
Process-Centric Views of Data-Driven Business
Artifacts∗

Adrien Koutsos1 and Victor Vianu2

1 ENS Cachan, France
adrien.koutsos@ens-cachan.fr

2 UC San Diego & INRIA-Saclay
vianu@cs.ucsd.edu

Abstract
Declarative, data-aware workflow models are becoming increasingly pervasive. While these have
numerous benefits, classical process-centric specifications retain certain advantages. Workflow
designers are used to development tools such as BPMN or UML diagrams, that focus on control
flow. Views describing valid sequences of tasks are also useful to provide stake-holders with high-
level descriptions of the workflow, stripped of the accompanying data. In this paper we study the
problem of recovering process-centric views from declarative, data-aware workflow specifications
in a variant of IBM’s business artifact model. We focus on the simplest and most natural process-
centric views, specified by finite-state transition systems, and describing regular languages. The
results characterize when process-centric views of artifact systems are regular, using both linear
and branching-time semantics. We also study the impact of data dependencies on regularity of
the views.

1998 ACM Subject Classification H.2.3 Languages: Query languages, H.4.1 Office Automation:
Workflow management, B.4.4 Performance Analysis and Design Aids: Formal models, Verification

Keywords and phrases Workflows, data-aware, process-centric, views

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.247

1 Introduction

Data-driven workflows have become ubiquitous in a variety of application domains, including
business, government, science, health-care, social networks [37], crowdsourcing [7, 8], etc.
Such workflows resulted from an evolution away from the traditional process-centric approach
towards data-awareness. A notable exponent of this class is the business artifact model
pioneered in [31, 25], deployed by IBM in professional services. Business artifacts (or simply
“artifacts”) model key business-relevant entities, which are updated by a set of services that
implement business process tasks. This modeling approach has been successfully deployed in
practice [4, 3, 9, 14, 39]. In particular, the Guard-Stage-Milestone (GSM) approach [12, 23]
to artifact specification uses declarative services with pre- and post-conditions, parallelism,
and hierarchy. The OMG standard for Case Management Model and Notation (CMMN) [5],
announced last year, draws key foundational elements from GSM [28].

Declarative, high-level specification tools such as GSM allow to generate the application
code from the high-level specification. This not only allows fast prototyping and improves
programmer productivity but, as a side effect, provides new opportunities for automatic

∗ This work was partially supported by the National Science Foundation under award IIS-1422375.

© Adrien Koutsos and Victor Vianu;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 247–264

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.247
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

248 Process-Centric Views of Data-Driven Business Artifacts

verification. Indeed, the high-level specification is a natural target for verification, as it
addresses the most likely source of errors (the application’s specification, as opposed to the
less likely errors in the automatic generator’s implementation). This has spawned an entire
line of research seeking to trace the boundary of decidability of properties of such systems,
expressed in variants of temporal logic (see [18]).

While declarative specifications of workflows have many benefits, they also come with some
drawbacks. Workflow designers are used to traditional process-centric development tools, such
as BPMN (Business Process Model and Notation), workflow nets, and UML activity diagrams,
that focus on control flow while under-specifying or ignoring the underlying data. Such
process-centric views of workflows are also useful to provide stakeholders with customized
descriptions of the workflow, tailored to their role in the organization. For example, an
executive may only require a high-level summary of the business process. Descriptions of
the workflows as sequences of tasks stripped of data are intuitive and often sufficient for
many users. Thus, recovering the sequencing of tasks from declarative specification is often
desirable.

In this paper, we study views of business artifact runs consisting of the sequences of
services applied in each run1. This comes in two flavors, depending on whether we are
interested in linear runs alone, or in the more informative branching-time runs. We call these
the linear-time, resp. branching-time (service) views of the artifact system. The simplest
and most intuitive specification mechanism for such views consists of a finite-state transition
system, which can describe both ω-regular languages (for linear-time views), and regular
infinite trees of runs (for branching-time views).

I Example 1. To illustrate linear-time service views of declarative workflows, we consider a
variant of the running example of [11]. In the example, the customer can choose a product, a
shipment method and apply a coupon to the order. The order is filled in a sequential manner
as is customary on e-commerce web-sites. After the order is filled, the system awaits for
the customer to submit a payment. If the payment matches the amount owed, the system
proceeds to shipping the product. At any time before submitting a valid payment, the
customer may edit the order (select a different product) an unbounded number of times.
The linear-time service view of this workflow consists of the sequences of service names
that occur in all infinite runs of the system, and is specified by the finite-state transition
system shown in Figure 1. A more informative view, that captures the services applied in
branching-time runs of the system, is shown in Figure 2. Intuitively, the branching-time view
captures precisely which services may be applied at each point in a run. To understand the
difference with linear-time views, consider the states labeled edit coupon in Figures 1 and 2
(the latter highlighted in red). In the linear-time view specification, there is only one such
state, in which two actions can be taken: no coupon and apply coupon. However, the two
actions are not always applicable whenever the state edit coupon is reached. If no product
has an applicable coupon, the only action possible is no coupon. If for all products and
shipping method there is some applicable coupon, then both no coupon and apply coupon are
applicable. Finally, if some products have applicable coupons and others do not, then both
of the above cases may occur depending on the choice of product. The different cases are
captured by distinct states in the branching-time specification, while the information is lost
in the linear-time specification. Of course, the sequences of service names occurring in all
runs of the system are the same in both specifications.

1 In various formalizations of business artifacts, tasks are called services. As usual in program verification,
we take runs to be infinite, because many business processes run forever and because infinite runs
capture information lost by finite prefixes.

A. Koutsos and V. Vianu 249

edit prod

edit ship

edit coupon

processing

received payment

shipping

init

choose product

choose ship

no coupon

receive payment

payment ok

edit coupon apply coupon

edit prod

payment refused

ship

Figure 1 A linear-time process-centric view.

The main results of the paper establish under what circumstances the linear-time or
branching-time service views are regular (with effective specifications). We consider the
tuple artifact model used in [17, 11], and several natural restrictions derived from the GSM
design methodology, some of which have been considered in the context of verification [11].
We also consider the impact of database dependencies on regularity of the views. We show
that linear-time service views of tuple artifacts are ω-regular, but branching-time views are
not regular. We then consider artifacts obeying a natural restriction previously used in the
context of verification, called feedback freedom [11]. We show that branching-time views of
feedback-free artifacts are still not regular, but become so under a slightly stronger restriction
called global feedback freedom. This restriction is naturally obeyed by specifications resulting
from the GSM hierarchical design methodology.

It turns out that there is a tight connection between the result on view regularity and
the verification of artifact systems. Properties to be verified are specified using extensions
of the classical temporal logics LTL, CTL and CTL*, in which propositions are interpreted
as existential FO formulas on the tuple artifact and the underlying database. This yields
the logics LTL-FO, CTL-FO and CTL*-FO [17, 11, 20]. It can be shown that regularity
of the linear or branching-time service views for a class of artifact systems, with effectively
constructible specifications, implies decidability of LTL-FO, resp. CTL*-FO properties for
that class. The converse is false: decidability of LTL-FO or CTL*-FO properties may hold
even though the corresponding service views may not be regular. Thus, regularity is a
stronger result than decidability of verification. Indeed, our results imply that CTL*-FO
properties are decidable for globally feedback-free artifact systems. On the other hand,
we show that CTL-FO properties are undecidable for feedback-free artifact systems (also
implying non-regularity of their branching-time views).

The proof techniques developed here have additional side-effects beneficial to verification.
In our previous approaches to automatic verification of business artifacts [17, 11], given an
artifact specification A and an LTL-FO property ϕ, the verifier either certifies satisfaction
of the property or produces a counter-example run on some database D(A, ϕ) depending
on both A and ϕ. In contrast, the techniques of the present paper allow to show that,

ICDT 2015

250 Process-Centric Views of Data-Driven Business Artifacts

root

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

edit prod

edit coupon apply coupon

payment refused

ship

init

edit prod

edit ship

edit coupon

processing

edit coupon

processing

received payment

shipping

choose product

choose ship

no coupon

receive payment

payment ok

choose ship

no coupon

receive payment

edit prod edit prod

edit coupon apply coupon

payment refused

ship

init

Figure 2 A branching-time process-centric view.

for specifications and properties without constants, there exists a single database D(A),
depending only on A, which serves as a universal counter-example for all LTL-FO properties
violated by A. Pre-computing such a database may allow more efficient generation of
counter-examples for specific LTL-FO properties.

Decidability results on verification of branching-time properties of infinite-state artifact
systems are scarce and require significant restrictions. In [22, 13], decidability results are
shown for properties expressed in an FO extension of µ-calculus, under restrictions on the
artifact system orthogonal to ours. In [2], the artifact model is extended to a multi-agent
setting, and decidability results are shown for properties expressed in an FO extension of CTL
that can also refer to each agent’s knowledge using a Kripke-style semantics. Decidability of
similar FO extensions of CTL is shown in [27] for the case when the database consists of a
single unary relation.

2 Background

After some basic definitions, we present the tuple artifact model, the languages LTL-FO and
CTL(∗)-FO, and review previous results on verification of LTL-FO properties.

We assume an infinite data domain dom. A relational schema is a finite set of relation
symbols with associated arities. An database instance over a relational schema DB is a
mapping I associating to each R ∈ DB a finite relation over dom with the same arity as R
(denoted arity(R)). We assume familiarity with first-order logic (FO) over relational schemas
(e.g., see [1, 26]). FO formulas may use equality and constants from dom.

Artifact systems. In the tuple artifact model, an artifact consists of a finite set of variables
whose values evolve during the workflow execution. Transitions are specified declaratively,
using pre-and-post conditions that may query an underlying database.

A. Koutsos and V. Vianu 251

I Definition 2. An artifact schema is a a tuple A = 〈x̄,DB〉 where x̄ is a finite sequence
x1, . . . , xk of artifact variables and DB is a relational schema.

For each x̄, we also define a set of variables x̄′ = {x′ | x ∈ x̄} where each x′ is a distinct
new variable. In a transition, a primed variable represents the value of the variable in the
new artifact.

I Definition 3. An instance of an artifact schema A = 〈x̄,DB〉 is a tuple A = 〈ν,D〉 where
ν is a valuation of x̄ into dom and D is a finite instance of DB.

I Definition 4. A service over an artifact schema A is a pair σ = 〈π, ψ〉 where:
π(x̄), called pre-condition, is a quantifier-free2 FO formula over DB with variables x̄;
ψ(x̄, x̄′), called post-condition, is a quantifier-free FO formula over DB with variables
x̄, x̄′.

I Definition 5. An artifact system is a triple Γ = 〈A,Σ,Π〉, where A is an artifact schema,
Σ is a non-empty set of services over A, and Π is a pre-condition restricting the value of the
initial artifact variables (as above, a quantifier-free FO formula over DB, with variables x̄).

I Definition 6. Let σ = 〈π, ψ〉 be a service over an artifact schema A = 〈x̄,DB〉, and let D
be an instance over DB. Let ν, ν′ be valuations of x̄. We say that ν′ is a possible successor
of ν w.r.t. σ and D (denoted ν σ−→ ν′ when D is understood) iff:

D |= π(ν), and
D |= ψ(ν, ν′).

Note that ψ(x̄, x̄′) need not bind x̄′ to the database, so ν′ may contain values not in D.

I Definition 7. Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. A run of Γ on
database instance D over DB is an infinite sequence ρ = {(ρi, σi)}i≥0, where for each i ≥ 0,
ρi is a valuation of x̄, σi ∈ Σ, ρi

σi−→ ρi+1, and D |= Π(ρ0).

The assumption that runs are infinite is not a restriction, since finite runs can be artificially
extended to infinite runs by adding a self-looping transition. The linear-time semantics of
an artifact system Γ is provided by the set of all runs. Specifically, we denote by RunsD(Γ)
the set of all runs of Γ on database instance D, and by Runs(Γ) the union of RunsD(Γ) for
all databases D. The more informative branching-time semantics is provided by its tree of
runs, additionally capturing all choices of transitions available at each point in the run. More
precisely, TRunsD(Γ) is a labeled tree whose nodes are all finite prefixes of runs of Γ on D,
such that the children of a prefix are all prefixes extending it by one transition. Each node
ρ is labeled by the value of the last artifact tuple in ρ, and each edge from ρ to ρ.(ν, σ) is
labeled by σ. The global tree of runs TRuns∗(Γ) is the tree obtained by placing all trees
TRunsD(Γ) (for every database D) under a common root, connected by edges with a special
label init. The tree of runs allows to define properties in branching-time temporal logic, such
as “any client has the option of canceling a purchase at any time". Note that such a property
is not captured by the linear runs in Runs(Γ).

Temporal properties of artifact systems. Temporal properties are specified using exten-
sions of LTL (linear-time temporal logic) and CTL(∗) (branching-time temporal logics). We
begin with LTL. Recall that LTL is propositional logic augmented with temporal operators

2 ∃FO conditions can be easily simulated by additional artifact variables.

ICDT 2015

252 Process-Centric Views of Data-Driven Business Artifacts

G (always), F (eventually), X (next) and U (until) (e.g., see [32]). Informally, Gp says that
p holds at all times in the run, Fp says that p will eventually hold, Xp says that p holds
at the next configuration, and pUq says that q will hold at some point in the future and p
holds up to that point. For example, G(p→ Fq) says that whenever p holds, q must hold
sometime in the future.

The extension of LTL used in [11], called3 LTL-FO, is obtained from LTL by replacing
propositions with quantifier-free FO statements about particular artifact records in the run.
The statements use the artifact variables and the database. In addition, they may use global
variables, shared by different statements and allowing to refer to values in different records.
The global variables are universally quantified over the entire property. We illustrate LTL-FO
with a simple example.

I Example 8. The following specifies a desirable business rule for an e-commerce workflow
with artifact variables including amount_paid, amount_refunded, status, amount_owed
(with obvious meaning).

(ϕ) ∀xG((amount_paid = x ∧ amount_paid = amount_owed)
→ F(status = ”shipped” ∨ amount_refunded = x))

Property ϕ states that if a correct payment is submitted then at some time in the future
either the product is shipped or the customer is refunded the correct amount. Note the use
of universally-quantified variable x to relate the value of paid and refunded amounts across
distinct steps in the run sequence.

The branching-time extensions CTL-FO and CTL*-FO are defined analogously from
CTL and CTL*. Recall that CTL* augments LTL with path quantifiers A (for all) and E
(exists) while CTL restricts the use of path quantifiers so that they are always followed by a
temporal operator (see [21]).

We note that variants of LTL-FO have been introduced in [21, 35]. The use of globally
quantified variables is also similar in spirit to the freeze quantifier defined in the context of
LTL extensions with data by Demri and Lazić [15, 16].

Verification of artifact systems. We informally review the results of [17, 11] on verification
of LTL-FO properties of artifact systems. Classical model-checking applies to finite-state
transition systems. Checking that an LTL property holds is done by searching for a coun-
terexample run of the system. The finiteness of the transition system is essential and allows
to decide property satisfaction in pspace using an automata-theoretic approach (see e.g.
[10, 29]). In contrast, artifacts are infinite-state systems because of the presence of unbounded
data. The main idea for dealing with the infinite search space is to explore the space of runs
of the artifact system using symbolic runs rather than actual runs. This yields the following
result.

I Theorem 9. [17] It is pspace-complete to check, given an artifact system A and an
LTL-FO property ϕ, whether A satisfies ϕ.

Unfortunately, Theorem 9 fails even in the presence of simple data dependencies or
arithmetic. Specifically, as shown in [17, 11], verification becomes undecidable as soon as

3 The variant of LTL-FO used here differs from some previous ones in that the FO formulas interpreting
propositions are quantifier-free. By slight abuse we use here the same name.

A. Koutsos and V. Vianu 253

the database is equipped with at least one key dependency, or if the specification of the
artifact system uses simple arithmetic constraints allowing to increment and decrement by
one the value of some atributes. Hence, a restriction is needed to achieve decidability for
these extensions. We discuss this next.

To gain some intuition, consider the undecidability of verification for artifact systems
with increments and decrements. The proof of undecidability is based on the ability of such
systems to simulate counter machines, for which the problem of state reachability is known
to be undecidable [30]. To simulate counter machines, an artifact system uses an attribute
for each counter. A service performs an increment (or decrement) operations by “feeding
back” the incremented (or decremented) value into the next occurrence of the corresponding
attribute. To simulate counters, this must be done an unbounded number of times. To
prevent such computations, a restriction is imposed in [11], called feedback freedom, designed
to limit the data flow between occurrences of the same artifact variable at different times
in runs that satisfy the desired property. The formal definition considers, for each run, a
graph capturing the data flow among variables, and imposes a restriction on the graph.
Intuitively, paths among different occurrences of the same variable are permitted, but only
as long as each value of the variable is independent on its previous values. This is ensured
by a condition that takes into account both the artifact system and the property to be
verified, called feedback freedom. It turns out that artifact systems designed in a hierarchical
fashion by successive refinement, in the style of the Guard-Stage-Milestone approach [12, 23],
naturally satisfy the feedback freedom condition [19]. Indeed, there is evidence that the
feedback freedom condition is permissive enough to capture a wide class of applications of
practical interest. This is confirmed by numerous examples of real-life business processes
modeled as artifact systems, encountered in IBM’s practice [11].

Feedback freedom turns out to ensure decidability of verification in the presence of
arithmetic constraints, and also under a large class of data dependencies including key and
foreign key constraints on the database.

I Theorem 10. [11] It is decidable, given an artifact system Γ using arithmetic (linear
inequalities over Q) and whose database satisfies a set of key and foreign key constraints,
and an LTL-FO property ϕ such that (Γ, ϕ) is feedback free, whether every run of A on a
valid database satisfies ϕ.

Unfortunately, the complexity is non-elementary with respect to the number of artifact
variables.

3 Linear-time service views

In this section, we define linear-time service views of artifact systems and establish their
regularity. Throughout the paper, all results establishing regularity are effective, in the sense
that specifications can be effectively constructed.

We begin by recalling some basics on languages on infinite words. Let ∆ be a finite
alphabet. An ω-word over ∆ is an infinite sequence of symbols from ∆ and an ω-language is
a set of ω-words. An ω-language is ω-regular if it is accepted by a Büchi automaton (e.g.,
see [36]). A Büchi automaton is a non-deterministic finite-state automaton accepting the
infinite words for which some run of the automaton goes through an accepting state infinitely
often. A Büchi automaton in which every state is accepting is also referred to as a finite-state
transition system (or safety automaton, see [24]). Thus, a finite-state transition system
defines the ω-words for which there is some non-blocking run of the system with transitions
labeled by the symbols of the word.

ICDT 2015

254 Process-Centric Views of Data-Driven Business Artifacts

Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. For each run ρ =
{(ρi, σi)}i≥0 of Γ, the service view of ρ, denoted S(ρ), consists of the ω-word (σi)i≥0. The
linear-time service view of Γ is Slin(Γ) = {S(ρ) | ρ ∈ Runs(Γ)}. We say that Slin(Γ) is
effectively ω-regular for a class of artifact systems if a Büchi automaton defining Slin(Γ) can
be effectively constructed from each Γ in that class.

We will show that Slin(Γ) is effectively ω-regular for artifact systems. To do so, we
will use symbolic representations of the runs of Γ. Let C be the set of constants used in
Γ. To each x ∈ x̄ we associate an infinite set of new variables {xi}i≥0, and we denote
x̄i = {xi | x ∈ x̄}. An equality type for variables ȳ is an equivalence relation on ȳ ∪ C in
which no distinct constants in C are equivalent. An isomorphism type of ȳ is a pair (H, ε)
where ε is an equality type for ȳ and H is an instance of DB using elements in ȳ ∪ C that is
consistent with ε.

I Definition 11. A symbolic run % of Γ is a sequence {(x̄i, Hi, εi, σi)}i≥0 such that, for each
i ≥ 0:
(i) (Hi, εi) is an isomorphism type of x̄i ∪ x̄i+1,
(ii) the pre-condition Π of Γ holds in the restriction of (H0, ε0) to x̄0,
(iii) (Hi, εi) and (Hi+1, εi+1) agree on x̄i+1,
(iv) the pre-condition of σi holds in the restriction of (Hi, εi) to x̄i, and
(v) the post-condition of σi holds in (Hi, εi).

We denote by SRuns(Γ) the set of symbolic runs of Γ.
It is easy to see that each run of Γ has a corresponding symbolic run, representing the

consecutive isomorphism types of the artifact tuples in the run. We make this more precise.
Let ≈ be the transitive closure of ∪i≥0εi. Clearly, ≈ is an equivalence relation on ∪i≥0x̄i ∪C.
It is easily seen that εi is the restriction of ≈ to x̄i ∪ x̄i+1 ∪ C. Let [xi]εi and [xi]≈ denote
the equivalence class of xi in εi, resp. ≈.

I Definition 12. Let {(x̄i, Hi, εi, σi)}i≥0 be a symbolic run of Γ. An enactment of % is a
triple (D, ρ, θ) where D is a database over DB, ρ = {(ρi, σi)}i≥0 is a run of Γ over D, and θ
is a mapping from (∪i≥0x̄i) to dom such that, for each i ≥ 0:

θ(xi) = ρi(x) for every x ∈ x̄,
if y, z ∈ x̄i ∪ x̄i+1 and (y, z) ∈ εi then θ(y) = θ(z)
the function θ̂ defined by θ̂([y]εi) = ρ(y) for y ∈ x̄i ∪ x̄i+1 is an isomorphism from Hi/εi
to D|(ρi ∪ ρi+1).

I Lemma 13. For every database D over DB and run ρ of Γ over D there exists a symbolic
run % of Γ and a mapping h from (∪i≥0x̄i) to dom such that (D, ρ, h) is an enactment of %.

Proof. The run % can be easily constructed by induction from ρ. J

Consider the converse of Lemma 13: does every symbolic run have an enactment on
some database? This is much less obvious. It is easy to construct, for each symbolic run
% = {(x̄i, Hi, εi, σi)}i≥0, a triple (D%, ρ, h) satisfying the definition of enactment except for
the finiteness of D%. This can be done as follows. The (infinite) domain of D% simply
consists of all equivalence classes of ≈, h maps each xi to [xi]≈, the relations are interpreted
as (∪i≥0Hi)/≈, and ρ is the image of % under h. However, it is far less clear that a finite
database D% exists with the same properties. Intuitively, different classes of ≈ must be
merged in order to obtain a finite domain, and this must be done consistently with the Hi’s.
We are able to show the following key result.

A. Koutsos and V. Vianu 255

I Theorem 14. Every symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ has an enactment (D%, ρ, θ)
where the size of D% is exponential in |x̄|.

Proof. The roadmap of the proof is the following. We first define a normal form for artifact
systems, called linear propagation form, requiring that the only equalities in pre-and-post
conditions of services be of the form x = x′ where x ∈ x̄ (excepting equalities with constants).
We show that for every artifact system Γ we can construct an artifact system Γ̄ in linear-
propagation form, and a mapping h from the symbolic runs of Γ to symbolic runs of Γ̄, such
that from every enactment of h(%) one can construct an enactment of %. Finally, we show
that every symbolic run of an artifact system in linear-propagation form has an enactment.
This is done as follows. Consider an artifact system Γ = 〈A,Σ,Π〉 with A = 〈x̄,DB〉 in linear
propagation form. Recall that for a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ, we denote by
≈ the transitive closure of (∪i≥0εi) and by [xi]≈ the class of xi wrt ≈. Note that, because
Γ is in linear propagation form, we can assume that [xi]≈ contains only variables xj . We
define span([xi]≈) = {j | xj ≈ xi}. Clearly, each span is an interval. Next, for x ∈ x̄ we
define lane(x) = {[xi]≈ | i ≥ 0} (totally ordered by [xi]≈ ≤ [xj]≈ iff i ≤ j). The remainder
of the proof consists of defining certain finite characteristics of equivalence classes of ≈, so
that different classes in a given lane can be collapsed if they share the same characteristics.
This yields an enactment of the symbolic run over the finite database whose elements are
the collapsed classes. We omit the rather involved technical details. J

We can now show the regularity of the service view of Γ. From Lemma 13 and Theorem
14 it follows that Slin(Γ) = {S(%) | % ∈ SRuns(Γ)}. We can construct a finite-state transition
system F(Γ) accepting the latter as follows:

States: the isomorphism types (H, ε) of x̄ ∪ x̄′,
Initial states: the states whose restrictions to x̄ satisfy Π
Transitions: (H, ε) σ−→ (H̄, ε̄) if (H, ε) satisfies items (iv)− (v) of Definition 11 for service
σ and (H, ε)|x̄′ and (H̄, ε̄)|x̄ are identical modulo renaming x̄′ to x̄.

The ω-language accepted by F(Γ) consists of the sequences of transition labels in all
infinite runs of the system starting from some initial state. By construction, this is precisely
{S(%) | % ∈ SRuns(Γ)}. Thus, we have the following.

I Theorem 15. Slin(Γ) is effectively ω-regular for artifact systems Γ.

Verification vs. ω-regularity. We note that the effective ω-regularity of Slin(Γ) implies
decidability of LTL-FO properties of artifact systems, but is strictly stronger. Decidability
of verification follows from ω-regularity because for each Γ and LTL-FO property ξ = ∀ȳϕf ,
and each choice of isomorphism type for ȳ, one can construct an artifact system Γϕf and an
LTL formula ϕ̄ such that Γ |= ϕf (ȳ) iff Slin(Γϕf) |= ϕ̄. Essentially, Γϕf is obtained, for a
fixed choice of ȳ, by augmenting the artifact variables and pre-and-post conditions of each
service of Γ in order to record the truth values of the FO-components of ϕf in each transition.
Since a finite-state transition system specifying Slin(Γϕf) can be effectively constructed, this
reduces verification to classical finite-state LTL model-checking, and yields decidability. The
converse is falsified by results of [34] which imply that artifact systems equipped with a total
order do not have ω-regular service views, yet verification of LTL-FO properties is decidable.

Universal test databases. The above results, notably Theorem 14, have some potentially
significant benefits for verification. We can show the following rather surprising result.

ICDT 2015

256 Process-Centric Views of Data-Driven Business Artifacts

I Theorem 16. Let Γ be a constant-free artifact system with k artifact variables. One can
construct a database D∗ of size double exponential in |x̄| such that for every constant-free
LTL-FO formula ξ over Γ, Γ |= ξ iff RunsD∗(Γ) |= ξ.

Proof. Consider an LTL-FO formula ξ over Γ. As shown in [11] (Lemma 3.3), global variables
can be easily eliminated, so one can assume that ξ = ϕf . Let % = {(x̄i, Hi, εi, σi)}i≥0 be a
symbolic run of Γ. Satisfaction of ξ by % is defined similarly to actual runs, by evaluating
each FO component of ϕf on the consecutive Hi/εi. Consider an enactment (D, ρ, θ) of %,
where ρ = {(ρi, σi)}i≥0. Because Hi/εi and D|(ρi ∪ ρi+1) are isomorphic, it is clear that
% |= ξ iff ρ |= ξ. This in conjunction with Lemma 13 and Theorem 14 shows that Γ |= ξ iff
every symbolic run of Γ satisfies ξ. Because each symbolic run has an enactment on some
database of size exponential in k, Runsk(Γ) = ∪{RunsD(Γ) | |D| ≤ exp(k)} are enactments
of all symbolic runs of Γ. Thus, Γ |= ξ iff all runs in Runsk(Γ) satisfy ξ. Suppose Γ and
ξ are constant free. There are finitely many non-isomorphic databases of size bounded by
exp(k), and let D∗ be their disjoint union. Clearly, Γ |= ξ iff all runs over D∗ satisfy ξ. The
size of D∗ is double exponential in k. J

Thus, D∗ acts as a universal test database (akin to an Armstrong relation) for satisfaction
of constant-free LTL-FO properties of Γ. In particular, a fixed D∗ can be pre-computed and
used to generate a counter-example run for every constant-free LTL-FO property violated
by Γ. In contrast, the counter-example databases constructed by the algorithms in [17, 11]
depend on both the specification and property. Note that, if Γ and ξ use some set C of
constants, then constructing a single universal test database is no longer possible: one needs
a separate database for each isomorphism type over C. Constructing the most concise test
databases possible, and evaluating the practical benefits, are important issues yet to be
explored.

4 Branching-Time Service Views

In this section we consider branching time service views of artifact systems. Let Γ = 〈A,Σ,Π〉
be an artifact system, where A = 〈x̄,DB〉. Recall the branching-time semantics of Γ, given by
TRuns∗(Γ). The branching-time service view of Γ, denoted T S∗(Γ), is the tree obtained from
TRuns∗(Γ) by ignoring the content of the nodes and retaining only the service labels of the
edges. We use the following definition of regularity for infinite trees: T S∗(Γ) is regular if it is
isomorphic to the unfolding of a finite-state transition system with edge labels (equivalently,
T S∗(Γ) has finitely many non-isomorphic subtrees). Analogously to the linear case, we say
that T S∗(Γ) is effectively regular for a class of artifact systems if such a finite-state transition
system can be effectively constructed from each Γ in that class.

As we shall see, it turns out that branching-time service views of artifact systems are
generally not regular. One might hope that regularity holds for artifacts obeying the natural
feedback-free property that has proven so effective in overcoming undecidability of LTL-FO
properties for specifications with dependencies and arithmetic [11]. Unfortunately, this is
not the case. Indeed, we show that even very simple CTL-FO properties are not decidable
for feedback-free artifacts, thus implying that their branching time service views are not
effectively regular.

I Theorem 17. It is undecidable, given an artifact system Γ and a CTL-FO formula ξ such
that (Γ, ξ) is feedback-free, whether Γ |= ξ.

Proof. The proof is by a reduction from the Post Correspondence Problem (PCP) [33].
We build upon a result of [17] (Theorem 4.2) showing that checking LTL-FO properties is

A. Koutsos and V. Vianu 257

undecidable for databases satisfying a functional dependency (FD). This uses a reduction
from the PCP. Next, we note that satisfaction of FDs by the database can be expressed as a
CTL-FO property. Using this, we wish to mimick the reduction from the PCP that works
for databases with FDs. However, there is a glitch: LTL-FO model checking is decidable
for feedback-free specifications and properties even in the presence of FDs. Thus, a direct
reduction from the linear-time case is not possible. Instead, we show how feedback freedom
can be circumvented collectively by different branches of the tree of runs while being obeyed
by each individual branch, and use this to adapt the PCP reduction to the branching-time
framework. J

Similarly to the linear-time case, it can be shown that effective regularity of T S∗(Γ)
implies decidability of CTL(∗)-FO properties. We therefore have the following.

I Corollary 18. T S∗(Γ) is not effectively regular for feedback-free4 artifact systems Γ.

Note that Corollary 18 does not exclude the possibility that T S∗(Γ) might be regular.
However, it says that even if this holds, a transition system defining T S∗(Γ) cannot be
effectively constructed from each Γ.

Intuitively, feedback-freedom is ineffective in the branching-time setting because the
restriction can be circumvented collectively by different branches of the tree of runs while
being obeyed by each individual branch. Fortunately, specifications resulting from hierarchical
design methodologies such as the Guard-Stage-Milestone discussed earlier, satisfy a stronger
restriction that holds in the global run, called global feedback freedom. In a nutshell, global
feedback freedom extends feedback freedom by having the computation graph take into
account connections among variables in the entire tree of runs rather than just individual
branches. We omit the technical details. We will show the following.

I Theorem 19. T S∗(Γ) is effectively regular for globally feedback-free artifact systems Γ.

The proof requires some technical development, which we sketch in the remainder of the
section. The basic idea is to show that there are only finitely many subtrees TRunsD(Γ) of
TRuns∗(Γ) up to bisimulation. Moreover, each is realized by a database of bounded size,
depending only on |x̄|. Since bisimilar trees have the same branching-time service views, this
establishes the theorem.

We recall the standard notion of bisimulation. Two infinite trees T , T ′ with labeled edges
are bisimilar if there exists a relation ∼ from the nodes of T to those of T ′ such that: (i)
root(T) ∼ root(T ′), (ii) if α ∼ α′ and α σ−→ β then there exists β′ such that α′ σ−→ β′ and
β ∼ β′, and (iii) if α ∼ α′ and α′ σ−→ β′ then there exists β such that α σ−→ β and β ∼ β′.

We now present the main steps in the proof. Let Γ = 〈〈x̄,DB〉,Σ,Π〉 be an artifact
system, with |x̄| = k. As in the global feedback freedom definition, we assume that service
pre-and-post conditions are in CQ¬ form (conjunctions of literals). For a service σ = (π, ψ)
we denote by fσ(x̄, ȳ) the formula π(x̄) ∧ ψ(x̄, ȳ).

I Definition 20. The set Tn of n-types of x̄ is defined inductively as follows.
T0 = { true }
For n ≥ 0, Tn+1 consists of all formulas of the form∧

σ∈Σ0

∧
τ∈Tσ

∃ȳ(fσ(x̄, ȳ) ∧ τ(ȳ))

where ∅ 6= Σ0 ⊆ Σ and ∅ 6= Tσ ⊆ Tn.

4 An artifact system Γ is feedback free if (Γ, true) is feedback free.

ICDT 2015

258 Process-Centric Views of Data-Driven Business Artifacts

Let D be a database over DB and ν be a valuation of x̄. It is easy to check that,
for every ν that labels some node in TRunsD(Γ), and each n ≥ 0, there exists a unique
strongest5 τn ∈ Tn such that D, ν |= τn. We denote the latter by τn(D, ν). It is clear that
τn+1(D, ν)→ τn(D, ν) for every n ≥ 0.

Note that all subtrees of TRunsD(Γ) rooted at node labeled ν are isomorphic. Let
TRunsνD(Γ) be any such subtree. We will show that the sequence of types {τn(D, ν) | n ≥ 0}
provides sufficient information to determine TRunsνD(Γ) up to bisimilarity (Lemma 22).
Before however, we need the following key lemma.

I Lemma 21. Let Γ be a globally feedback-free artifact system. There exists b > 0, depending
only on |x̄|, such that for every database D, tuple ν labeling a node in TRunsD(Γ) and n ≥ 0,
τn(D, ν) is equivalent to an FO sentence of quantifier rank ≤ b.

Using the lemma, we can prove the following.

I Lemma 22. Let ν1, ν2 be valuations of x̄ labeling nodes in TRunsD(Γ). If τn(D, ν1) =
τn(D, ν2) for every n ≥ 0 then TRunsν1

D (Γ) and TRunsν2
D (Γ) are bisimilar.

From Lemma 21 it follows that for every D and reachable ν, there exists N > 0 such that
τn(D, ν) ≡ τN (D, ν) for every n ≥ N . We denote τN (D, ν) by τ∗(D, ν) and call it the type
of ν in D. Thus, τ∗(D, ν) is equivalent to {τn(D, ν) | n ≥ 0}. Observe that, by Lemma 21,
there are finitely many tuple types. The set of all tuple types is denoted by T .

Finally, we define database types as follows.

I Definition 23. The type of a database D is τ(D) = {τ∗(D, ν) | D |= Π(ν)}.

We have the following.

I Lemma 24. Let D1 and D2 be databases over DB such that τ(D1) = τ(D2). Then
TRunsD1(Γ) and TRunsD2(Γ) are bisimilar.

Note that, since there are finitely many tuple types, there are also finitely many database
types. Since a database type can be written as the conjunction of finitely many tuple types,
Lemma 21 also applies to database types, and each can be written as an ∃∗FO sentence.
Let d be the maximum number of existential quantifiers in these sentences. Thus, there are
finitely many equivalence classes of trees of database runs under bisimulation, and each has
a representative TRunsD(Γ) for some database D whose domain is of size ≤ d. Since trees
of runs equivalent under bisimulation have the same branching-time service views, it follows
that T S∗(Γ) is ω-regular, and a finite-state transition system defining it can be effectively
constructed from Γ. This concludes the proof of Theorem 19.

I Remark. Theorem 19 continues to hold for artifact systems extended with arithmetic
(e.g., linear constraints over Q). To see this, augment DB with a finite set C of relation
symbols with fixed interpretations as linear constraints over Q, and let the data domain be Q.
The definition of global freedom applies, by treating the relation symbols in C as arbitrary
relations, and Lemma 21 carries through. Also, satisfiability of a type involving mixed data
and arithmetic relations can be effectively tested: the only interaction between the two is via
equality types.

5 With respect to implication.

A. Koutsos and V. Vianu 259

As noted earlier, effective regularity of the branching-time service views of a class of
systems generally implies decidability of its CTL*-FO properties. In order for this to hold,
we must however extend the global feedback freedom restriction to pairs (Γ, ϕ) where Γ is
an artifact system and ϕ a CTL*-FO property. Taking into account the property is done
similarly to feedback-freedom. We can then show the following.

I Theorem 25. It is decidable, given an artifact system Γ and a CTL*-FO formula ϕ such
that (Γ, ϕ) is globally feedback free, whether Γ |= ϕ.

Proof. From a globally feedback-free (Γ, ϕ) one can construct a globally feedback-free artifact
system Γ̄ and a CTL* formula ϕ̄ such that Γ |= ϕ iff T S∗(Γ̄) |= ϕ̄. Since T S∗(Γ̄) is specified
by a finite-state transition system effectively constructed from Γ and ϕ, the result follows. J

5 The impact of data dependencies

In this section we consider the impact of data dependencies on the regularity of service
views. We consider tuple and equality generating dependencies. We briefly recall (see
[1] for details) that an equality-generating dependency (EGD) is an FO sentence of the
form ∀x̄(ϕ(x̄) → y = z), where ϕ is a conjunction of relational atoms and y, z ∈ x̄. A
tuple-generating dependency (TGD) is a sentence of the form ∀x̄(ϕ(x̄)→ ∃z̄ψ(x̄, z̄)), where
ϕ and ψ are conjunctions of relational atoms. If z̄ is empty, the dependency is called full; if
every atom in ψ(x̄, z̄) contains an existentially quantified variable in z̄, it is called embedded
(note that every TGD can be written as a conjunction of full and embedded TGDs). A set of
TGDs is acyclic if the following graph is acyclic: the nodes are database relations and there
is an edge from P to Q if P occurs in the body of a TGD whose head contains Q. Inclusion
dependencies are instances of TGDs and functional dependencies (FDs) are EGDs.

Linear-time service views. We first consider the impact of EGDs. Let Γ = 〈A,Σ,Π〉 be
an artifact system, where A = 〈x̄,DB〉. For a set ∆ of dependencies, S∆

lin(Γ) = {S(ρ) |
ρ ∈ RunsD(Γ), D |= ∆}. We say that S∆

lin(Γ) is effectively regular for a class A of artifact
systems and D of dependencies, if a Büchi automaton defining S∆

lin(Γ) can be effectively
constructed from each Γ in A and set ∆ of dependencies in D.

We can show the following.

I Theorem 26. S∆
lin(Γ) is not effectively ω-regular for artifact systems Γ and sets ∆ of

EGDs. Moreover, this holds even if ∆ consists of a single FD.

Proof. It can be shown that it is undecidable, given an artifact system Γ, a set ∆ of EGDs,
and a service σ, whether there exists a run of Γ on a database satisfying ∆ in which service
σ is used. This holds even if ∆ consists of a single FD. The result follows. J

Note that, similarly to Corollary 18, Theorem 26 leaves open the possibility that S∆
lin(Γ)

might be ω-regular.
I Remark. One might wonder if S∆

lin(Γ) can be characterized by some natural extension
of ω-regular languages. It turns out that Theorem 26 can be extended to any family L
of ω-languages with the following properties: (i) L is closed under intersection with ω-
regular languages, and (ii) emptiness of languages in L is decidable. This assumes a finite
specification mechanism for languages in L, and that (i) is effective, i.e. the specification of
the intersection of a language in L with the ω-language defined by a Büchi automaton must
be computable. One example of such L is the family of ω-context-free languages, defined by
infinitary extensions of pushdown automata and context-free grammars (see [6, 36]).

ICDT 2015

260 Process-Centric Views of Data-Driven Business Artifacts

We now consider TGDs. Rather surprisingly, the easy case is that of embedded TGDs.

I Theorem 27. S∆
lin(Γ) is effectively ω-regular for artifact systems Γ and sets ∆ of embedded

TGDs.

Proof. It is enough to show that every symbolic run % of Γ has an enactment on a database
satisfying ∆. Indeed, this implies that S∆

lin(Γ) = Slin(Γ), thus establishing effective ω-
regularity. Let % be a symbolic run of Γ. By Theorem 14, % has an enactment (D, ρ, θ). Let
d be some domain value not occurring in D or the constants of Γ. Observe that an extension
D̄ of D satisfying ∆ can be obtained by chasing D with the TGDs in ∆ so that d is used
as a witness to every existentially quantified variable in the head of a TGD. Since D̄ is an
extension of D, (D̄, ρ, θ) is also an enactment of %. J

For full TGDs we have the following.

I Theorem 28. There exists an artifact system Γ and set ∆ of full TGDs such that S∆
lin(Γ)

is not ω-regular.

Proof. Let the database schema of Γ consist of a binary relation R and ∆ be the full TGD
∀x∀y∀z (R(x, y) ∧R(y, z)→ R(x, z)), guaranteeing that R is transitive. Γ has one attribute
variable x and two services init and next. The global precondition is ¬R(0, 0) ∧ x = 0 where
0 is a constant. The pre-condition of init is x 6= 0 and its post-condition is x′ = 0. The
pre-condition of next is true and its post-condition is R(x, x′)∧¬R(x′, x′). Runs of Γ consist
of stepping through R using next, starting from 0, using only elements which do not belong
to a cycle, until init reinitializes x to 0 and the process is restarted. Since R is finite, S∆

lin(Γ)
consists of all ω-words of the form (next)n1 · init · (next)n2 · init · · · such that for each word
there exists N > 0 for which ni ≤ N for all i ≥ 1. It is easy to see that this language, and
therefore S∆

lin(Γ), is not ω-regular. J

It turns out that effective ω-regularity is recovered for acyclic full TGDs.

I Theorem 29. S∆
lin(Γ) is effectively ω-regular for artifact systems Γ and acyclic sets of full

TGDs ∆.

Proof. Recall the finite-state transition system F(Γ) used earlier to define Slin(Γ). Its
states consist of the isomorphism types of Γ, and edges are labeled by services. The same
transition system can be viewed as defining the language SRuns(Γ), by taking into account
the isomorphism type of each state in addition to the edge labels.

Consider ∆. A partial unfolding of a TGD is obtained by replacing one relational atom
R(z̄) in its body by the body of any TGD in ∆ with R in its head (if such exists), with
appropriate renaming of variables. Let ∆∗ by the closure of ∆ under partial unfoldings.
Obviously, ∆∗ and ∆ are equivalent. Because ∆ is acyclic, ∆∗ is finite.

The idea of the proof is to define a Büchi automaton B that accepts the runs of F(Γ)
that are inconsistent with some TGD in ∆∗. Using ∆∗ instead of ∆ facilitates this task
by allowing to ignore compositions of TGDs. Let ξ = ∀ȳ(∃z̄ϕ(ȳ, z̄) → R(ȳ)) in ∆∗. An
inconsistency with ξ occurs in a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 if for some j ≥ 0 and
ȳ ⊆ x̄j ∪ x̄j+1, ¬R(ȳ) is in Hj and there exist z̄ ⊆ ∪i≥0x̄i such that ϕ(ȳ, z̄) is satisfied by
∪i≥0Hi. It can be seen, using the construction in the proof of Theorem 14, that a symbolic
run is consistent with ∆∗ iff it has an enactment on a database satisfying ∆.

The Büchi automaton non-deterministically guesses an inconsistency. The first component
of the inconsistency, ¬R(ȳ), can be guessed by B whenever ¬R(ȳ) is in Hj for the current j.
To enable checking the second component of an inconsistency, the states of B also contain

A. Koutsos and V. Vianu 261

variables z̄. The values of the variables z̄ are non-deterministically guessed throughout the
run, and the connections between them, as specified by the isomorphism types, are recorded.
A run is accepted whenever ¬R(ȳ) and ϕ(ȳ, z̄) hold for some TGD and guessed ȳ and z̄. The
set of symbolic runs consistent with ∆∗ is then SRuns(Γ) ∩ Bc, where Bc is the complement
of B. Finally, S∆∗

lin (Γ) = h(SRuns(Γ) ∩ Bc), where h is the homomorphism removing the
isomorphism types and retaining just the service names. Since ω-regular languages are closed
under complement, intersection, and homomorphism (with effective constructions), S∆∗

lin (Γ)
is effectively ω-regular. J

We finally consider feedback-free artifact systems. Recall that these are particularly
well-behaved with respect to verification. In particular, while model-checking is undecidable
for artifact systems in the presence of FDs, it becomes decidable for feedback-free systems
[11]. One might hope that feedback-free systems are similarly well-behaved with respect to
linear service views. Indeed, in contrast to Theorems 26 and 28, we have the following.

I Theorem 30. S∆
lin(Γ) is effectively ω-regular for feedback-free artifact systems Γ and sets

∆ of EGDs and full TGDs.

Proof. The approach is similar to that of [11] for showing decidability of model-checking.
Consider a symbolic run % = {(x̄i, Hi, εi, σi)}i≥0 of Γ. For each i ≥ 0, let νi(x̄i) be the
formula ∃x̄0 . . . ∃x̄i−1(Π(x̄0) ∧

∧
0≤j<i σj(x̄j , x̄j+1)). Intuitively, νi(x̄i) completely specifies

the constraints placed on x̄i by the first i transitions. Let Φ = {∃x̄iνi(x̄i) | i ≥ 0}. It can
be shown that there exists an enactment of % on a database D satisfying ∆ iff D |= Φ ∪∆
(this uses the finiteness of D and a pigeonhole argument). As shown in [11], because Γ is
feedback-free, each formula in Φ can be rewritten as a formula of quantifier rank bounded
by |x̄|2. Since there are finitely many non-equivalent formulas of bounded quantifier rank
[26], Φ is equivalent to a single ∃FO formula ϕ. Moreover, because all formulas in ∆ are
universally quantified, if % has an enactment on a database satisfying ∆, it also has an
enactment on such a database whose domain is bounded by the number of variables (say v) in
ϕ. Thus, S∆

lin(Γ) = ∪{Slin(RunsD(Γ)) | D |= ∆, |dom(D)| ≤ v}. Since each Slin(RunsD(Γ))
is ω-regular, S∆

lin(Γ) is effectively ω-regular. J

Branching-time service views. We now consider briefly the impact of data dependencies on
branching-time service views. Recall that these views are not regular, even for feedback-free
systems. However, by Theorem 19, the views are regular for globally feedback-free systems.

Let Γ = 〈A,Σ,Π〉 be an artifact system, where A = 〈x̄,DB〉. For a set ∆ of dependencies
over DB, TRuns∗∆(Γ) is the tree obtained by placing all TRunsD(Γ) under a common root,
where D |= ∆. The branching-time service view, denoted T S∗∆(Γ), is obtained as before from
TRuns∗∆(Γ) by ignoring the content of the nodes and retaining only the service labels of the
edges.

In the presence of data-dependencies, we have the following.

I Theorem 31. T S∗∆(Γ) is effectively regular for globally feedback-free artifact systems Γ
and sets ∆ of EGDs and full TGDs.

Proof. Recall the proof of Theorem 19 and the formulas ∃∗FO defining database types,
whose number of existential quantifiers is bounded by some b depending only on Γ. Note
that the EGDs and full TGDs in ∆ can be expressed by a sentence in ∀∗FO. Suppose
there is a database D of type τ satisfying ∆. Then there exists D0 ⊆ D, whose domain
consists of b witnesses to the existentially quantified variables of τ , that also has type τ and
satisfies ∆. Thus, every database type that includes an instance satisfying ∆, also has a

ICDT 2015

262 Process-Centric Views of Data-Driven Business Artifacts

representative satisfying ∆ whose domain is bounded by b. It follows that T S∗∆(Γ) is regular,
and a specification can be effectively constructed from Γ and ∆. J

I Remark. Theorem 31 alternatively holds for sets ∆ of EGDs and arbitrary TGDs (full and
embedded), as long as the set of TGDs is acyclic.

6 Conclusions

We considered the problem of extracting process-centric views from highly declarative, data-
driven workflows. Classical process-centric workflow specification frameworks provide a
variety of means for describing the valid sequences (or trees) of events in the workflow, with
finite-state transition diagrams at their core. We considered views consisting of the sequences
of services applied during linear or branching-time runs of an artifact system. The results
establish when such views are regular and can be specified effectively by finite-state transition
systems. Thus, we showed that linear-time service views are regular, while branching-time
views are regular only under certain restrictions (satisfied naturally by systems produced by
hierarchical design methodologies in the spirit of GSM). We also considered the impact of
data dependencies (tuple and equality generating dependencies) on regularity of views. We
showed that linear-time views are no longer regular in presence of FDs or cyclical full TGDs,
but remain regular with acyclic or embedded TGDs. Regularity of branching-time service
views is preserved in the presence of EGDs and full TGDs.

Our results also have some interesting connections to verification. For instance, the
techniques developed to show regularity of linear-time views yield potentially more efficient
ways to generate counterexample databases witnessing violation of LTL-FO properties. As a
side-effect of results on branching-time service views, we showed that CTL-FO properties are
undecidable for artifact systems, but model-checking CTL*-FO becomes decidable under the
same restrictions guaranteeing regularity of branching-time views.

Several interesting questions remain to be investigated. If a class of declarative workflows
does not have regular service views, two courses of action are plausible. First, one might seek
an extension of regular languages powerful enough to describe the views while remaining
palatable to users. Alternatively, one might opt for a regular approximation of the view,
resulting from relaxations that users are likely to find reasonable. In all cases, the views
could be made more expressive and informative by augmenting the purely process-centric
specifications with light-weight annotations on transitions with conditions on the data, in
the spirit of BPEL and YAWL [38]. Besides the technical problems per se, this brings into
play interesting HCI and usability issues.

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
2 F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction technique for the verification

of artifact-centric systems. In Proc. Intl. Conf. on Knowledge Representation, 2012.
3 K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu. Artifact-centered

operational modeling: Lessons from customer engagements. IBM Sys. Journal, 46(4), 2007.
4 K. Bhattacharya et al. A model-driven approach to industrializing discovery processes in

pharmaceutical research. IBM Systems Journal, 44(1), 2005.
5 BizAgi and Cordys and IBM and Oracle and SAP AG and Singularity (OMG Submit-

ters) and Agile Enterprise Design and Stiftelsen SINTEF and TIBCO and Trisotech (Co-
Authors). Case Management Model and Notation (CMMN), FTF Beta 1, Jan. 2013. OMG
Document Number dtc/2013-01-01, Object Management Group.

A. Koutsos and V. Vianu 263

6 L. Boasson and M. Nivat. Adherences of languages. J. Comput. System Sci., 20(3), 1980.
7 A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive crowdsourcing. In 22nd Interna-

tional World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
pages 153–164, 2013.

8 A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio. Pattern-based specification
of crowdsourcing applications. In Web Engineering, 14th International Conference, ICWE
2014, Toulouse, France, July 1-4, 2014. Proceedings, pages 218–235, 2014.

9 T. Chao et al. Artifact-based transformation of IBM Global Financing: A case study. In
BPM, 2009.

10 E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
11 E. Damaggio, A. Deutsch, and V. Vianu. Artifact systems with data dependencies and

arithmetic. ACM Transactions on Database Systems, 37(3), 2012. Preliminary version in
ICDT 2011.

12 E. Damaggio, R. Hull, and R. Vaculín. On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Information Systems,
38:561–584, 2013.

13 G. De Giacomo, R. De Masellis, and R. Rosati. Verification of conjunctive artifact-centric
services. Int. J. Cooperative Inf. Syst., 21(2):111–140, 2012.

14 H. de Man. Case management: Cordys approach. BP Trends (www.bptrends.com), 2009.
15 S. Demri and R. Lazić. LTL with the Freeze Quantifier and Register Automata. In LICS,

2006.
16 S. Demri, R. Lazić, and A. Sangnier. Model checking freeze LTL over one-counter automata.

In FoSSaCS, 2008.
17 A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric

business processes. In ICDT, 2009.
18 A. Deutsch, R. Hull, and V. Vianu. Automatic verification of data-driven systems. Sigmod

Record, 2014.
19 A. Deutsch, Y. Li, and V. Vianu. Hierarchical artifact systems. In preparation.
20 A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web appli-

cations. JCSS, 73(3):442–474, 2007.
21 E. Allen Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of

Theoretical Computer Science, Volume B: Formal Models and Sematics, pages 995–1072.
North-Holland Pub. Co./MIT Press, 1990.

22 B. Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification of
relational data-centric dynamic systems with external services. In PODS, 2013.

23 R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. Heath III, S. Hobson,
M. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculín. Business artifacts
with guard-stage-milestone lifecycles: Managing artifact interactions with conditions and
events. In ACM DEBS, 2011.

24 Dimitri Isaak and Christof Löding. Efficient inclusion testing for simple classes of unam-
biguous -automata. Inf. Process. Lett., 112(14-15), 2012.

25 S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran, and R. Das. ADoc-oriented programming.
In Symp. on Applications and the Internet (SAINT), 2003.

26 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
27 A. Lomuscio and J. Michaliszyn. Model checking unbounded artifact-centric systems. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth In-
ternational Conference, KR 2014, Vienna, Austria, July 20-24, 2014, 2014.

28 M. Marin, R. Hull, and R. Vaculín. Data centric BPM and the emerging case management
standard: A short survey. In BPM Workshops, 2012.

ICDT 2015

264 Process-Centric Views of Data-Driven Business Artifacts

29 S. Merz. Model checking: a tutorial overview. In Modeling and verification of parallel
processes. Springer-Verlag New York, 2001.

30 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
31 A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Systems Journal, 42(3), 2003.
32 Amir Pnueli. The temporal logic of programs. In FOCS, 1977.
33 E. L. Post. Recursive unsolvability of a problem of Thue. J. of Symbolic Logic, 12:1–11,

1947.
34 L. Segoufin and S. Torunczyk. Automata based verification over linearly ordered data

domains. In STACS, 2011.
35 M. Spielmann. Verification of relational transducers for electronic commerce. JCSS.,

66(1):40–65, 2003.
36 Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor, Handbook

of Theoretical Computer Science (Vol. B). Elsevier, 1990.
37 W. van der Aalst and M. Song. Mining social networks: Uncovering interaction patterns

in business processes. In Business Process Management, volume 3080 of Lecture Notes in
Computer Science, pages 244–260. Springer Berlin Heidelberg, 2004.

38 W. van der Aalst and A. ter Hofstede. YAWL: Yet another workflow language. Information
Systems, 30(4), 2005.

39 W.-D. Zhu et al. Advanced Case Management with IBM Case Manager. Available at
http://www.redbooks.ibm.com/abstracts/sg247929.html?Open.

	Introduction
	Background
	Linear-time service views
	Branching-Time Service Views
	The impact of data dependencies
	Conclusions

