
Optimal Broadcasting Strategies for Conjunctive
Queries over Distributed Data
Bas Ketsman∗ and Frank Neven

Hasselt University and transnational University of Limburg
Belgium
first.lastname@uhasselt.be

Abstract
In a distributed context where data is dispersed over many computing nodes, monotone queries
can be evaluated in an eventually consistent and coordination-free manner through a simple but
naive broadcasting strategy which makes all data available on every computing node. In this pa-
per, we investigate more economical broadcasting strategies for full conjunctive queries without
self-joins that only transmit a part of the local data necessary to evaluate the query at hand. We
consider oblivious broadcasting strategies which determine which local facts to broadcast inde-
pendent of the data at other computing nodes. We introduce the notion of broadcast dependency
set (BDS) as a sound and complete formalism to represent local optimal oblivious broadcasting
functions. We provide algorithms to construct a BDS for a given conjunctive query and study
the complexity of various decision problems related to these algorithms.
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1 Introduction

We assume the setting introduced in the context of declarative networking [6, 14], where
queries are specified on a logical level over a global schema and are evaluated by multiple
computing nodes over which the input database is distributed. These nodes can perform
local computations and communicate asynchronously with each other via messages. The
model then operates under the assumption that messages can never be lost but can be
arbitrarily delayed. It is known that every monotone query can be evaluated in an eventually
consistent and coordination-free manner through a naive broadcasting strategy that makes
all data available to all nodes [14].1 Indeed, every computing node sends all its local data to
every other node and reevaluates the query every time new data arrives. This evaluation is
eventually consistent as, because of monotonicity, no facts will be derived which later have
to be retracted and, furthermore, when all transmitted data has arrived, the output of every
node will correspond to the result of the query. In addition, the computation requires no
coordination between the nodes.

Obviously, the above strategy leads to a very careless evaluation as the whole database
is send to every node and every node independently computes the complete answer for the
targeted query. In the present paper, we are interested in more economical broadcasting

∗ PhD Fellow of the Research Foundation – Flanders (FWO)
1 Actually, this observation is the straightforward part of the CALM-conjecture [14]. It is the converse

direction which is more surprising: that every query which can be evaluated in an eventually consistent
and coordination-free manner has to be monotone [6].
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strategies where only a subset of the local data is transmitted and where each computing
node contributes to the answer of the query by outputting only a subset of the answer tuples.
The result of the query then is the union of the tuples output by the computing nodes. In
particular, we focus on full conjunctive queries without self-joins and we consider oblivious
broadcasting strategies where every computing node determines which facts will be broadcast
solely on the content of its own local database (so, oblivious of the data at other nodes).
These facts are referred to as broadcast facts. Facts that are not initially broadcast are called
static. We illustrate the ideas behind such strategies by means of an example.

I Example 1. Let Q1 be the query Q1(x, y, z) ← A(x, y), B(y, x), C(x, z) and let I =
{A(1, 2), A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)} be a database instance. Consider a network
of two computing nodes c and c′ containing the facts I(c) = {A(2, 2), B(2, 1), B(2, 2)} and
I(c′) = {A(1, 2), B(4, 4), C(1, 3)}, respectively.
Naive broadcasting strategy. The naive broadcasting algorithm outlined above sends all facts
in I(c) to c′ and all facts in I(c′) to c. Eventually, both c and c′ receive all data and both of
them compute the result of the query, that is, Q1(I) = {(1, 2, 3)}.
Improved oblivious broadcasting strategy. The just described strategy is clearly oblivious
but also rather wasteful. Therefore consider the following strategy which broadcasts all
of the C-facts but none of the A-facts. Furthermore, a B-fact B(i, j) is broadcast only
when A(j, i) does not occur in the local database. Executing this strategy for every com-
puting node in our example results in c broadcasting the set {B(2, 1)} while c′ broad-
casts {B(4, 4), C(1, 3)}. So, eventually, I∗(c) = {A(2, 2), B(2, 1), B(2, 2), B(4, 4), C(1, 3)}
and I∗(c′) = {A(1, 2), B(2, 1), B(4, 4), C(1, 3)}. Here, we denote by I∗(d) the instance
at node d when all transmitted messages have arrived. Therefore, Q1(I∗(c)) = ∅ and
Q1(I∗(c′)) = {(1, 2, 3)}, and Q1(I) equals Q1(I∗(c))∪Q1(I∗(c′)). Intuitively, this strategy is
correct in general as the following invariant holds for every computing node d: when a fact
B(i, j) is not broadcast at a node d, then every satisfying valuation V for Q on I that maps
(x, y) to (i, j) can be realized locally in I∗(d). Notice that, a similar strategy reversing the
roles of A- and B-facts would work as well.

We will formalize oblivious broadcasting functions as generic mappings. This means that
decisions on whether to broadcast facts do not depend only on the name of the predicate
but can also depend on the equality type of the fact under consideration. Therefore, the
following strategy would be valid as well: always broadcast facts of the form C(i, j) with
i 6= j and keep all facts of the form C(i, i) static; broadcast all B-facts; broadcast a fact
A(i, j) only when the fact C(i, i) is not present in the local database. While not immediately
obvious, this strategy correctly computes Q on every distributed database.

Both strategies will be presented more formally in Section 5 in terms of broadcast
dependency sets and are formalized further in Example 12(1) and 12(3). J

In this paper, we make the following contributions:
(i) We provide a semantical characterization of when an oblivious broadcasting function

(OBF) correctly evaluates a given conjunctive query. While it is desirable to construct
OBFs that minimize the overall amount of transmitted facts over all distributed databases,
we show that there is no optimal OBF for any conjunctive query with at least two
distinct atoms in its body. Therefore, we turn to a slightly weaker notion of optimality,
called local optimal, which requires that an OBF is optimal w.r.t. the local instance at
every computing node. Intuitively, this means that no broadcast fact can be made static
without sacrificing correctness. We provide a semantical characterization for when an
OBF is local optimal for a given conjunctive query.
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(ii) We introduce the notion of a broadcast dependency set (BDS) as a formalism to specify
OBFs. In brief, a BDS S is a set of pairs (τ, T ) where τ is a partial atomic type and T
is a set of partial atomic types. Every such pair encodes a rule that can be interpreted
roughly as follows: when a fact f matches type τ , it will be broadcast at a computing
node c when the set of facts induced by T is not present at c. We present necessary
and sufficient syntactic conditions for when a BDS is correct for a given query and also
for when it is local optimal w.r.t. that query. Furthermore, we study the complexity of
deciding whether a BDS is correct for a query and whether it is local optimal. Finally,
and most importantly, we show that the formalism of BDS is expressively complete w.r.t.
local optimal OBFs by obtaining that every local optimal OBF can be represented by a
BDS. In fact, every local optimal OBF can already be represented by a BDS that only
uses complete types, that is, types where the equalities between all variables are fully
specified.

(iii) Based on the syntactic criteria of when a BDS is correct for Q and when it is local
optimal, we obtain an algorithm bds-build(Q) that computes a local optimal OBF
(represented as a BDS) for a given conjunctive query Q. When restricting to open types
(these are types without restrictions on the equalities between variables), bds-build(Q)
computes a local optimal OBF in time polynomial in the size of Q. When considering
complete types, bds-build(Q) computes a local optimal OBF in time exponential in
the size of Q simply because there are exponentially many complete types.

Outline. We discuss related work in Section 2 and introduce the necessary definitions and
concepts in Section 3. In Section 4, we discuss oblivious broadcasting functions and local
optimality. In Section 5, we discuss broadcast dependency sets and study their properties.
In Section 6, we provide an algorithm to construct a local optimal oblivious broadcasting
function for a given conjunctive query. We conclude in Section 7.

2 Related Work

CALM. The approach in this paper is motivated by the work on the CALM-conjecture.
Hellerstein [14] formulated the CALM-principle which suggests a link between logical mono-
tonicity and distributed consistency without the need for coordination. The latter principle is,
for instance, embedded in BLOOM, a declarative language for distributed programming, for
which practical program analysis technique have been developed detecting potential consist-
ency anomalies [3, 4, 11]. Ameloot et al. [6] formalized (and proved) the CALM-conjecture
in terms of relational transducer networks. Zinn et al. [19] showed that the generalization of
the conjecture to stronger variants of relational transducer networks fails. Ameloot et al. [5]
then subsequently provided a more fine-grained answer to the CALM-conjecture by relating
these stronger variants of relational transducer networks to weaker notions of monotonicity.
All of these works considered naive evaluation strategies that broadcast all of the local data.
In particular, none of these works considered more economic broadcasting evaluation of
conjunctive queries.

Massive parallel model. The networked relational transducer model is just one paradigm
for studying distributed query evaluation. In the massively parallel (MP) model, introduced
by Koutris and Suciu [15], computation proceeds in a sequence of parallel steps, each followed
by global synchronization of all servers. In this model, evaluation of conjunctive queries [15, 7]
as well as skyline queries [2] have been considered. Recently, Beame et al. [8] proved a

ICDT 2015



294 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

matching upper and lower bound for the amount of communication needed to compute a
full conjunctive query without self-joins in one communication round. The upper bound
is provided by a randomized algorithm called Hypercube which dates back to Ganguli et
al. [13] and was described by Afrati and Ullman [1] in the context of MapReduce algorithms.
Hypercube is motivated by modern massively distributed systems like, for instance, Spark [18],
where entire computations reside in main memory, replay is used to recover, and the dominant
cost is that of communication. We note that one-round Hypercube is coordination-free and
can be easily employed within the framework of relational transducer networks as well. A
characteristic of Hypercube-style algorithms is that the space of computing nodes (over which
the input data will be distributed) needs to be known in advance. The broadcasting strategies
considered in this paper are motivated by a cloud computing setting where data is already
initially distributed and the complete space of computing nodes is not necessarily known in
advance. In this respect, Hypercube-style and broadcasting algorithms are orthogonal.

Relevance. One approach to minimize data transfer for a query Q, is to find the smallest
subset J of a distributed instance I for which Q(I) = Q(J) and then only broadcast the
relevant subset J . Determining which part of a database is relevant for answering a query
is a problem that arises in different contexts. For instance, causality in databases aims to
determine which tuples in the database instance caused the output to a query [16, 17]. Then,
the contingency set asks for the smallest set K such that Q(I) 6= Q(I −K). So, any set
I −K extended with one element is relevant. Similarly, “where” and “why” provenance refer
to the location(s) in the source databases from which the output was extracted or by which
the output was influenced [10, 9]. Fan et al. [12] study the problem of scale independence
where, through access patterns, the result of a query depends only on a bounded part of the
database. It would be interesting to investigate how these different approaches translate to
a distributed setting. Most surely, any lower bounds for the sequential setting imply lower
bounds for the distributed setting, but upper bounds need to take into account that the
initial database instance I is distributed as well.

3 Preliminaries

Instances and queries. For a finite set S, we denote by |S| its cardinality and by 2S its
powerset. We denote {1, . . . , n} by [n], for n ∈ N. We assume an infinite set dom of data
values. A database schema σ is a collection of relation names R where every R has arity
ar(R) > 0. We call R(d̄) a fact when R is a relation name and d̄ is a tuple in dom. We say
that a fact R(d1, . . . , dk) is over a database schema σ if R ∈ σ and ar(R) = k. A (database)
instance I over σ is simply a finite set of facts over σ. We denote by Adom(I) the set of
all values that occur in facts of I. When I = {f}, we simply write Adom(f) rather than
Adom({f}). A query over a schema σ to a schema σ′ is a generic mapping Q from instances
over σ to instances over σ′. Genericity means that for every permutation π of dom and
every instance I, Q(π(I)) = π(Q(I)). For the remainder of the paper, we assume given a
database schema σ over which all queries are defined and do not refer to it anymore. A query
Q is monotone if Q(I) ⊆ Q(J) for all instances I, J with I ⊆ J . We only consider monotone
queries in the sequel.

Conjunctive queries. Let var be the universe of variables, disjoint from dom. An atom A

is of the form R(u1, . . . , uk) where R is a relation name and each ui ∈ var. We call R the
predicate and denote it by pred(A). We denote the variables occurring in A by Vars(A) =
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{u1, . . . , uk}. We say that A is an atom over the database schema σ if pred(A) ∈ σ and
k = ar(pred(A)). A conjunctive query Q (CQ) is an expression of the form A0 ← A1, . . . , An,
where for every i ∈ [n], Ai is an atom over the schema and A0 is an atom not over the
schema. In particular, A0 is the head of Q, denoted headQ, and A1, . . . , An is the body of Q,
denoted bodyQ. By Vars(Q) we denote all the variables occurring in Q. A valuation for Q
on an instance I is a function V : Vars(Q) → Adom(I). The application of V to an atom
A = R(u1, . . . , uk), denoted V (A), results in the fact R(a1, . . . , ak) where ai = V (ui) for
each i ∈ [k]. The valuation V is said to be satisfying for Q if V (A) ∈ I for all atoms A in
the body of Q. In that case, V derives the fact V (A0). The result of Q on I, denoted Q(I)
is defined as the set of facts that can be derived by satisfying valuations.

In what follows, we assume that every CQ is full and does not contain self-joins. Formally,
we require that pred(Ai) 6= pred(Aj) for i 6= j and Vars(A0) =

⋃
i∈[n] Vars(Ai). That is, every

atom has a unique relation symbol and all variables occurring in the body occur in the head as
well. For instance, Q1(x, y, z)← A(x, y), B(x, z), C(y, y) is full and does not contain self-joins,
while Q2(x, y)← A(x, y), B(x, z), C(y, y) is not full and Q3(x, y, z)← A(x, y), A(x, z), C(y, y)
contains a self-join.

Distributed database. A network N is a nonempty finite set of values from dom, which
we call nodes. A distribution of an instance I over N is a function H that maps each c ∈ N
to an instance such that I =

⋃
c∈N H(c). Notice that facts can be replicated. We also refer

to each of the H(c) as the local instances. We consider a model where nodes have unlimited
computational power and can send messages to all other nodes. These messages can never
be lost but can be arbitrarily delayed.

4 Oblivious broadcasting

We refrain from introducing the formalism of relational transducer networks from [6], but
present a simpler setting more suitable for our needs. In particular, the relational transducer
networks needed in this paper only perform two actions: decide which facts to broadcast
(and transmit those) and evaluate the query under consideration whenever new data arrives.
The only parameter is the used broadcasting strategy and, therefore, forms the focus of our
formalization. In brief, we consider broadcasting strategies where computing nodes partition
their local database into static and broadcast facts. Static facts are kept local while broadcast
facts, as the name already indicates, are sent to all other nodes in the network. As we
only consider conjunctive queries which are monotone, the target query can be recomputed
whenever new data arrives.

4.1 Oblivious broadcasting functions
We now formally define oblivious broadcasting function.

I Definition 2. An oblivious broadcasting function (OBF) f is a generic mapping that maps
instances to instances such that f(J) ⊆ J for all instances J .

An OBF specifies which local facts are broadcast. Specifically, f(J) are the broadcast facts
while J \ f(J) are the static facts. We use the term oblivious as broadcast facts only depend
on the local database instance and their choice is independent of the facts at other computing
nodes. An OBF f is naive when there are no static facts, that is, f(J) = J for all instances J .

Given a CQ Q, an instance I, a distribution H of I, and a network N , an OBF f implies
a broadcasting algorithm in the following way. Let B(f,H) =

⋃
c∈N f(H(c)) be the set of
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broadcast facts. Then, define eval(Q, f,H) =
⋃
c∈N Q(H(c) ∪B(f,H))) as the union of the

query result at every computing node over the local instance extended with all broadcast
facts.2

I Remark. We note that the function eval(Q, f,H) implies an evaluation that can be executed
by a transducer program πf,Q at every node c as follows: (1)R = ∅, outputQ(H(c)), broadcast
f(H(c)); (2) whenever a fact f arrives, R = R ∪ {f}, output Q(H(c) ∪R). Correctness then
follows from the genericity and monotonicity of f . We refer to the execution strategy induced
by eval(Q, f,H) as a broadcasting algorithm. Coordination-freeness intuitively follows as
πf,Q never waits. Formally, a transducer is coordination-free [6] if there is a so-called ideal
distribution, on which the query is already computed by a prefix of a run that does not
process any of the incoming facts. For πf,Q this is the distribution that puts the complete
instance at every node. We refer to [6] for a more formal treatment of coordination-freeness.

I Definition 3. An OBF f is correct for a CQ Q when Q(I) = eval(Q, f,H) for all instances
I and all distributions H of I.

When f is correct for Q, we also say that f is an OBF for Q. The following lemma
characterizes correctness in that two compatible facts residing at different computing nodes
can never be both static. Indeed, if they are, then the valuation witnessing compatibility is
never realized at any computing node and consequently f can not be correct for Q.

We say that two distinct facts f and g are compatible w.r.t Q, denoted f ∼Q g, when they
are assigned to two atoms from the body of Q under one valuation, i.e., there is a valuation
V for Q and atoms A,B ∈ bodyQ, such that V (A) = f and V (B) = g.

I Lemma 4. Let Q be a CQ and f be an OBF. Then, the following are equivalent:
1. f is correct for Q; and
2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J such that f 6∈ f(I∪{f})

and g 6∈ f(J ∪ {g}).

Proof. (1)⇒(2) We start by showing that every OBF for Q satisfies the above condition.
The proof is by contraposition, so we assume that there are instances I and J and compatible
facts f and g w.r.t. Q, where g 6∈ I and f 6∈ J , but f 6∈ f(I ∪ {f}) and g 6∈ f(J ∪ {g}). Let K
be an instance and let V be a satisfying valuation for Q on K witnessing compatibility of f
and g. Then consider a network N = {1, 2, 3} and an instance L = I ∪ J ∪ V (bodyQ) with
the following distribution H: H(1) = I ∪ {f}, H(2) = J ∪ {g}, and H(3) = V (bodyQ) \ {f,g}.
Clearly, V (headQ) ∈ Q(L). As Q is full, V (headQ) 6∈

⋃
c∈N Q(H(c) ∪ B(f,H)) because

none of the computing nodes contain both f and g, and f and g are not broadcast. Thus,
Q(I) 6=

⋃
x∈N Q(H(x) ∪B(f,H)) = eval(Q, f,H) and f is not an OBF for Q.

(2)⇒(1) It remains to show that if the above condition is satisfied, then f is an OBF for Q.
For this, let I be an instance, N a network, and H a distribution of I over N . We prove that
Q(I) = eval(Q, f,H) =

⋃
c∈N Q(H(c) ∪B(f,H)). As Q is monotone, Q(H(c) ∪B(f,H)) ⊆

Q(I) for every c ∈ N . Hence, it suffices to show that Q(I) ⊆
⋃
c∈N Q(H(c) ∪ B(f,H)).

Thereto, let f ∈ Q(I), let V be a satisfying valuation for Q over I for which V (headQ) = f.
Let J = V (bodyQ) \B(f,H), and c a node for which |H(c) ∩ J | is maximal. We claim that
J ⊆ H(c), obviously implying that f will be derived at node c. Towards a contradiction,
assume there is an fi ∈ J \H(c). As fi ∈ I there is a d ∈ N , c 6= d, such that fi ∈ H(d).
Moreover, by choice of c, |H(d) ∩ J | ≤ |H(c) ∩ J | and thus there must be a fact fj ∈ H(c)

2 To simplify notation, in the definition of B and eval, we do not mention I and N as they are implied
by H.
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that is not in H(d). However, as fi ∼Q fj , fi 6∈ H(c), and fj 6∈ H(d), instances H(d), H(c),
and facts fi, fj contradict condition (2). J

4.2 Local optimality
We are interested in OBFs that transmit as little data as possible. Thereto, we investigate
sensible notions of optimality. We fix a query Q, an instance I, a distribution H of I, and a
network N . The total number of transmitted facts equals ||B(f,H)|| =

∑
c∈N |f(H(c))|. Of

course, ||B(f,H)|| ≥ |B(f,H)|.

I Definition 5. An OBF f for a CQ Q is optimal iff ||B(f,H)|| ≤ ||B(g,H)|| for every other
OBF g for Q and for every instance I and distribution H.

Intuitively, an OBF is optimal when it transmits the least amount of data over all instances
and all distributions. The next result, however, shows that this notion of optimality, although
desirable, is unattainable.

I Lemma 6. There is no optimal OBF for any conjunctive query with at least two distinct
atoms in its body.

Proof. Let Q be the conjunctive query A0 ← A1, . . . , An with n ≥ 2. Towards a contradiction
assume there is an optimal OBF f for Q. Let I be the canonical instance for Q where for
every i ∈ [n], the relation pred(Ai) is interpreted by the fact Ai.3 Now, consider a network
N = [n] and a distribution H that places every fact in I on a distinct node. As all of the n
facts in I need to be gathered at one node, at least n− 1 facts must be broadcast. Let g be
the fact in I that is not broadcast by f and assume w.l.o.g. that pred(g) = An. As the OBF
that broadcasts all Ai-facts for i < n and keeps all An-facts static is correct for Q and only
transmits n− 1 facts on I, by assumption on the minimality of f , ||B(f,H)|| = n− 1. Now,
consider I ′ = I \ {g}. And let H ′ equal H restricted to only facts in I ′ over N . Then, as
g is not broadcast in H, ||B(f,H)|| = ||B(f,H ′)||. However, the OBF that broadcasts all
Ai-facts for i > 1 and keeps all A1-facts static is correct for Q and only broadcasts n − 2
facts on I ′ contradicting the optimality of f . J

We next turn to a different form of optimality. For two OBFs f and g, we say that f is
included in g, denoted f ⊆ g, iff f(I) ⊆ g(I) for every instance I.

I Definition 7. An OBF f for a CQ Q is local optimal iff for every other broadcasting
function g for Q, g ⊆ f implies f = g.

Intuitively, when f is local optimal there is no subdivision of f that transmits only a strict
subset of the facts broadcast by f .

The next lemma gives a sufficient criteria for when an OBF can not be local optimal.
Specifically, a condition is given for when a broadcast fact f can be kept static and a more
economical OBF f ′ can be derived.

I Lemma 8. Let Q be a CQ and let f be an OBF for Q. If there is an instance I and fact
f for which f ∈ f(I ∪ {f}), but there is no instance J and no fact g for which f ∼Q g, g 6∈ I,
f 6∈ J , and g 6∈ f(J ∪ {g}), then there is an OBF f ′ for Q for which f ′ ( f .

3 Notice that we abuse the notation and interpret variables as values.
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Proof. Assume f , I, and f as given by the statement of the lemma. The proof is now by
construction. Let If,J be the set of facts that (by genericity) relate the same way to J , as f
to I. That is, If,J = {π(f) | π a permutation s.t. π(I) = J}. Then, define f ′ as the mapping
where for every instance J , f ′(J) = f(J) \ If,J . Notice that f ′ ( f by construction of f ′.
Furthermore, f ′ is generic and is an oblivious broadcasting function. It remains to show that
f ′ is an oblivious broadcasting function for Q. Towards a contradiction, assume that f ′ is
not an oblivious broadcasting function for Q. Then, by Lemma 4, there are instances J1 and
J2 and facts g1 and g2, for which g1 ∼Q g2,g2 6∈ J1, g1 6∈ J2, and g1 6∈ f ′(J1 ∪ {g1}) and
g2 6∈ f ′(J2 ∪ {g2}). As f is an oblivious broadcasting function for Q, it holds that

g1 ∈ f(J1 ∪ {g1}) or g2 ∈ f(J2 ∪ {g2}).

Say that g1 ∈ f(J1 ∪ {g1}). Then, g1 ∈ If,J1 , implying J1 = π(I) and g1 = π(f) for some
permutation π. As Q does not contain self-joins and g1 ∼Q g2, this means that g2 6∈ If,J .
Therefore, g2 6∈ f(J2 ∪ {g2}) which contradicts the condition of the lemma (taking π−1(g1)
and π−1(J2) as g and J , respectively). J

The following lemma now characterizes when an OBF for a query is local optimal.

I Lemma 9. Let Q be a CQ and let f be an OBF for Q. The following are equivalent:
1. f is local optimal; and
2. for every instance I and fact f for which f ∈ f(I ∪ {f}), there is an instance J and a fact

g such that f ∼Q g, g 6∈ I, f 6∈ J , and g 6∈ f(J ∪ {g}).

Proof. We can assume that Q contains at least two atoms. Indeed, when Q contains one
atom, the only local optimal OBF is the one that broadcasts no facts and the lemma trivially
holds. The direction from (1) to (2) follows from Lemma 8.

(2)⇒(1) Let f be an OBF for Q. Towards a contradiction assume that f is not local
optimal. That is, there exists another OBF f ′ for Q such that f ′ ( f . In particular, there is
an instance I and a fact f such that f 6∈ f ′(I ∪ {f}), while f ∈ f(I ∪ {f}). By Lemma 4, for
every fact g with f ∼Q g where g 6∈ I, and for every instance J , where f 6∈ J , it must be that
g ∈ f ′(J ∪ {g}). The latter then implies that for every such g and J , g ∈ f(J ∪ {g}) which
contradicts condition (2) of the present lemma. J

5 Broadcasting functions based on dependency sets

In this section, we introduce the notion of a broadcast dependency set (BDS) as a formalism
to specify OBFs. We present necessary and sufficient conditions for when a BDS induces an
OBF which is correct for a given query and also for when it is local optimal. Furthermore,
we study the complexity of the corresponding decision problems. Finally, we show that every
local optimal OBF can be represented by a BDS thereby obtaining that BDS is complete as
a representation formalism for local optimal OBFs.

5.1 Broadcast dependency sets
Let Q be the CQ A0 ← A1, . . . , An. We assume Q is full and does not contain self-joins.
Therefore an atom Ai in bodyQ is uniquely identified by its predicate pred(Ai). For a predicate
R, we denote by atom(R) the unique atom A ∈ bodyQ for which pred(A) = R.

For a finite set of variables X, a partial (equality) type over X is a pair of binary relations
ϕ = (Eϕ, Iϕ) representing equalities and inequalities among elements in X. Formally, we
require that Eϕ ∪ Iϕ ⊆ X × X, Eϕ is an equivalence relation, and Iϕ is irreflexive and
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symmetric. We abuse notation and also use ϕ to denote the formula
∧
{x = y | (x, y) ∈

Eϕ} ∧
∧
{x 6= y | (x, y) ∈ Iϕ}. We tacitly assume that partial types are always consistent.

That is, we always assume that there is a tuple ā such that the formula ϕ(ā) evaluates to true.
When for all (x, y) ∈ X ×X, either (x, y) ∈ Eϕ or (x, y) ∈ Iϕ, then ϕ completely specifies
all relations between variables in X and we call ϕ a type. For emphasis, we sometimes say
complete type rather than just type even though type always means complete type.

A partial atomic type (over Q) is a pair τ = (Rτ , ϕτ ), where Rτ is a database predicate
and ϕτ is a partial type over Vars(atom(Rτ )), that is, the variables occurring in the unique
atom A ∈ bodyQ for which pred(A) = Rτ . By Vars(τ) we denote the variables over which
τ is defined, i.e., Vars(τ) = Vars(atom(Rτ )). Sometimes we write atom(τ) to abbreviate
atom(Rτ ). We say that τ is an atomic type when ϕτ is a type. To improve readability,
we denote partial atomic types with τ and (complete) atomic types with ω. We denote
by PTypes(Q) and Types(Q) the set of all partial atomic types and atomic types over Q,
respectively.

A fact f is of type τ or satisfies τ , denoted f |= τ , when there is a valuation h from the
variables in atom(Rτ ) onto Adom(f) such that h(atom(Rτ )) = f and the formula ϕτ evaluates
to true where each xi is substituted by h(xi). Notice that h is unique for f. Hereafter we will
refer to h as Vf. By type(f), we denote the unique atomic type satisfied by f when it exists.
As atomic types are defined w.r.t. Q, type(f) is not always defined. Indeed, when f = R(a, b)
(with a 6= b) and atom(R) = R(x, x), then there is no τ with f |= τ . Two partial atomic
types τ, τ ′ are compatible w.r.t. Q, denoted τ ∼Q τ ′, when there are facts f and g with f |= τ

and g |= τ ′ such that f ∼Q g. We say that τ implies τ ′, denoted τ |= τ ′, if for all facts f,
f |= τ implies f |= τ ′. We can think of a partial atomic type as a disjunction of types for a
shared predicate symbol. Define Types(τ) = {ω ∈ Types(Q) | ω |= τ} as the set of all atomic
types ω which imply τ . Notice that, ω |= τ iff ω ∈ Types(τ) for any atomic type ω. For a set
of partial atomic types T , we use Types(T ) as an abbreviation for

⋃
τ∈T Types(τ).

For a set of variables X and Y , and a partial atomic type τ , X ⊆τ Y if for all x ∈ X
either x ∈ Y or there is an y ∈ Y such that (x, y) ∈ Eϕτ . That is, X is a subset of Y when
taking the equalities in Eϕτ into account. For instance, let τ be a type such that (y, z) ∈ Eϕτ ,
then {x, y, z} ⊆τ {x, y}.

For a set of pairs S, we define Keys(S) = {a | (a, b) ∈ S} and Values(S) = {b | (a, b) ∈ S}.

I Definition 10. A broadcast dependency set (BDS) for a CQ Q is a set S of pairs (τ, T ),
where τ ∈ PTypes(Q) is a key, and T ∈ 2PTypes(Q) is a dependency set, such that the following
holds:
1. (τ, T ) ∈ S and (τ, T ′) ∈ S implies T = T ′;
2. τ, τ ′ ∈ Keys(S) implies Types(τ) ∩ Types(τ ′) = ∅; and,
3. (τ, T ) ∈ S implies Vars(τ ′) ⊆τ ′ Vars(τ) for every τ ′ ∈ T .

The above definition states that (1) every key can have at most one value in S; (2) every
complete type implies at most one partial type τ ∈ Keys(S); and, (3) the set of variables
of atom(τ ′) is included in the set of variables of atom(τ) taking into account the equalities
in Eτ ′ . We first explain informally how a BDS represents an OBF. Let f be a fact in the
local instance at a computing node. When type(f) is undefined, then f is static as f can never
participate in any satisfying valuation. For instance this happens when f = R(a, b) with
a 6= b and Q contains the atom R(x, x). Every pair (τ, T ) ∈ S now specifies a condition on
facts: when f |= τ then f is broadcast only if a set of facts implied by T (to be formalized
below) is not present at the local instance. Furthermore, when there is no τ ∈ Keys(S) for
which f |= τ , f is broadcast as well. In this light, conditions (1) and (2) ensure that every
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local fact f is matched by at most one partial type τ ∈ Keys(S); and, condition (3) ensures
that when f |= τ then Vf can be extended in a unique way to a valuation for every τ ′ ∈ T
that is consistent with f, that is, for which type(f) ∼Q τ ′.

Next, we formally define how every BDS S implies an OBF fS . Given a fact f, if there
is no τ ∈ Keys(S) for which f |= τ then f is always broadcast. Otherwise, by condition (1)
and (2) of Definition 10, there is exactly one τ ∈ Keys(S) such that f |= τ . Recall that
Vf is the valuation (defined above) such that Vf(atom(τ)) = f. Then, by condition (3) of
Definition 10, Vf can also be interpreted as a valuation for every atom(τ ′) for every τ ′ ∈ T for
which type(f) ∼Q τ ′. Indeed, for every y ∈ Vars(τ ′) \Vars(τ) there is a variable x ∈ Vars(τ)
for which (x, y) ∈ Eτ ′ . Therefore, define for every y ∈ Vars(τ ′),

Vf,τ ′(y) =
{
Vf(y) if y ∈ Vars(τ); and,
Vf(x) if y 6∈ Vars(τ) and (x, y) ∈ Eτ ′ .

As we only consider Vf,τ ′ for which type(f) ∼Q τ ′, the above is well-defined.
Now, f is broadcast when the local instance does not contain all the facts Vf,τ ′(atom(τ ′))

for which τ ′ ∈ T and type(f) ∼Q τ ′. We refer to these facts as the dependency fact set. To
formally define fS , we set Dep(f, T ) = {Vf,τ ′(atom(τ ′)) | τ ′ ∈ T and type(f) ∼Q τ ′}. Then,
define Dep(f,S) as Dep(f, T ) when there is a (τ, T ) ∈ S for which f |= τ . Otherwise, Dep(f,S)
is undefined.

I Definition 11. For a CQ Q and a BDS S for Q, define fS as the function that maps every
instance J to the set fS(J) of those facts f ∈ J for which (1) type(f) ∈ Types(Q); and, (2)
Dep(f,S) is undefined or Dep(f,S) 6⊆ J .

Intuitively, f is static only when type(f) 6∈ Types(Q) (f can not participate in any satisfying
valuation) or the dependency fact set Dep(f,S) is present at the local instance.

I Example 12. (1) For a simple example of a BDS S and OBF fS , recall query Q1 from
Example 1, being Q1(x, y, z)← A(x, y), B(y, x), C(x, z). Let ϕ = (∅, ∅), that is, ϕ imposes
no restrictions. Let τA = (A,ϕ) and τB = (B,ϕ). Then, S = {(τB , {τA}), (τA, ∅)} is a
BDS for Q1. Indeed, every partial atomic type occurs at most once as a key. There is no
(complete) atomic type that implies both τA and τB . Furthermore, the variable containment
condition between τA and τB is satisfied. Notice that fS simulates exactly the broadcast
dependency function which is described in Example 1.

(2) Consider the query Q2(x, y, z) ← A(x, y, z), B(x, y, z), C(z, z). For simplicity, we
define partial types through formulas. Then, define τB = (B, true), τx=y

A = (A, x =
y), τy=z

A = (A, y = z), τ 6=A = (A, x 6= y ∧ y 6= z), τ 6=B = (B, x 6= y ∧ y 6= z). Then,
S = {(τB , {τx=y

A , τy=z
A }), (τ 6=A , {τ

6=
B })} is a BDS for Q2. To illustrate how OBF fS works,

let I = {A(1, 2, 3), B(1, 2, 3), A(1, 1, 2), B(1, 1, 2), A(1, 2, 2), B(1, 2, 2), C(3, 4), C(3, 3)} be a
database instance. Then, fS(I) = {A(1, 1, 2), A(1, 2, 2), C(3, 3)}. Indeed, the facts A(1, 1, 2),
A(1, 2, 2), C(3, 3) do not match a key in S and their type occurs in Types(Q). So they are
broadcast. The fact C(3, 4) is not broadcast as its type does not occur in Types(Q) (C(3, 4)
does not match C(z, z)). The fact f1 = B(1, 1, 2) matches τB and Dep(f1, {τx=y

A , τy=z
A }) =

{A(1, 1, 2)} ⊆ I. Therefore, B(1, 1, 2) is static. Similarly, the fact f2 = B(1, 2, 2) matches
τB and Dep(f2, {τx=y

A , τy=z
A }) = {A(1, 2, 2)} ⊆ I. Therefore, B(1, 2, 2) is static as well. The

fact f3 = A(1, 2, 3) is static as it matches τA and Dep(f3, {τ 6=b }) = {B(1, 2, 3)} ⊆ I. The fact
f4 = B(1, 2, 3) is static as it matches τB and Dep(f4, {τx=y

A , τy=z
A }) = ∅.

(3) For an example where condition (3) of Definition 10 does not reduce to ordinary
variable containment, consider again query Q1 from Example 1. Let τC = (C, x = z), and
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τA = (A, true). Then, S = {(τA, {τC}), (τC , ∅)} is a BDS for Q1. Notice that condition
Vars(C) 6⊆ Vars(A) but Vars(τC) ⊆τC Vars(τA).

(4) Our final example shows that dependencies can be circular. Let Q3(x, y, z) ←
A(x, y), B(y, z), C(z, x). Let τA = (A, x = y), τB = (B, x = y), and τC = (C, x = y). Then,
S = {(τA, {τB}), (τB , {τC}), (τC , {τA})} is an OBF for Q1. Though correctness of S for
Q follows from Lemma 13, we provide some intuition. Let I = {A(1, 1), B(1, 1), C(1, 1)}
be a database instance. Consider a network containg the nodes c1, c2, and c3. When
I(c1) = {A(1, 1)}, I(c2) = {B(1, 1)}, and I(c3) = {C(1, 1)}, then all three facts will be
broadcast. Now, assume one of the nodes contains two of the facts in I, w.l.o.g., say
I(c1) = {A(1, 1), B(1, 1)}. Then, exactly one of the facts in I(c1) is broadcast; i.e., B(1, 1).
Now, suppose that C(1, 1) is mapped on some node, say c2, but that C(1, 1) is not broadcast.
Then it must be that A(1, 1) is mapped on c2 as well. So, broadcasting B(1, 1) indeed suffices
to guarantee correctness. J

Note that not every BDS for Q induces an OBF which is correct for Q. Indeed, the
following lemma provides equivalent semantic and syntactic conditions for an OBF fS to be
correct for a query.

I Lemma 13. Let Q be a CQ and let S be a BDS for Q. Then the following are equival-
ent:
1. fS is an OBF for Q;
2. there are no instances I, J , and facts f, g, with f ∼Q g, g 6∈ I, f 6∈ J such that f 6∈ fS(I∪{f})

and g 6∈ fS(J ∪ {g}); and
3. there are no (complete) atomic types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈ S, with ω1 ∼Q ω2,

ω1 |= τ1, ω2 |= τ2 such that ω1 6∈ Types(T2) and ω2 6∈ Types(T1).

Proof. (1)⇔(2) Because fS is an OBF, the equivalence follows immediately from Lemma 4.
(2)⇒(3) The proof is by contraposition. So, assume that there are two (complete) atomic

types ω1, ω2, and pairs (τ1, T1), (τ2, T2) ∈ S, with ω1 ∼Q ω2, ω1 ∈ Types(τ1), ω2 ∈ Types(τ2)
such that ω1 6∈ Types(T2) and ω2 6∈ Types(T1). Now, because ω1 ∼Q ω2, there are facts f and
g, with f ∼Q g, type(f) = ω1, and type(g) = ω2. Define I = Dep(f,S) and J = Dep(g,S).
Observe that by definition of Dep, ω1 6∈ Types(T2) implies f 6∈ Dep(g,S) and ω2 6∈ Types(T1)
implies g 6∈ Dep(f,S). Hence, f 6∈ J and g 6∈ I. Moreover, by definition of fS , it is always
the case that f 6∈ fS(Dep(f,S)∪ {f}) and g 6∈ fS(Dep(g,S)∪ {g}). Therefore, f 6∈ fS(I ∪ {f})
and g 6∈ fS(J ∪ {g}), which contradicts condition (2).

(3)⇒(2) Again, the proof is by contraposition. So, assume that there is an instance I and
J and facts f and g where f ∼Q g, g 6∈ I and f 6∈ J , but f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}).
As f ∼Q g, we have ω1 ∼Q ω2 for ω1 = type(f) and ω2 = type(g). Then, by construction of
fS there are (τ1, T1), (τ2, T2) ∈ S with type(f) ∈ Types(τ1) and type(g) ∈ Types(τ2). Now,
f 6∈ fS(I ∪ {f}) and g 6∈ fS(J ∪ {g}) implies Dep(f,S) ⊆ I and Dep(g,S) ⊆ J . If we assume
that type(g) ∈ Types(T1) then g ∈ Dep(f,S) (as g = Vf,type(g)(atom(type(f)))), and therefore
g ∈ I which leads to a contradiction. Hence, type(g) 6∈ Types(T1). A similar argument
shows that type(f) 6∈ Types(T2). So, we have found ω1, ω2, (τ1, T2), and (τ2, T2) contradicting
condition (3). J

Notice that the OBFs of Example 12 are all correct for the given query.
Two partial atomic types τ1, τ2 are said to be equal, denoted τ1 = τ2, when Types(τ1) =

Types(τ2). We say that a BDS S is harmonious when every two partial types in S are either
disjoint or equal. That is, when for every two partial atomic types τ1, τ2 ∈ Keys(S) ∪ {τ ′ ∈
T | T ∈ Values(S)}, either τ1 = τ2 or Types(τ1) ∩ Types(τ2) = ∅.
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I Theorem 14. Let Q be a CQ and let S be a BDS for Q. Deciding whether fS is correct
for Q is conp-complete and in ptime when S is harmonious.

5.2 Local optimality
Next, we turn to local optimal OBFs. The following lemma provides equivalent semantic and
syntactic conditions for an OBF to be local optimal. Regarding condition (3), the intuition
is as follows. While condition (3c) is the syntactic counterpart of condition (2), conditions
(3a) and (3b) specify optimality requirements which are inherent to the formalism of BDS.
More specifically, condition (3a) specifies that every atomic type implying a partial type in
a dependency set in S must also imply a key in S. Indeed, when an atomic type does not
imply a key, every local fact of this type is always broadcast and therefore present at every
computing node. The atomic type can therefore be removed from every dependency set it
occurs in. When Condition (3b) fails for an atomic type ω, S can be adapted to broadcast less
while preserving correctness for Q by adding the pair (ω, {τ | τ ∼Q ω, τ ∈ Types(Keys(S))}).

I Lemma 15. Let Q be a CQ, S a BDS for Q, and fS an OBF for Q. The following are
equivalent:
1. fS is local optimal;
2. for every instance I and fact f for which f ∈ fS(I ∪ {f}), there is an instance J and a

fact g such that f ∼Q g, g 6∈ I, f 6∈ J , and g 6∈ fS(J ∪ {g}); and,
3. S satisfies the following conditions:

(a) for (τ, T ) ∈ S and ω ∈ Types(T ), ω ∼Q τ implies ω |= τ ′ for some τ ′ ∈ Keys(S);
(b) for every ω ∈ Types(Q) \Types(Keys(S)), there is a partial atomic type τ1 ∈ Keys(S)

and a ω1 ∈ Types(τ1) such that ω ∼Q ω1 and Vars(ω1) 6⊆ω1 Vars(ω); and
(c) for (τ1, T1), (τ2, T2) ∈ S, where ω1 ∈ Types(τ1), ω2 ∈ Types(τ2), and ω1 ∼Q ω2:

ω1 ∈ Types(T2) implies ω2 6∈ Types(T1).

Deciding whether fS is local optimal for arbitrarily given BDS S turns out to be hard
(c.f., Theorem 16). Therefore, we also consider the special case of open BDSs. We say that a
partial type ϕ = (E, I) is open when it enforces no restrictions. That is, when E = I = ∅. A
partial atomic type (R,ϕ) is open when ϕ is. We say that a BDS S is open when it only
contains open partial atomic types. Notice that a BDS that is open is also harmonious (but
not vice versa).

Similarly to Theorem 14, we have the following decidability result for local optimal OBFs.

I Theorem 16. Let Q be a CQ and let S be a BDS for Q for which fS is correct for Q.
Deciding whether fS is local optimal is in conp and in ptime when S is open.

It remains open though whether deciding local optimality is conp-complete or in ptime
(even for harmonious BDS). For harmonious BDS, condition (1) and (3) of Lemma 15 are
verifiable in polynomial time.

Next, we show that every local optimal OBF can be represented by a BDS thereby
obtaining that BDSs (satisfying the conditions in Lemma 15) are a complete representation
of local optimal OBFs. Let Q be a CQ and let f be an OBF for Q. We call a fact f
semi-static for f when there is an atomic type ω and an instance I such that f 6∈ f(I ∪ {f})
and type(f) = ω. That is, f has an atomic type and there is an instance for which f is not
broadcast. We say that a semi-static fact f (for f) depends on a fact g, when f 6∈ f(I ∪ {f})
implies g ∈ I for every instance I. With every semi-static fact f, we associate the set Df
containing exactly all facts on which f depends. Thus, f 6∈ f(I ∪ {f}) implies Df ⊆ I.

We make use of the following lemma in the proof of Theorem 18.
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I Lemma 17. Let Q be a CQ, and f be a local optimal OBF for Q. Let f be semi-static for
f . Then, f 6∈ f(Df ∪ {f}). Furthermore, g ∈ Df implies
1. g is semi-static and g ∼Q f;
2. Adom(g) ⊆ Adom(f);
3. Vars(atom(g)) ⊆type(g) Vars(atom(f)); and
4. g = Vf,type(g)(atom(g));

We are now ready to prove completeness. The proof of the following theorem shows that
the formalism of BDS that only uses complete atomic types can already represent every local
optimal OBF.

I Theorem 18 (Completeness). Let Q be a CQ and f a local optimal OBF for Q. Then,
there is a BDS S for Q such that f = fS .

Proof. We start by noting that if f is semi-static for f , then every g with type(f) = type(g)
is semi-static for f as well. Therefore, we say that an atomic type τ is semi-static for f when
there is a semi-static fact f with type(f) = τ . The proof is by construction. Let S be the
set of pairs (τ,Dτ ) where τ is semi-static for f and Dτ = Types(Df), where f is a fact with
atomic type τ .

We first show that S is a BDS and then that f = fS . Notice that, S has only finitely
many pairs, because there are only finitely many distinct atomic-types, and every set in
Values(S) is finite by construction. Let (τ, T ) ∈ S, and τ ′ ∈ T . By construction of S, τ
is a semi-static atomic type for f and for every atomic type τ there is at most one pair
(τ, T ) ∈ S. Furthermore, T = Dτ . Let f be a fact of type τ . Then, f is a semi-static fact
for f and there is a g ∈ Df, such that type(g) = τ ′. By Lemma 17(3), Vars(atom(τ ′)) =
Vars(atom(g)) ⊆type(g) Vars(atom(f)) = Vars(atom(τ)). So, S is a broadcast dependency set
for query Q.

Next, we show that f = fS . For this, we assume Df = Dep(f, Dtype(f)) (which is argued
below) and show that f 6∈ f(I ∪ {f}) iff f 6∈ fS(I ∪ {f}).

Let f be a fact and I an instance, such that f 6∈ f(I ∪ {f}). If f has no atomic type, then
it is never broadcast by fS . So, assume f has an atomic type. Then it must be that Df ⊆ I.
However, because (type(f), Dtype(f)) ∈ S and Df = Dep(f, Dtype(f)), Dep(f,S) ⊆ I. Hence, by
definition of fS , f 6∈ fS(I ∪ {f}).

For fact f and instance I, where f ∈ f(I ∪ {f}), Lemma 9 implies that f has an atomic
type. Either, f is always broadcast by f , or it is semi-static for f. The former implies that
there is no pair in S of the form (type(f), T ). So, f is broadcast by fS as well. The latter
implies by Lemma 17 that Df 6⊆ I and there is a pair (type(f), Dtype(f)) ∈ S. In particular,
because Dep(f, Dtype(f)) = Df, Dep(f, Dtype(f)) 6⊆ I, which implies that f 6∈ fS(I ∪ {f}).

It remains to show that Df = Dep(f, Dtype(f)). Because g ∈ Df, implying type(g) ∈
Dtype(f), it follows by Lemma 17(4) that g ∈ Dep(f, Dtype(f)). For the reverse direction,
let g ∈ Dep(f, Dtype(f)), which implies type(g) ∈ Dtype(f). So, there must be some fact
g′, which is of the same type as g, in Df. In particular, because Df ⊆ Dep(f, Dtype(f)),
g′ = Vf,type(g′)(atom(g′)). However, because g = Vf,type(g)(atom(g)), atom(g) = atom(g’),
and type(g′) = type(g), it must be that g = g′. So, indeed g ∈ Df. J

6 Algorithms for constructing a BDS

Lemma 13 and Lemma 15 yield a natural algorithm for constructing a local optimal OBF for
a given conjunctive query Q by simply starting from S = ∅ and adding new pairs in a one
by one fashion till no more pairs can be added. More formally, we introduce the algorithm
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Input: conjunctive query Q
Param: sequence of partial types R
S = ∅;
foreach τ ∈ R do

addPair = true;
Values = ∅;
foreach τ ′ ∈ Keys(S), where τ ′ ∼Q τ do

Values = Values ∪{τ ′};
if Vars(τ ′) 6⊆τ ′ Vars(τ) then

addPair = false;
end

end
if addPair then
S = S ∪ {(τ,Values)};

end
end
return S

Algorithm 1: Algorithm bds-build.

bds-build, given in Algorithm 1. As there are exponentially many (in the size of Q) partial
atomic types, we parameterize bds-build by a sequence R of partial atomic types.4 The
algorithm then produces a set of pairs (τ, T ) ∈ PTypes(Q)× 2PTypes(Q).

The following theorem obtains the correctness of bds-build. The complexity follows
directly from the size of R which is polynomial in the size of Q for open types and exponential
for complete types.

I Theorem 19. For a conjunctive query Q and a sequence R consisting of exactly the complete
(respectively, open) types, bds-build(Q) computes a BDS S for Q in time exponential
(respectively, polynomial) in the size of Q such that fS is correct for Q and local optimal.

I Example 20. We illustrate bds-build by means of an example.
Consider the conjunctive query Q(x, y, z, w)← A(x, y, z), B(x, y, z), C(z, w).

1. Open types. Observe that query Q has three open types, being τA = (A, true), τB =
(B, true), and τC = (C, true). Let R = (τA, τB , τC). Then, bds-build computes a
BDS by starting from S = ∅, expanding S to {(τA, ∅)} in the first iteration and to
{(τA, ∅), (τB , {τA})} in the second iteration. During the last iteration, S is not changed
anymore, because Vars(τA) 6⊆τA Vars(τC).

2. Complete types. The (complete) atomic types for Q are

τ 6=X = (X,x 6= y ∧ y 6= z ∧ x 6= z), τx=z
X = (X,x = z ∧ z 6= y ∧ y 6= z),

τx=y
X = (X,x = y ∧ x 6= z ∧ y 6= z), τy=z

X = (X,x 6= y ∧ y = z ∧ z 6= x),

τ=
X = (X,x = y ∧ x = z ∧ y = z), τ=

C = (C, z = w), and τ 6=C = (C, z 6= w),

where X ∈ {A,B}.5 Let R = (τ 6=B , τ=
C , τ

6=
C , τ

x=z
B , τx=y

A , τ 6=A , τ
x=z
A , τ=

A , τ
=
B , τ

y=z
A , τx=y

B , τy=z
B ).

4 We use a sequence rather than a set R to keep bds-build deterministic.
5 For convenience we represent atomic types here by partial atomic types with sufficient (but not complete)
conditions; e.g., we write (C, x = y) to denote (C, x = y ∧ y = x). Nevertheless, all of the listed pairs
indeed correspond to a single (complete) atomic type.
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Then, the output of algorithm bds-build(Q) is the BDS S = {(τ 6=B , ∅), (τx=z
B , ∅), (τx=y

A , ∅),
(τ 6=A , {τ

6=
B }), (τx=z

A , {τx=z
B }), (τ=

A , ∅), (τ=
B , {τ=

A }), (τ
y=z
A , ∅), (τx=y

B , {τx=y
A }), (τy=z

B , {τy=z
A })}.

Observe that the atomic types τ=
C and τ 6=C are not part of S because the variable

containment condition is not satisfied by the earlier included atomic type τ 6=B .
Observe that the constructed BDS S can be simplified by merging multiple atomic types
into partial atomic types; e.g., for S ′ = {(τA, {τ 6=B , τx=z

B }), (τB , {τx=y
A , τ=

A , τ
y=z
A })}, we

have fS = fS′ . J

Notice that when R consists of the complete or open atomic types, adding pairs to a
given BDS S as is done by bds-build(Q) results in a BDS S ′ that describes an OBF that
broadcasts strictly less facts, i.e., fS′ ( fS . That is, adding pairs optimizes the OBF.

I Remark. By construction, bds-build(Q) prevents any circular dependencies by stratifying
the construction of S so that partial atomic types can only depend on partial atomic types
that where added before. As illustrated in Example 12(4), dependencies in a BDS can also
be circular. To allow for these bds-build can be modified as follows: as an alternative
for adding pairs (τ, T ) where every existing key that is compatible with τ is included in
T , we can allow adding pairs where some keys that are compatible with τ are in T , and
for every other compatible key, their respective value set is expandend to contain τ ; i.e.,
allowing pairs of the form (τ,D), where D is a subset of C = {ω′ ∈ Keys(S) | ω′ ∼Q ω}
satisfying Vars(ω′) ⊆ω′ Vars(ω) for every ω′ ∈ D, and where every existing pair (ω′, T ),
where ω′ ∈ C \D, is expanded to (ω′, T ∪ {ω}). Particularly notice that when a given BDS
S is changed to S ′ by adding a pair and expanding at least one of the existing pairs as
described above, the inherent nature of the described OBF changes, so that not necessarily
fS′ ( fS .

I Remark. Although the machinery developed throughout this paper is motivated by gaining
a better understanding of the spectrum of local optimal OBFs, the reader may notice that
when no (statistical) information on the actual distribution of the data is available, there is
no basis to favor one local optimal OBF over another.

In fact, there is already a very simple algorithm to find an arbitrary local optimal OBF
for given CQ Q which is as good as any local optimal one (when no additional information
on the distribution of the data is available). Indeed, consider an arbitrary order on the
predicates of Q:

For every local fact f, with predicate R, if there is an earlier predicate S such that
some variable in Vars(S) is not in Vars(R), f is broadcast; otherwise, f is broadcast
only if all the facts induced by Vf on query Q are in the local instance.

Of course, not every local optimal OBF can take this form.

7 Discussion

We investigated local optimal oblivious broadcasting functions represented by the formalism
of broadcast dependency sets. We obtained semantical and syntactical characterizations,
showed completeness of BDSs for representing local optimal OBFs, and gave an algorithm for
constructing local optimal OBFs for a given conjunctive query. We present several directions
for future work: more expressive query languages, incorporating background knowledge, and
non-oblivious broadcast functions.

An obvious question is how to generalize our results to the class of all conjunctive queries
(possibly extended with negation) or even to (subsets of) Datalog. Of course, to evaluate non-

ICDT 2015



306 Optimal Broadcasting Strategies for Conjunctive Queries over Distributed Data

monotonic queries in a coordination-free manner, computing nodes need more information
on how data is distributed (c.f., [6]).

We only discussed how to build a BDS when no information about the way data is
distributed is available. Indeed, the best one can do is to let a BDS cover as much types
as possible, but at the same time introduce as little dependencies as possible, as these are
likely to fail when data is arbitrarily distributed. It would be interesting to devise optimal
broadcasting algorithms taking more background knowledge into account like information
about clustering of attributes, foreign keys, or cardinality of relations.

Another interesting direction for future work is to investigate non-oblivious broadcasting
functions where over time, when new messages arrive, static facts can become broadcast
facts (but not vice versa). Such functions are initially more conservative keeping more facts
static and only broadcast facts when there is some evidence that they can be used at another
computing node. For instance, consider the setting of Example 1. Rather than immediately
sending B(i, j) whenever A(j, i) is locally absent, broadcasting is suspended until a C-fact
of the form C(j, k) is received. The rationale is that a B-fact that can not contribute to a
locally satisfying valuation, should only be broadcast when some evidence is received that it
could potentially contribute to a satisfying valuation on a remote node. For our example
this means that c waits to send B(2, 1) until C(1, 3) arrives. Moreover, B(4, 4) is never sent.
While non-oblivious strategies might seem more attractive as they transmit fewer tuples,
such strategies, while remaining coordination-free, can increase the overall evaluation time.

Acknowledgment. We thank Phokion Kolaitis for raising the question whether it is always
necessary to broadcast all the data in the context of the work in [5]. We thank the reviewers
for their in-depth comments and numerous suggestions for improving the presentation of the
results.
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