
Polynomial Min/Max-weighted Reachability is in
Unambiguous Log-space
Anant Dhayal, Jayalal Sarma, and Saurabh Sawlani

Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai, India

Abstract
For a graph G(V,E) and a vertex s ∈ V , a weighting scheme (w : E → N) is called a min-unique
(resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of
minimum(resp. maximum) weight1 from s to v. Instead, if the number of paths of minimum(resp.
maximum) weight is bounded by nc for some constant c, then the weighting scheme is called a
min-poly (resp. max-poly) weighting scheme.

In this paper, we propose an unambiguous non-deterministic log-space (UL) algorithm for
the problem of testing reachability in layered directed acyclic graphs (DAGs) augmented with a
min-poly weighting scheme. This improves the result due to Reinhardt and Allender [11] where
a UL algorithm was given for the case when the weighting scheme is min-unique.

Our main technique is a triple inductive counting, which generalizes the techniques of [7, 12]
and [11], combined with a hashing technique due to [5] (also used in [6]). We combine this with
a complementary unambiguous verification method, to give the desired UL algorithm.

At the other end of the spectrum, we propose a UL algorithm for testing reachability in
layered DAGs augmented with max-poly weighting schemes. To achieve this, we first reduce
reachability in DAGs to the longest path problem for DAGs with a unique source, such that the
reduction also preserves the max-poly property of the graph. Using our techniques, we generalize
the double inductive counting method in [8] where UL algorithms were given for the longest path
problem on DAGs with a unique sink and augmented with a max-unique weighting scheme.

An important consequence of our results is that, to show NL = UL, it suffices to design
log-space computable min-poly (or max-poly) weighting schemes for DAGs.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Alternation and Non-
determinism

Keywords and phrases Reachability Problem, Space Complexity, Unambiguous Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.597

1 Introduction

Reachability testing in graphs (Reach) is an important algorithmic problem that encapsulates
central questions in space complexity. Given a graph G(V,E) and two special vertices s
and t, the problem asks to test if there is a path from s to t in the graph G. The problem
admits a (deterministic) log-space algorithm for the case of trees and undirected graphs (by a
breakthrough result due to Reingold[10]). The directed graph version of the problem captures
the complexity class NL. Designing a log-space algorithm for the problem is equivalent to
proving NL = L. (See [1] for a survey.) Even in the case when the graph is a layered DAG2,
the problem is known to be NL-complete.

1 Weight of a path p is the sum of the weights of the edges appearing in p.
2 A DAG is layered, if V can be partitioned as V = V1 ∪ . . . V` s.t. edges go from Vi to Vi+1 for some i.

© Anant Dhayal, Jayalal Sarma, and Saurabh Sawlani;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 597–609

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.597
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

598 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

An important intermediate class of algorithms for reachability is when the non-determinism
is unambiguous - when the algorithm accepts in at most one of the non-deterministic paths.
The class of problems which can be solved by such restricted non-deterministic algorithms
using only log-space is called Unambiguous Log-space (UL). Under a non-uniform polynomial-
sized advice, the reachability problem is known to have a UL algorithm[11], thus showing
NL/poly = UL/poly . Central to arriving at this complexity theoretic result was the following
algorithmic result that Reinhardt and Allender [11] had established: testing reachability in a
graph G augmented with a log-space computable weighting scheme that maps w : E → N
such that there is a unique minimum-weight path from s to any vertex v in the graph,
can be done by a non-deterministic log-space algorithm unambiguously and hence is in the
complexity class UL. (We call such weighting schemes as min-unique weighting schemes.)
This also led to other important developments including an unambiguous log-space algorithm
for directed planar reachability [4] - which was achieved by designing a log-space computable
min-unique weighting scheme for reachability in grid-graphs (a special class of planar graphs
for which reachability is as hard as planar DAG reachability[2]). An important open problem
in this direction is to design a log-space min-unique weighting scheme for general graphs.
The UL-computable version of this is also known to be equivalent to showing NL = UL.

Our Results: We make further progress on this algorithmic front by relaxing the restriction
on the number of paths of minimum weight from one to polynomially many paths. We call a
weighting scheme a min-poly weighting scheme if it results in at most polynomially many (in
terms of n = |V |) paths of minimum weight from s to any vertex v in a graph G(V,E).

I Theorem 1. Testing reachability in layered DAGs, augmented with log-space comput-
able min-poly weighting schemes, can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

Our algorithms use a technique of triple inductive counting. The inductive counting
method was originally discovered and employed as an algorithmic technique in [7] and [12]
in order to design non-deterministic log-space algorithms for testing non-reachability in
graphs. A double inductive version of this was used again by Reinhardt and Allender [11] for
designing unambiguous non-deterministic algorithms for testing reachability in min-unique
graphs. We use a triple inductive version of the inductive counting method, keeping track
of one extra parameter (which is the sum of the number of minimum weight paths to each
vertex). Along with a hashing technique (also used in [6]), this leads to a non-deterministic
algorithm where each accepting configuration has at most one path leading to it on any input
(the corresponding complexity class is known as FewUL). Finally, we convert this algorithm
to a UL algorithm using an unambiguous complementary verification, thus completing the
proof of the theorem.

A natural complementary question is if similar complexity bounds hold in the case of
graphs with weighting assignments that result in unique maximum weight paths from s

to any vertex v (such weighting schemes are called max-unique weighting schemes). In [8],
the longest path problem on DAGs augmented with max-unique weighting assignments
and having a unique sink t, was shown to be in UL. The corresponding weighting scheme
with polynomially many paths of maximum weight will be called a max-poly weighting
scheme. Using our triple inductive and complementary verification techniques, we adapt their
algorithms to improve their results by relaxing the constraint on the weighting assignments -
from max-unique to max-poly. We present our theorem in terms of the reachability problem,
as we also show a reduction (Lemma 5) from the reachability problem to the longest path
problem on single source DAGs, where the max-poly property of the graph is preserved.

A. Dhayal, J. Sarma, and S. Sawlani 599

I Theorem 2. Testing reachability in layered DAGs augmented with log-space computable
max-unique weighting schemes, can be done by a non-deterministic log-space algorithm
unambiguously and hence is in the complexity class UL.

I Remark. Observing that Theorem 1 and Theorem 2 hold even when the min-poly weighting
scheme is UL-computable, and combining with the results of [9], it follows that: for any graph
G there is a UL-computable min-poly weighting scheme if and only if there is a UL-computable
min-unique weighting scheme. We also remark that, by a minor variant the proof technique
in [9], we can show (the details are deferred to the appendix) that showing NL = UL is
equivalent to designing UL-computable (min)max-unique weighting schemes which, thus,
is equivalent to designing UL-computable (min)max-poly weighting schemes. However, we
stress the importance of this relaxation of the constraints from uniqueness as this potentially
can help designing weighting schemes for arbitrary layered DAGs.

Related Work: An important comparison of our results is with a complexity theoretic
collapse result shown by [6]. FewL is the class of problems that has non-deterministic
algorithms with only polynomially (in n) many accepting paths on any input of length n.
Clearly, FewL contains all problems in UL - however, the converse is not known. In its
algorithmic flavor, this question asks if reachability in a graph with at most polynomially
many paths from s to t, can be done by a non-deterministic algorithm in log-space, producing
at most one accepting path. ReachUL and ReachFewL are the corresponding complexity
classes where the uniqueness and polynomially boundedness constraints are respectively
applied for the number of paths from s to any other v ∈ V . Clearly, ReachUL is contained
in ReachFewL and they were shown to be equal recently [6]. It is worthwhile noting that
this establishes unambiguous log-space algorithms for reachability in graphs where there are
only polynomially many paths from the start vertex to any vertex in the graph. The class
of graphs that we discussed above (min/max-poly) also includes such graphs trivially. By
assigning a weight of 1 to every edge in such a graph, there can only be polynomially many
paths of minimum(or maximum) weight. Theorem 2, in particular, implies UL algorithms
for reachability in graphs with max-unique weighting schemes where there need not exist a
unique sink in the graph (and hence is a strengthening of the results in [8]).

2 Preliminaries

We assume basic familiarity with standard space complexity classes and reductions (see [3]
for a standard textbook). The graphs considered in this paper are directed, acyclic and
layered. Building on the terminology from the introduction, we say a DAG, G(V,E), is
min(max)-unique if it is augmented with a min(max)-unique weighting scheme. Similarly,
a graph is said to be min(max)-poly if it is augmented with a min(max)-poly weighting
scheme. A graph augmented with a weighting scheme w : E → N, can be converted to an
un-weighted graph, by replacing each edge e ∈ E with a path of length w(e). Notice that
this new graph also can be layered in log-space with edges allowed to jump forward, skipping
layers arbitrarily. In particular, there is a log-space computable numbering for the vertices
such that for each (u, v) ∈ E, u is given a smaller number as label than v. Additionally, in
the algorithms presented in later sections, we also verify whether the input graph is min-poly
and max-poly respectively.

In this new graph, we encode paths using numbers in the following way. Consider a path
of length k − 1, p : (x1, x2, . . . , xk) where the xis are the distinct integers representing the
vertices in the path. Let us represent this path p with the integer wp := 2x1 + 2x2 + . . .+ 2xk .

FSTTCS 2014

600 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

In other words, each path is represented by an n-bit integer, where the ith bit is 1 if and only
if vertex i is in the path. Observe that, since the graph is a layered DAG, edges are always
directed from a vertex of lower index to a vertex of higher index. Thus, a set of vertices is
enough to represent a path, irrespective of their order. Hence, each path p can be represented
by the unique number wp. In the case of min(max)-poly graphs, the algorithm cannot store
all s v paths to check whether they are different from each other or not. Hence, we use
the following hashing technique. For v ∈ V , let Pv be a set of min(max)-length s v paths.
Ps, by convention, contains one s s path of length 0. Let Sv = {wp | p ∈ Pv}. Clearly,
|Sv| = |Pv| ≤ nc.

Hashing the weights of paths: For any path p : s v, we define φm(p) := (
∑
u∈p2u)

mod m. We say that any integer m is good for a vertex v ∈ V , if no two s v paths p1 and
p2 satisfy φm(p1) = φm(p2). We say that m is good for a graph G, if it is good for all v ∈ V .
The following proposition ensures that there is always a polynomial sized good m.

I Proposition 1. [5] For every constant c there is a constant c′ so that for every set S of
n-bit integers with |S| ≤ nc there is a c′ logn-bit prime number m so that for all x, y ∈ S,
x 6= y =⇒ x 6≡ y mod m.

Guessing paths in lexicographic order: Our algorithms often require guessing several paths
to a vertex v in sequence and checking whether the guessed paths are in lexicographic order
w.r.t φm. Here, we outline a method of doing this in log-space.

Keep a counter c of log ` bits to keep track of how far we have traversed along a path.
Initialize this to 0. Keep logn bits to store the current vertex ρ of the current path π. Let
π′ be the previous path. Keep two variables, δπ and δπ′ , of logm bits each. to store the
intermediate value of φm(π) and previously calculated final value of φm(π′) respectively.
Repeat the following two steps until c reaches `. (1) δπ = (δπ + 2ρ) mod m. (2) Increment c
and choose one of ρ’s neighbour vertices non-deterministically and replace ρ by this neighbour.

Setting δπ to δπ′ and setting δπ, ρ and c to 0, repeat the steps in the previous paragraph
till we have guessed all the q paths. Each time, before updating δπ′ , check if δπ is strictly
less than δπ′ . If not, reject there itself.

Now we fix some notation. For any vertex v ∈ V , we denote by d(v) (and D(v)), the
minimum-distance (and maximum distance) of v from s. For any vertex v ∈ V , p(v) (and
P (v)) is the number of minimum-length (and maximum-length) s v paths.

3 FewUL Algorithm for Reach in min-poly layered DAGs

The UL algorithm given by Reinhardt and Allender [11] solves Reach for min-unique graphs.
In this section, we introduce a modification of their algorithm to work for min-poly graphs. To
handle polynomially many minimum-length paths, we introduce a new inductive parameter
pk which stores the sum of the number of minimum length paths from s to every vertex
v with d(v) ≤ k. To inductively compute this new parameter for each k, we will use the
method of guessing paths p in lexicographic order with respect to their hashed values (φm)
assuming that the guess of m is good.

However, we are still faced with the problem of obtaining a good m. In the following set
of routines, we will guess the value of m and use it while simultaneously detecting if it is
not good. Note that this routine will not be unambiguous any more, because there could be
several choices of m which are good for the given graph. However, each choice of m will lead

A. Dhayal, J. Sarma, and S. Sawlani 601

Algorithm Main-min-FewUL: Main FewUL routine to check reachability on min-poly
graphs.

1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ m < nc′

3: k := 1
4: c0 := 1; Σ0 := 0; p0 := 1
5: (c1,Σ1, p1) = Update-min(G, s, 0, c0,Σ0, p0,m)
6: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
7: (ck+1,Σk+1, pk+1) = Update-min(G, s, k, ck,Σk, pk,m)
8: k := k + 1
9: end while

10: if Test-min(G, s, t, k, ck,Σk, pk,m) > 0 then
11: Go to state ACCEPT-m
12: else
13: REJECT
14: end if

Algorithm Update-min: Deterministic (barring Test-min calls) routine computing ck+1,
Σk+1 and pk+1.

1: Input: (G, s, k, ck,Σk, pk,m)
2: Output: ck+1,Σk+1, pk+1

3: ck+1 := ck; Σk+1 := Σk; pk+1 := pk;
4: num := 0;
5: for v ∈ V do
6: if Test-min(G, s, v, k, ck,Σk, pk,m) = 0 then
7: for x such that (x, v) ∈ E do
8: num := num+ Test-min(G, s, x, k, ck,Σk, pk,m);
9: if num > nc then

10: REJECT
11: end if
12: end for
13: if num > 0 then
14: ck+1 := ck+1 + 1; Σk+1 := Σk+1 + k + 1; pk+1 := pk+1 + num;
15: end if
16: end if
17: end for

to exactly one accept state. Hence, we can label these accept states with their respective
choices of m, thus making it a FewUL routine.
Algorithm: Here we give the outline of the FewUL algorithm for L = { (G(V,E), s, t) | ∃s t

path and ∀v ∈ V, p(v) ≤ nc}, where the value of c is known. We fix some basic notations.
ck = |{v ∈ V : d(v) ≤ k}|, Σk =

∑
d(v)≤k d(v). The extra parameter pk is equal to∑

d(v)≤k p(v). First, building on the central idea of [11], we design an unambiguous log-space
routine (Test-min) to determine if d(v) ≤ k and return p(v) (in at most one non-deterministic
path), assuming the correct values of ck,Σk, pk and m. The modification is that, for each
vertex x ∈ V the algorithm will guess the number of paths (q - in the algorithm q = 0 is
interpreted as "guessing that d(v) > k") from s to x, their length `, and the paths themselves
in strictly decreasing order with respect to φm. Using this subroutine, we then compute
inductively, the values of ck+1,Σk+1 and pk+1. We will inductively compute p(v) and check if
it is greater than the polynomial bound nc. If p(v) exceeds this number, the subroutine rejects
as the underlying graph is not min-poly. This is described in the pseudocode Update-min.
The main FewUL algorithm will inductively compute ck, Σk and pk starting from k = 1 to
n− 1.

FSTTCS 2014

602 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Test-min: Unambiguous Log-space routine to return p(v) if d(v) ≤ k (returns
0 if d(v) > k, rejects if p(v) ≥ nc), given correct values of ck,Σk, pk and a good m.

1: Input: (G, s, v, k, ck,Σk, pk,m)
2: count := 0; sum := 0; paths := 0; paths.to.v := 0;
3: for x ∈ V do
4: Nondeterministically guess 0 ≤ q ≤ nc

5: if q 6= 0 then
6: Nondeterministically guess 0 ≤ ` ≤ k
7: Nondeterministically guess q paths p1, p2, . . . pq of length exactly ` each from s to x.
8: if ((∃i < j, φm(pi) ≤ φm(pj)) OR (paths are not valid)) then
9: REJECT

10: end if
11: count := count+ 1; sum := sum+ `; paths := paths+ q;
12: if x = v then
13: paths.to.v := q;
14: end if
15: end if
16: end for
17: if count = ck, sum = Σk and paths = pk then
18: Return the value of paths.to.v
19: else
20: REJECT
21: end if

I Claim 1. If m is good, given the correct values of ck, Σk and pk, the algorithm Test-min
has exactly one non-rejecting path, and it returns the correct value of p(v).

Proof. We argue that, since m is good, there is a unique way to guess the d(v) and p(v)
(∀v ∈ V), to satisfy count = ck, sum = Σk and paths = pk. We analyze this by cases.

If the algorithm, in a non-deterministic choice, guesses q > 0 for some vertex v (i.e.
d(v) ≤ k) for which d(v) > k, then it will not be able to guess any path of length ≤ k,
and hence will end up rejecting in that non-deterministic choice. If it guesses q = 0 for
some vertex v (i.e. d(v) > k) for which d(v) ≤ k, it will not increment count. But then, to
compensate this loss, for count to reach ck, the algorithm, in this non-deterministic choice,
will have to guess q > 0 for some vertex u for which d(u) > k, and thereby will reject.

If the algorithm, in a non-deterministic choice, guesses ` < d(v) (q > p(v)) for any v,
then it will not be able to find - a path of such length (that many paths) and hence will
end up rejecting in that non-deterministic choice. If it guesses ` > d(v) (q < p(v)), then to
compensate, it will have to guess ` < d(u) (q > p(u)) for some other vertex u, and hence will
reject in that non-deterministic path.

Hence, only the path in which, for all vertices, q and ` are guessed correctly and all q
paths of length ` are guessed in lexicographical order w.r.t. φm, will be a non-reject path
and will return the value of p(v) correctly. J

I Claim 2. If the algorithm Test-min works correctly for parameter k, then given the correct
values of ck,Σk and pk, the algorithm Update-min computes the correct values of ck+1,Σk+1
and pk+1.

Proof. The algorithm first assigns ck+1 := ck,Σk+1 := Σk and pk+1 := pk. Now, to update
these values we need the exact set of vertices with d(v) = k + 1. The algorithm, for each v,
checks if d(v) > k and for each of its neighbours x, checks if d(x) ≤ k. For the neighbours

A. Dhayal, J. Sarma, and S. Sawlani 603

passing this test, we know that d(x) = k. If any of the neighbours passes the test (num > 0
in line 13), d(v) = k + 1. Hence, ck+1 is incremented by 1, Σk+1 is incremented by k + 1,
and pk+1 is incremented by

∑
(x,v)∈E,d(x)=k p(x) (which is stored in num after loop 7-12).

Hence all the three parameters get updated correctly and hence the proof. J

I Observation 1. Observe that, since we begin with the correct values of c0, Σ0 and p0, by
induction, Claims 1 and 2 imply that the values of ck, Σk and pk calculated at any time in
the algorithm are always correct.

I Claim 3. If m is good, the algorithm Main-min-fewUL has at most one path to state
ACCEPT-m.

Proof. Using Observation 1 and Claim 1, we know that there is exactly one non-rejecting
path in each call to Test-min. Thus, there is exactly one non-rejecting path in each call
to Update-min, as Update-min is deterministic barring the calls to Test-min. Similarly,
there is exactly one non-rejecting path in Main-min-fewUL, as Main-min-fewUL - for
a particular choice of m - is deterministic barring the calls to Update-min. If t is indeed
reachable from s, this non-rejecting path goes to ACCEPT-m, as m is guessed initially and
is not changed thereafter. J

I Claim 4. If m is not good, given the correct values of ck, Σk and pk, the algorithm
Test-min (and hence both Update-min and Main-min-FewUL) always rejects.

Proof. If m is not good, then there exists a vertex v such that there exist at least two s v

paths p1 and p2 for which φm(p1) = φm(p2). So, if we guess q = p(v), then the paths cannot
be in strictly decreasing order w.r.t. φm and the algorithm will reject. If we guess q > p(v) ,
then the algorithm will fail to find q paths and reject. If we guess q < p(v) , then paths will
never be equal to pk, as the q for some other vertex u will then need to be greater than p(u)
(for paths to become equal to pk), which is not possible. J

I Theorem 3. The algorithm Main-min-FewUL is correct and FewUL.

Proof. If the value of m guessed is not good, then the algorithm Main-min-FewUL always
rejects (by Claim 4 and Observation 1), and if it is good, there is at most one path which
reaches ACCEPT-m (Claim 3). As there are polynomially many possible values of m,
Main-min-FewUL is in FewUL. After covering all the reachable vertices, the while loop
(line 6-9) in Main-min-FewUL terminates with correct values of ck, Σk and pk (Observation
1) and before reaching ACCEPT-m we do a final check to see whether or not vertex t has
been covered. As this case occurs only when m is good (Claims 3 and 4), the correct values
of p(v) will be returned (Claim 1) and thus the final decision will be correct. J

4 UL Algorithm for Reach in min-poly layered DAGs

The algorithm presented in the previous section is not unambiguous because there can be
more than one good m. To address this, we modify the Main-min-FewUL routine in such
a way that we always use the least good m (let us call this integer f). The Test-min and
Update-min routines are already unambiguous and need no change.

The idea is to non-deterministically guess f , and to verify that f is the smallest good
integer for the graph G. This is done by running an unambiguous routine which checks all
integers m < f and, for each value, verifies that it is not good and proceeds to the next value.
Finally it reaches f , and accepts if and only if it is good and there is a path from s to t.

FSTTCS 2014

604 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Update-fault-min: UL routine to verify our choice of f .
1: Input: (G, s,m)
2: non-deterministically guess 1 < k1 < n

3: c0 := 1; Σ0 := 0; p0 := 1; k := 1
4: while k < k1 do
5: (ck,Σk, pk) = Update-min(G, s, k, ck−1,Σk−1, pk−1,m)
6: k := k + 1
7: end while
8: match_found := false

9: for v ∈ V do
10: if Test-min(G, s, v, k − 1, ck−1,Σk−1, pk−1,m) = 0 then
11: valid := false

12: for x such that (x, v) ∈ E do
13: if Test-min(G, s, x, k − 1, ck−1,Σk−1, pk−1,m) > 0 then
14: valid := true

15: end if
16: end for
17: if valid then
18: for (a, b)|(a, v) and (b, v) ∈ E do
19: α := Test-min(G, s, a, k − 1, ck−1,Σk−1, pk−1,m)
20: β := Test-min(G, s, b, k − 1, ck−1,Σk−1, pk−1,m)
21: if (α > 0) ∧ (β > 0) ∧ (Find-match(G, s, k, a, b, α, β,m) = true) then
22: Return
23: end if
24: end for
25: end if
26: end if
27: end for
28: REJECT

If an integer m < f is not good, there must be a least integer k1(m) (from s) such that
there exists a vertex v for which d(v) = k1(m) and for which m is not good. It suffices to
find this vertex in order to certify that m is not good. For any such vertex v, there must
exist a, b ∈ V such that a, b are in-neighbours of v at distance k1(m)− 1 from s and there
must be two paths, pa through a and pb through b such that φm(pa) = φm(pb). Indeed,
a 6= b, since otherwise it contradicts the choice of k1(m). This is done by an unambiguous
non-deterministic algorithm Find-match((G, s, k, a, b, α, β,m), which guesses α(respectively
β) number of s a (s b) paths and pairwise checks for collision with respect to φm
between s a and s b paths. This is used as a subroutine in Update-fault-min.

I Theorem 4. The algorithm Main-min-UL is correct and unambiguous log-space.

Proof. Let f ′ be the smallest good value for graph G. We first argue that, if m is not
good then there exists exactly one non-reject path in Update-fault-min. We do this by
considering the following cases : If k1 > k1(m), then in the while loop (lines 4-7), when
k = k1(m), Update-min will find two paths p1 and p2 satisfying φm(p1) = φm(p2) and
will reject. If k1 < k1(m) then Find-match will never find two paths p1 and p2 satisfying
φm(p1) = φm(p2). So, it will always return false and thus, Update-fault-min will reject
at line 28. If k1 = k1(m) : let u be the lexicographically first vertex such that there exist
two s u paths p1 and p2 satisfying φm(p1) = φm(p2). Hence, in line 22, when v = u, the
algorithm will return, and this is the only non-reject path.

Now we argue that, if m is good then Update-fault-min rejects. Notice that, irrespective

A. Dhayal, J. Sarma, and S. Sawlani 605

of the value of k1 guessed, Find-match will not be able to find two paths p1 and p2 such
that φm(p1) = φm(p2) as m is good. Hence, in line 22, Update-fault-min algorithm will
never return and thus will reject in line 28.

Now we are ready to argue unambiguity of Main-min-UL. More specifically, we argue
that if f = f ′, Main-min-UL accepts in at most one path, and if f 6= f ′, Main-min-UL
rejects. Consider the case f = f ′. In each iteration of the first while loop (lines 4-7) in
Main-min-UL, m is not good and thus by the above argument, the while loop terminates in
exactly one path. The rest of the algorithm (lines 8-19) is identical to Main-min-FewUL. So,
by Claim 3 there is at most one accept path. Note that here, unlike in Main-min-FewUL,
we will reach a unique accept state corresponding to m = f = f ′.

Now consider f 6= f ′. If f < f ′, then at line 7, when the first while loop terminates,
m = f < f ′, and Update-min with f as parameter will reject because of Claim 4 and
Observation 1. If f > f ′, then when in first while loop m = f ′ (and hence m is good),
Update-fault-min will reject (as shown above).

Now we argue correctness. As argued, line 15 in Main-min-UL will be reached only
when f = f ′. At this point, ck,Σk, pk are calculated correctly, as Observation 1 still holds.
Thus, by Claim 1, Test-min outputs the correct value of p(t) as m = f ′ is good and thus
the final result is correct. J

5 Reach in max-poly layered DAGs

In order to arrive at the algorithm for Reach in max-poly graphs, we solve a harder problem
on a more specific class of graphs. This is a variant of the Long-path problem (Given
(G, s, t, j) where s and t are vertices in the graph G, and j is an integer - the Long-Path
problem asks to check if there is a path from s to t of length at least j) where the graph
G has a unique source s. We first give the reduction from Reach to this special case of
Long-path.

I Lemma 5. There is a function f , computable in log-space, that transforms an instance
(G(V,E), s, t) of Reach to an instance (G′(V ′, E′), s′, t, 2n + 1) of Long-Path, where
n = |V |, such that t is reachable from s in G if and only if there exists a path of length
at least 2n + 1 from s′ to t in G′. In addition, if G is max-unique (max-poly), then G′ is
max-unique (max-poly).

Proof. As mentioned in the preliminaries, without loss of generality, we can assume that
the vertices of the graph G(V,E) are numbered such that, edges always go from a lower
numbered vertex to a higher numbered vertex. Let V = {v1, v2, . . . , vn} be this numbering.
We will construct G′(V ′, E′) as follows: In addition to the edges among the vertices in V ,
we add a new source vertex s′ and add edges from s′ to all other vertices in V . We assign
weights to the newly added edges (which we later remove by replacing the edges with paths
of length equal to the weight of the edge). The weight of the edge (s′, s) = 2n and for vertices
vi 6= s, weight of (s′, vi) is 2i. Note that G′ has exactly one source vertex s′ and hence is a
valid input for our algorithm to solve Long-Path.

Now we argue the that if G had a unique path (polynomially many paths) of maximum
length from s to any vertex v, then so will be the case with G′. This condition is easily seen
for v /∈ V . For a vertex vi ∈ V , we claim that among all the paths not going through s,
there is exactly one path of maximum length and this is the path corresponding to the edge
(s′, vi) of length 2i. If not, choose a longest path (say p) which is not corresponding to the
edge (s′, vi). Let vj (j < i) be the first vertex in p from V . Clearly, p must use the path

FSTTCS 2014

606 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

Algorithm Main-min-UL: Main UL routine to check reachability.
1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ f < nc′

3: m := 2
4: while m < f do
5: Update-fault-min(G, s,m)
6: m := m+ 1
7: end while
8: k := 1
9: c0 := 1; Σ0 := 0; p0 := 1

10: (c1,Σ1, p1) = Update-min(G, s, 0, c0,Σ0, p0,m)
11: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
12: (ck+1,Σk+1, pk+1) := Update-min(G, s, k, ck,Σk, pk,m)
13: k := k + 1
14: end while
15: if Test-min(G, s, t, k, ck,Σk, pk,m) > 0 then
16: ACCEPT
17: else
18: REJECT
19: end if

Algorithm (Find-match): UL routine to find paths with matching φm values.
1: Input: (G, s, k, a, b, α, β,m)
2: for i = 1 to α do
3: Guess a path π of length k − 1 from s to a
4: if (i ≥ 2) ∧ (φm(π) ≥ X) then
5: REJECT
6: end if
7: X := φm(π)
8: for j = 1 to β do
9: Guess a path π′ of length k − 1 from s to b

10: if (j ≥ 2) ∧ (φm(π′) ≥ Y) then
11: REJECT
12: end if
13: Y := φm(π)
14: if X = Y then
15: Return true

16: end if
17: end for
18: end for
19: Return false

A. Dhayal, J. Sarma, and S. Sawlani 607

corresponding to the weighted edge (s′, vj). Hence, the length of the path p can at most be
2j + (i− j) = i+ j < 2i. This contradicts the choice of p.

Thus, for a vertex vi ∈ V that is not reachable from s, the maximum length path in
G′ is unique. For a vertex vi ∈ V that is reachable from s, the maximum length path not
through s is of weight exactly 2i, but the paths from s′ to vi through s are of length at least
2n+ 1 > 2i. Additionally, we can see that, if there were ` paths of maximum length from s

to any vertex vi in G, then the number of maximum length paths from s′ to vi is also `.
We now argue correctness of our reduction. Suppose that t is not reachable from s

in G. In this case, none of the paths from s′ to t will pass through s. Hence, using the
above argument, we know that the length of any path from s′ to t cannot be greater than
2n. On the other hand, if t is reachable from s in G (say by path p), then the path (s′, s)
concatenated with p is a path of length ≥ 2n+ 1 from s′ to t. J

Now we turn to this special case of the Long-path problem. As mentioned in the
introduction, Long-Path for max-unique graphs with a unique source has been studied by
[8]. The UL algorithm in [8] is for Long-Path on max-unique graphs having a single sink t.
In our version of Long-Path, we will consider paths from s (as opposed to paths to t in
[8]) and hence we will consider only graphs with a unique source s. We will extend their
algorithm to max-poly graphs, by first giving a FewUL algorithm, and then converting it to
a UL algorithm using a strategy similar to the min-poly Reach algorithm in Section 4 .

5.1 FewUL Algorithm for Reach in max-poly Layered DAGs
In a way similar to our adaptation of the algorithm for min-unique graphs of [11] to work
with min-poly layered DAGs, we adapt the algorithm proposed in [8] for max-unique graphs
(with a unique sink) to the case for max-poly graphs with a unique source. Along with
the reduction we mentioned above from Reach to Long-path in such graphs (preserving
the max-unique or max-poly property), this gives an algorithm for reachability testing in
such graphs. We build the intuition through an example setting where the idea used in the
min-poly algorithm (Test-min) fails. Suppose we have the correct values of ck, Σk and
pk. Even then, suppose for a vertex v, we guess D(v) < k whereas actually D(v) ≥ k. The
algorithm, in this non-deterministic choice can still compensate and make it to the original
summation by guessing for another u that D(u) ≥ k where actually D(u) < k. This is
possible because the algorithm does not verify guesses of the kind D(u) ≥ k (that is, q = 0).
In [8], this problem is addressed by introducing a new parameter M =

∑
v∈V D(v). The

value of M is also non-deterministically guessed, which if guessed correctly, will facilitate
verification of the guess D(u) ≥ k.

In a similar way, corresponding to the inductively computed parameter pk, we introduce
P =

∑
v∈V P (v). In what follows, we will outline a FewUL algorithm with this new parameter

and give a proof sketch.

Overview of the Algorithm: We introduce notation required for our exposition. We reuse
ck to denote the number of vertices v ∈ V for which D(v) ≥ k. Σk =

∑
v:D(v)<kD(v),

pk =
∑
v:D(v)<k P (v). Notice that c0 = n.

We first introduce Test-max(G, s, v, ck,Σk, pk,m), which given the correct values of ck,
Σk and pk, tests unambiguously whether D(v) ≥ k and outputs (D(v), P (v)) if D(v) < k or
outputs (0, 0) if D(v) ≥ k. We then initialize count = n and

∑
and paths to 0. For each

vertex x, we guess if D(x) ≥ k. If we guess NO, then the algorithm runs on similar lines as
Test-min, where we guess the maximum path length, the number of paths of that length

FSTTCS 2014

608 Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

from s to x, and the paths themselves in strictly decreasing order with respect to φm. We
decrement count, and increment sum and paths appropriately. If we guess YES, then we
perform a similar check by guessing the maximum path length, the number of paths of that
length (now at least k) from s to x, and the paths themselves in strictly decreasing order
with respect to φm. However this time, we increment sum′ and paths′ (instead of sum and
path) respectively. Once we run through all the vertices, we verify the guesses of the kind
D(v) < k by matching count with ck, sum with Σk and paths with pk. In addition, we verify
the guesses of the kind D(v) ≥ k by matching sum+ sum′ = M and paths+ paths′ = P .

The inductive computation of ck+1, Σk+1 and pk+1 from ck,Σk, and pk is done by the
routine Update-max (along the lines of Update-min). For each vertex with D(v) = k,
it decrements ck by 1, Σk by k and pk by

∑
(x,v)∈E,D(x)=k−1 P (v) to compute ck+1, Σk+1

and pk+1 respectively. In order to find vertices with D(v) = k, this routine, for each node v,
verifies if D(v) = k by invoking the routine Test-max on v and its in-neighbours.

The main reachability test algorithm, given (G′, s′, t′) as the input, constructs, in log-space,
the instance (G, s, t, j) of the special case of Long-path problem. It runs the remaining
algorithm with this new graph. The algorithm guessesm,M and P , and inductively computes
ck, Σk and pk until they stabilize (which happens only at ck = 0, since G is a single source
graph). Finally, to answer the original reachability problem, it suffices to test if D(t) ≥ j.
Since ck, Σk and pk are available, this can be decided using the Test-max algorithm.

Proof (Sketch) of Correctness and Unambiguity. Let T and S be the correct values of M
and P respectively. We claim that, irrespective of the guessed values of M and P , if the
input values ck, Σk and pk are correct, then all non-reject paths of Test-max return the
correct values of P (v) and D(v) for v if D(v) < k. (For other vertices it returns (0, 0)). If, in
addition, M and P were correct and m is ’good’, then there is exactly one non-reject path in
Test-max and hence in Main-max-FewUL.

It can be seen that if either M or P are guessed larger than the correct value, then
sum+ sum′ = M (paths+ paths′ = P) will never be true. If at least one of them is guessed
lesser than their correct value, then for the integer k such that D(v) < k for all vertices
v ∈ V , we will obtain sum = Σk (paths = pk) and sum′ = 0 (paths′ = 0). However, due
to the correctness of the value of Σk (pk), Σk = T (pk = S), the check sum + sum′ = M

(paths+ paths′ = P) will fail. Hence the algorithm is correct and is FewUL. J

5.2 UL Algorithm for Reach in max-poly Layered DAGs
The FewUL algorithm presented in Section 3 is not unambiguous because there could be
several choices of m which are good for G. However, there is a conceptual difficulty in guessing
the lexicographically first good m (which we call f). Unlike in the case of min-poly graphs,
here, for the each vertex v ∈ V , the guesses D(v) ≥ k also require verification. Suppose,
m < f is not good - i.e., there are two paths p1 and p2 to a vertex u with D(u) = k1−1 (let k1
be the least such integer) such that φm(p1) = φm(p2). For any vertex x with D(x) ≥ k1 − 1,
the value of m is not guaranteed to be good. Hence there could be several computation paths
on which the algorithm rejects and there is no unambiguous way to skip to m+ 1.

We outline an idea to fix this issue, which leads to the design of a UL algorithm. We
defer the details to the full version of this paper. As in the case of min-poly graphs, for each
m, the algorithm Update-fault-max guesses the least integer k1 such that there is a u
with D(u) = k1 − 1, and two s u paths p1 and p2 with φm(p1) = φm(p2). Prior to this
point, we run Update-max with φm and φf both being calculated for the paths - and φm
being computed only for the paths to vertices with D(v) < k. We verify whether there are

A. Dhayal, J. Sarma, and S. Sawlani 609

two such paths with the same end point v with D(v) = k1 − 1 using Find-match. In this
modified algorithm, the guesses D(v) > k can be verified by using φf values, since we are
assuming that f is good (which is later verified).

If Find-match does not return true, the algorithm rejects. If Find-match returns true,
then the algorithm continues in a unique path to complete the computation beyond this
point, but only for f and not for m. This way, M , T and f are verified (although it is done
f − 1 times). In the same way, we move through every m < f and if the algorithm does not
reject anywhere, it means our initial choice of f was correct.

References
1 Eric Allender. Reachability problems: An update. In Proc. of CiE 2007, pages 25–27, 2007.
2 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sam-

buddha Roy. Planar and grid graph reachability problems. Theor. Comp. Sys., 45(4):675–
723, July 2009.

3 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

4 Chris Bourke, Raghunath Tewari, and N.V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):4:1–4:17, February 2009.

5 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, June 1984.

6 Brady Garvin, Derrick Stolee, Raghunath Tewari, and N.V. Vinodchandran. ReachFewL
= ReachUL. computational complexity, 23(1):85–98, 2014.

7 Neil Immerman. Nondeterministic space is closed under complementation. SIAM J. Com-
put., 17(5):935–938, October 1988.

8 Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest paths in planar dags
in unambiguous logspace. In Proc. of CATS 2009, pages 101–108, 2009.

9 Aduri Pavan, Raghunath Tewari, and N.V. Vinodchandran. On the power of unambiguity
in log-space. Computational Complexity, 21(4):643–670, 2012.

10 Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of STOC 2005,
pages 376–385, 2005.

11 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Com-
put., 29(4):1118–1131, 2000.

12 R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Inf., 26(3):279–284, November 1988.

FSTTCS 2014

	Introduction
	Preliminaries
	FewUL Algorithm for Reach in min-poly layered DAGs
	UL Algorithm for Reach in min-poly layered DAGs
	Reach in max-poly layered DAGs
	FewUL Algorithm for Reach in max-poly Layered DAGs
	UL Algorithm for Reach in max-poly Layered DAGs

