that the number of
cuts depends exponentially only in the width and depth of Γ, but not on the height. The
idea is to define cuts of nested UC2RPQs not as a tuple (C1, . . . , C`) for each of the ` rules
in rules(Ans), but rather as a single triple (Prev,Same,S). Intuitively, this corresponds to
guessing a priori which disjunct or rule is to be used when witnessing linearizations of Γ.
Using this modified construction and Proposition 16 we can then show that the number of
cuts is again double-exponential in the size of Ω, which immediately leads to a 2Expspace
algorithm, following the ideas of the proof of Theorem 7.

In summary, the 2Expspace algorithm for containment of regular queries works as follows
(for simplicity we assume that the inputs are boolean queries).

1. Given regular queries Ω and Ω′, we unfold these queries to construct nested UC2RPQs Γ
and Γ′. By Proposition 16, we have that (i) |Γ′| is doubly-exponential in |Ω′|, (ii) the
width of Γ′ is single-exponential in |Ω′|, and (iii) the depth of Γ′ is polynomial in |Ω′|.
Similarly for Γ and Ω.

ICDT 2015



192 Regular Queries on Graph Databases

2. We construct from Γ and Γ′ the 2RPQ Ẽ and the nested UC2RPQ Γ̃ defined in the
reduction from Section 4.1.1. This is a polynomial-time reduction, thus basically all the
bounds from (1) still hold: |Ẽ| is doubly-exponential in |Ω|; |Γ̃| is doubly-exponential in
|Ω| and |Ω′| (note that Γ̃ now depends on Ω too); the width of Γ̃ is single-exponential in
|Ω′|; the depth of Γ̃ is polynomial in |Ω′|.

3. With the refined definition of cut explained above, we obtain that, for a nested UC2RPQ
Γ′′, the number of cuts is roughly |Γ′′|wd , where w and d is the width and depth of Γ′′,
respectively. Thus the number of cuts of our query Γ̃ is doubly-exponential in |Ω| and
|Ω′|. It follows that the size of the automata AẼ , AΣ(Γ̃) and (AΓ̃)C from Section 4.1.2 is
triple-exponential in |Ω| and |Ω′|. To decide whether Ω ⊆ Ω′, we check the intersection of
these automata for emptiness, which can be done in 2Expspace.

By combining techniques from [19, 14], we can show a matching lower bound for contain-
ment of regular queries. This conclude the proof of Theorem 4.

5 Conclusions

The results in this paper show that regular queries achieve a good balance between expressive-
ness and complexity: they are sufficiently expressive to subsume UC2RPQs and UCN2RPQs,
and they are not harder to evaluate than UCN2RPQs. While checking containment of
regular queries is harder than checking containment of UC2RPQs, it is still elementary.
Moreover, all generalizations of regular queries known to date worsen the complexity of the
containment problem to non-elementary or even undecidable. Thus we believe that regular
queries constitutes a well-behaved class that deserve further investigation.

There are several realistic restrictions on regular queries that lead to better complexity
bounds. For instance, it is easy to see that regular queries of bounded treewidth [20, 25] can
be evaluated in polynomial time in the size of the query and the database. For k ≥ 1, a
regular query has treewidth at most k, if the underlying graph of each rule has treewidth at
most k. Thus the good behavior of bounded treewidth C2RPQs [6] extends to regular queries.
Another natural restriction is that of bounded depth. As a corollary of our results in Section 4,
we have that containment for regular queries of bounded depth is Expspace-complete. This
is very interesting, as in many situations it may be natural to express regular queries as nested
UC2RPQs or to consider regular queries of small depth. In these cases, checking containment
is Expspace-complete, the same as for UC2RPQs. Note also that from Theorem 7, it follows
that containment of UCN2RPQs is Expspace-complete, which was not known to date.

An interesting research direction is to study the containment problem of a Datalog
program in a regular query. Decidability of this problem follows from [22, 23], nevertheless
the precise complexity is open. Although it is not clear how to extend the techniques
presented in this paper to containment of Datalog in regular queries, we conjecture that this
problem is elementary.
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